Skip to main content

Proteases—The Sharp Scissors in Human Diseases

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

Cells use proteases to accomplish a variety of cellular functions primarily through activation or deactivation of target proteins. An interruption in the balance between activation and deactivation is implicated in a growing list of human diseases. This chapter briefly covers the classification of the human proteases along with their involvement in diseases finally concluding with the idea of protease inhibitors as drugs and mention of related databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Barett AJ, McDonald JK (1986) Nomenclature: protease, proteinase and peptidase. Biochem J 237:935

    Article  Google Scholar 

  2. Polgar L (ed) (1989) Metalloproteases. In: Mechanisms of protease action, pp. 208–210. CRC Press, Boca Ratan, FL

    Google Scholar 

  3. Menard R, Storer A (1992) Oxyanion hole interactions in serine and cysteine proteases. Hoppe-seyler’s Z Biol Chem 373:393–400

    Article  CAS  Google Scholar 

  4. Hedstrom L (2002) Serine protease mechansm and specificity. Chem Rev 102:4501–4523

    Article  CAS  PubMed  Google Scholar 

  5. Puente XS, Lopez-Otin C (2004) A genomic analysis of rat proteases and protease inhibitors. Genome Res 14:609–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ramachandran R, Hollenberg MD (2008) Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 153(Suppl 1):S263–S282

    CAS  PubMed  Google Scholar 

  7. Dodson G, Wlodawr A (1998) Catalytic triads and their relatives. Trends Biochem Sci 23:347–352

    Article  CAS  PubMed  Google Scholar 

  8. Blow DM (1971) The enzymes, 3rd edn, vol 3. Boyer PD (ed) Academic Press, Boca Raton

    Google Scholar 

  9. Sharony R, Yu P-J, Park J, Galloway AC, Mignatti P, Pintucci G (2010) Protein targets of inflammatory serine proteases and cardiovascular disease. J Inflam 7:45

    Article  Google Scholar 

  10. Twigg MS, Brockbank S, Lowry P, FitzGerald SP, Taggart C, Weldon S (2015) The role of serine proteases and antiproteases in cystic fibrosis. Mediators Inflamm. Article ID: 293053

    Google Scholar 

  11. Zhou XW, Blackman MJ, Howell SA, Carruthers VB (2004) Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol Cell Proteomics 3:565–576

    Article  CAS  PubMed  Google Scholar 

  12. Romaris F, North SJ, Gagliardo LF, Butcher BA, Ghosh K, Beiting DP, Panico M, Arasu P, Dell A, Morris HR, Appleton JA (2002) A putative serine protease among the excretory-secretory glycoproteins of L1 Trichinella spiralis. Mol Biochem Parasitol 122:149–160

    Article  CAS  PubMed  Google Scholar 

  13. Wang B, Wang ZQ, Jin J, Ren HJ, Liu LN, Cui J (2013) Cloning, expression and characterization of a Trichinella spiralis serine protease gene encoding a 35.5 kDa protein. Exp Parasitol 134:148–154

    Article  CAS  PubMed  Google Scholar 

  14. Poole CB, Jin J, McReynolds LA (2003) Cloning and biochemical characterization of blisterase, a subtilisin-like convertase from the filarial parasite, Onchocerca volvulus. J Biol Chem 278:36183–36190

    Article  CAS  PubMed  Google Scholar 

  15. Rees-Roberts D, Mullen LM, Gounaris K, Selkirk ME (2010) Inactivation of the complement anaphylatoxin C5a by secreted products of parasitic nematodes. Int J Parasitol 40:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hotez PZ, Cerami A (1983) Secretion of a proteolytic anticoagulant by Ancylostoma hookworms. J Exp Med 157:1594–1603

    Article  CAS  PubMed  Google Scholar 

  17. Kong Y, Chung YB, Cho SY, Choi SH, Kang SY (1994) Characterization of three neutral proteases of Spirometra mansoni plerocercoid. Parasitology 108:359–368

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed SA, Fahmy AS, Mohamed TM, Hamdy SM (2005) Proteases in egg, miracidium and adult of Fasciola gigantica. Characterization of serine and cysteine proteases from adult. Comp Biochem Physiol B Biochem Mol Biol 142:192–200

    Article  PubMed  Google Scholar 

  19. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425

    Article  PubMed  Google Scholar 

  20. Horn M, Fajtová P, Rojo Arreola L, Ulrychová L, Bartošová-Sojková P et al (2014) Trypsin- and chymotrypsin-like serine proteases in schistosoma mansoni—‘the undiscovered country’. PLoS Negl Trop Dis 8(3):e2766. doi:10.1371/journal.pntd.0002766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alam A (2014) Serine proteases of malaria parasite Plasmodium falciparum: potential as antimalarial drug targets. Interdisc Perspect Infect Dis. doi:10.1155/2014/453186

