Skip to main content

Matrix Metalloproteases: Potential Role in Type 2 Diabetic Nephropathy

  • Chapter
  • First Online:
Book cover Pathophysiological Aspects of Proteases

Abstract

Type 2 diabetes mellitus is the most common form and constitutes a major diabetic population in all countries. The complications of diabetes mellitus (DM) include nephropathy, neuropathy, retinopathy, and cardiovascular disease. Type 2 diabetic nephropathy (DN) is a devastating complication of DM and a main cause of end-stage renal failure. Evidences show that susceptibility to Type 2 DN has a significant genetic component in addition to environmental factors. In Type 2 DN, hyperglycemia-induced changes include extracellular matrix (ECM) deposition, basement membrane (BM) thickening, as well as vascular smooth muscle and mesangial cell growth. ECM proteins are degraded by zinc-dependent endopeptidases called matrix metalloproteases (MMPs) which in turn are regulated by tissue inhibitors of metalloproteases (TIMPs). The proteases (MMPs) and antiproteases (TIMP) offer the opportunity to identify the determinants of the disease that are very likely to be causative and might lead to new therapeutics with strong molecular underpinning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 19:S1–S85

    Google Scholar 

  2. Chan JC, Malik V, Jia W et al (2009) Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301:2129–2140

    Article  CAS  Google Scholar 

  3. King GL (2008) The role of inflammatory cytokines in diabetes and its complications. J Periodontol 79:1527–1534

    Article  CAS  Google Scholar 

  4. Murphy M, Crean J, Brazil DP, Sadlier D, Martin F, Godson C (2008) Regulation and consequences of differential gene expression in diabetic kidney disease. Biochem Soc Trans 36:941–1005

    Article  CAS  Google Scholar 

  5. Hemanth KN, Prashanth S, VidyaSagar J (2011) Diabetic nephropathy pathogenesis and newer targets in treatment. Int J Pharm Sci Rev Res 6:91–101

    Google Scholar 

  6. Kimberly R, Hyun Mi K, Thomas H, Katalin S (2014) Molecular mechanisms of diabetic kidney disease. J Clin Investig 124(6):2333–2340

    Article  Google Scholar 

  7. Ziyadeh FN, Wolf G (2008) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diab Rev 4:39–45

    Article  CAS  Google Scholar 

  8. Xu X, Xiao L, Xiao P et al (2014) A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem 21(28):3244–3260

    Article  CAS  Google Scholar 

  9. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  CAS  Google Scholar 

  10. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinase in cancer progression. Nature 2:161–174

    CAS  Google Scholar 

  11. Hsieh HL, Chi PL, Lin CC, Yang CC, Yang CM (2014) Up-regulation of ROS-dependent matrix metalloproteinase-9 from high-glucose-challenged astrocytes contributes to the neuronal apoptosis. Mol Neurobiol 50:520–533

    Article  CAS  Google Scholar 

  12. Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  Google Scholar 

  13. Busch M, Franke S, Ruster C, Wolf G (2010) Advanced glycation end-products and the kidney. Eur J Clin Invest 40(8):742–755

    Article  CAS  Google Scholar 

  14. Schrijvers BF, De Vriese AS, Flyvbjerg A (2004) From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr Rev 25(6):971–1010

    Article  CAS  Google Scholar 

  15. Wendt T, Tanji N, Guo J et al (2003) Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 14(5):1383–1395

    Article  CAS  Google Scholar 

  16. Engelmyer E, van Goor H, Edwards DR, Diamond JR (1995) Differential mRNA expression of renal cortical tissue inhibitor of metalloproteinase-1, -2, and -3 in experimental hydronephrosis. J Am Soc Nephrol 5(9):1675–1683

    CAS  PubMed  Google Scholar 

  17. Akiyama K, Shikata K, Sugimoto H et al (1997) Changes in serum concentrations of matrix metalloproteinases, tissue inhibitors of metalloproteinases and type IV collagen in patients with various types of glomerulonephritis. Res Commun Mol Pathol Pharmacol 95:115–128

    CAS  PubMed  Google Scholar 

  18. Johnson PJ, Tyagi SC, Katwa LC et al (1998) Activation of extracellular matrix metalloproteinases in equine laminitis. Vet Rec 142:392–396

    Article  CAS  Google Scholar 

  19. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292:F905–F911

    Article  CAS  Google Scholar 

  20. Dimas G, Iliadis F, Grekas D (2013) Matrix metalloproteinases, atherosclerosis, proteinuria and kidney disease: link-age–based approaches. Hippokratia 17:292–297

