Electrochemical Atomic Force Microscopy

  • Toru UtsunomiyaEmail author
  • Yasuyuki Yokota
  • Ken-ichi Fukui


Atomic force microscopy (AFM) can image the surfaces of flat materials, irrespective of their conductivity. The sample is usually imaged in air, but can be in liquid environments and under vacuum, as described in other chapters (Chaps.  6, and  55). AFM has also been applied to the electrode/electrolyte interfaces, since its invention.


Electrochemistry Electrode/electrolyte interfaces In situ Solvation Force spectroscopy 


  1. 1.
    Gewirth, A.A., Niece, B.K.: Electrochemical applications of in situ scanning probe microscopy. Chem. Rev. 97, 1129–1162 (1997)CrossRefGoogle Scholar
  2. 2.
    Masuda, T., Ikeda, K., Uosaki, K.: Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer on a gold electrode surface studied by cyclic voltammetry, electrochemical quartz microbalance, and electrochemical atomic force microscopy. Langmuir 29, 2420–2426 (2013)CrossRefGoogle Scholar
  3. 3.
    Utsunomiya, T., Yokota, Y., Enoki, T., Hirao, Y., Kubo, T., Fukui, K.: Voltammetric and in situ frequency modulation atomic force microscopic investigation of phenalenyl derivatives adsorbed on graphite surfaces. Carbon 77, 184–190 (2014)CrossRefGoogle Scholar
  4. 4.
    Hayes, R., Borisenko, N., Tam, M.K., Howlett, P.C., Endres, F., Atkin, R.: Double layer structure of ionic liquids at the Au(111) electrode interface: an atomic force microscopy investigation. J. Phys. Chem. C 115, 6855–6863 (2011)CrossRefGoogle Scholar
  5. 5.
    Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015)CrossRefGoogle Scholar
  6. 6.
    Fukuma, T., Kobayashi, K., Matsushige, K., Yamada, H.: True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 87, 34101 (2005)CrossRefGoogle Scholar
  7. 7.
    Negami, M., Ichii, T., Murase, K., Sugimura, H.: Visualization of ionic-liquid/solid interfaces by frequency modulation atomic force microscopy. ECS Trans. 50, 349–355 (2013)CrossRefGoogle Scholar
  8. 8.
    Utsunomiya, T., Yokota, Y., Enoki, T., Fukui, K.: Potential-dependent hydration structures at aqueous solution/graphite interfaces by electrochemical frequency modulation atomic force microscopy. Chem. Commun. 50, 15537–15540 (2014)CrossRefGoogle Scholar
  9. 9.
    Utsunomiya, T., Tatsumi, S., Yokota, Y., Fukui, K.: Potential-dependent structures investigated at the perchloric acid solution/iodine modified Au(111) interface by electrochemical frequency-modulation atomic force microscopy. Phys. Chem. Chem. Phys. 17, 12616–12622 (2015)CrossRefGoogle Scholar
  10. 10.
    Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., Yamada, H.: Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Rev. Sci. Instrum. 76, 53704 (2005)CrossRefGoogle Scholar
  11. 11.
    Batina, N., Yamada, T., Itaya, K.: Atomic level characterization of the iodine-modified Au(111) electrode surface in perchloric acid solution by in-situ STM and ex-Situ LEED. Langmuir 11, 4568–4576 (1995)CrossRefGoogle Scholar
  12. 12.
    Asakawa, H., Yoshioka, S., Nishimura, K., Fukuma, T.: Spatial distribution of lipid headgroups and water molecules at membrane/water interfaces visualized by three-dimensional scanning force microscopy. ACS Nano 6, 9013–9020 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toru Utsunomiya
    • 1
    Email author
  • Yasuyuki Yokota
    • 2
  • Ken-ichi Fukui
    • 3
  1. 1.Department of Materials Science and Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Surface and Interface Science LaboratoryRIKENWakoJapan
  3. 3.Department of Materials Engineering Science, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan

Personalised recommendations