  22. Berti PJ, Storer AC (1995) Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol 246:273–283

    Article  CAS  PubMed  Google Scholar 

  23. Thornberry N, Bull HG, Calaycay JR, Chapman KT, Howard AD et al (1992) A novel heterodimeric cysteine protease is required for inteleukin-1 beta processing in monocytes. Nature 356:768–774

    Article  CAS  PubMed  Google Scholar 

  24. Nuñez G, Benedict MA, Hu Y, Inohara N (1998) Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237–3245

    Article  PubMed  Google Scholar 

  25. Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20:4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cataldo AM, Hamilton DJ, Nixon RA (1994) Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res 640:68–80

    Article  CAS  PubMed  Google Scholar 

  27. Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA (1997) Active site-directed antibodies identify calpain II as an early-appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res 763:145–158

    Article  CAS  PubMed  Google Scholar 

  28. Yamashima T (2012) Hsp70.1 and related lysosomal factors for necrotic neuronal death. J Neurochem 120:477–494

    Article  CAS  PubMed  Google Scholar 

  29. Werle B, Kraft C, Lah TT, Kos J, Schanzenbächer U, Kayser K et al (2000) Cathepsin B in infiltrated lymph nodes is of prognostic significance for patients with nonsmall cell lung carcinoma. Cancer 89:2282–2291

    Article  CAS  PubMed  Google Scholar 

  30. Donnelly S, Dalton JP, Robinson MW (2011) How pathogen-derived cysteine proteases modulate host immune responses. Adv Exp Med Biol 712:192–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salas F, Fichmann J, Lee GK, Scott MD, Rosenthal PJ (1995) Functional expression of falcipain, a Plasmodium falciparum cysteine proteinase, supports its role as a malarial hemoglobinase. Infect Immun 63(6):2120–2125

    CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Brien TC, Mackey ZB, Fetter RD, Choe Y, O’Donoghue AJ, Zhou M, Craik CS, Caffrey CR, McKerrow JH (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition 24; 283(43): 28934–28943

    Google Scholar 

  33. Vincents B, Onnerfjord P, Gruca M, Potempa J, Abrahamson M (2007) Down-regulation of human extracellular cysteine protease inhibitors by the secreted staphylococcal cysteine proteases, staphopain A and B. Biol Chem 388:437–446

    Article  CAS  PubMed  Google Scholar 

  34. Shah PK (1997) Inflammation, metalloproteinases, and increased proteolysis—an emerging pathophysiological paradigm in aortic aneurysm. Circulation 96:2115–2117

    Article  CAS  PubMed  Google Scholar 

  35. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  CAS  PubMed  Google Scholar 

  36. Skiles JW, Monovich LG, Jeng AY (2000) Matrix metalloproteinase inhibitor in the treatment of cancer. Annu Rep Med Chem 35:167–176

    Article  CAS  Google Scholar 

  37. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31

    Article  CAS  PubMed  Google Scholar 

  38. Arend WP, Dayer J-M (1995) Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 38:151–160

    Article  CAS  PubMed  Google Scholar 

  39. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158:983–994

    Article  CAS  PubMed  Google Scholar 

  40. Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41:271–290

    Article  CAS  PubMed  Google Scholar 

  41. Giraudon P, Buart S, Bernard A, Thomasset N, Belin MF (1996) Extracellular matrix-remodeling metalloproteinases and infection of the central nervous system with retrovirus human T-lymphotropic virus type I (HTLV-I). Prog Neurobiol 49:169–184

    Article  CAS  PubMed  Google Scholar 

  42. Eggleson KK, Duffin KL, Goldberg DE (1999) Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem 274:32411–32417

    Article  CAS  PubMed  Google Scholar 

  43. Laliberté J, Carruthers VB (2011) Toxoplasma gondii toxolysin 4 is an extensively processed putative metalloproteinase secreted from micronemes. Mol Biochem Parasitol 177:49–56

    Article  PubMed  PubMed Central  Google Scholar 

  44. Elkington PTG, Emerson JE, Lopez-Pascua LDC et al (2005) Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J Immunol 175:5333–5340

    Article  CAS  PubMed  Google Scholar 

  45. Okamoto T, Akaike T, Suga M et al (1997) Activation of human matrix metalloproteinases by various bacterial proteinases. J Biol Chem 272:6059–6066

    Article  CAS  PubMed  Google Scholar 

  46. DeCarlo AA Jr, Windsor LJ, Bodden MK, Harber GJ, Birkedal-Hansen B, Birkedal-Hansen H (1997) Activation and novel processing of matrix metalloproteinases by a thiol-proteinase from the oral anaerobe Porphyromonas gingivalis. J Dent Res 76:1260–1270

    Article  CAS  PubMed  Google Scholar 

  47. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE (2002) Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc Natl Acad Sci U S A 99:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumalee Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, S., Basu, S. (2017). Proteases—The Sharp Scissors in Human Diseases. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_27

Download citation

Publish with us

Policies and ethics