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Keeling J, Herrera GA (2008) Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsc Res Tech 71:371–379

    Article  CAS  Google Scholar 

  22. Matthew G, William CP (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203

    Article  Google Scholar 

  23. Saffarian S, Collier IE, Marmer BL, Elson EL (2004) Goldberg G. Interstitial collagenase is a brownian ratchet driven by proteolysis of collagen. Science 306:108–111

    Article  CAS  Google Scholar 

  24. Rutter JL, Mitchell TI, Buttice G et al (1998) A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter creates an Ets binding site and augments transcription. Cancer Res 58:5321–5325

    CAS  PubMed  Google Scholar 

  25. Arakaki PA, Marques MR, Santos MCLG (2009) MMP-1 polymorphism and its relationship to pathological processes. J Biosci 34:313–320

    Article  CAS  Google Scholar 

  26. Izakovicova HL, Hrdlickova B, Vokurka J, Fassmann A (2012) Matrix metalloproteinase 8 (MMP8) gene polymorphisms in chronic periodontitis. Arch Oral Biol 57:188–196

    Article  Google Scholar 

  27. Leeman MF, Curran S, Murray GI (2003) The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol 37(3):149–166

    Article  Google Scholar 

  28. Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem 270:5872–5876

    Article  CAS  Google Scholar 

  29. Price SJ, Greaves DR, Watkins H (2000) Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 276(10):7549–7558

    Article  Google Scholar 

  30. Pan MR, Hung WC (2002) Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription. J Biol Chem 277(36):32775–32780

    Article  CAS  Google Scholar 

  31. Eberhardt W, Huwiler A, Beck KF, Walpen S, Pfeilschifter J (2000) Amplification of IL-1ß-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kB and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J Immunol 165:5788–5797

    Article  CAS  Google Scholar 

  32. Zhang B, Ye S, Herrmann SM et al (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99:1788–1794

    Article  CAS  Google Scholar 

  33. Tadahide K, Yutaka Y, Junichi KPK et al (2004) Expression of MMP-9 in mesangial cells and its changes in anti-GBM glomerulonephritis in WKY rats. Clin Exp Nephrol 8:206–215

    Article  Google Scholar 

  34. Humphries S, Bauters C, Meirhaeghe A, Luong L, Bertrand M, Amouyel P (2002) The 5A6A polymorphism in the promoter of the stromelysin-1 (MMP3) gene as a risk factor for restenosis. Eur Heart J 23:721–725

    Article  CAS  Google Scholar 

  35. Keith B, Hideaki N (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    Article  Google Scholar 

  36. Kanauchi M, Nishioka H, Nakashima Y, Hashimoto T, Dohi K (1996) Role of tissue inhibitors of metalloproteinase in diabetic nephropathy. Nihon Jinzo Gakkai Shi 38:124–128

    CAS  PubMed  Google Scholar 

  37. Lambert E, Boudot C, Kadri Z et al (2003) Tissue inhibitor of metalloproteinases-1 signalling pathway leading to erythroid cell survival. Biochem J 372:767–774

    Article  CAS  Google Scholar 

  38. Hoegy SE, Oh HR, Corcoran ML, Stetler-Stevenson WG (2001) Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem 276:3203–3214

    Article  CAS  Google Scholar 

  39. Jaworski DM, Perez-Martinez L (2006) Tissue inhibitor of metalloproteinase-2 (TIMP-2) expression is regulated by multiple neural differentiation signals. J Neuro chem 98:234–247

    CAS  Google Scholar 

  40. Beranek M et al (2003) Three novel polymorphisms in the promoter region of the TIMP-3 gene are not associated with proliferative diabetic retinopathy in Type 2 diabetes mellitus. Curr Eye Res 27(2):91–93

    Article  Google Scholar 

  41. Olson TM, Hirohata S, Ye J, Leco K, Seldin MF, Apte SS (1998) Cloning of the human tissue inhibitor of metalloproteinase-4 gene (TIMP4) and localization of the TIMP4 and Timp4 genes to human chromosome 3p25 and mouse chromosome 6, respectively. Genomics 51(1):148–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanumanth Surekha Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srilatha Reddy, G., Surekha Rani, H. (2017). Matrix Metalloproteases: Potential Role in Type 2 Diabetic Nephropathy. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_25

Download citation

Publish with us

Policies and ethics