Skip to main content

Unfolding the Mechanism of Proteases in Pathophysiology of Gastrointestinal Diseases

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

The intestinal epithelial biology is controlled by the presence of the gastrointestinal protease pool and their inhibitors. Enteric bacterial proteases and their signalling mechanisms contribute to the pathogenesis of IBD. Proteases derived from Helicobacter pylori (H. pylori) are mainly responsible for ulceration, low stomach acid and gastritis. H. pylori infection initiates the inflammatory and apoptotic pathways. The apoptotic pathways involve the proteolytic activities of caspases, i.e. cysteine aspartate proteases. However, some types of matrix metalloproteinases restrain such infection while other types act as the causal agent for gastric ulceration. Serine proteases and PAR-2 have been found to elicit signalling pathways related to induction of pain in patients suffering from irritable bowel syndrome. The prognostic role of tumour-associated proteases in colorectal cancer has also been investigated. The increased levels of cathepsin in Gaucher storage cells point towards their role in pathogenesis of the disease. On the other hand, excessive trypsin and chymotrypsin activity has been observed in case of chronic pancreatitis. This chapter focusses on the role of proteases on the pathology of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Salvesen GS, Hempel A, Coll NS (2015) Protease signaling in animal and plant regulated cell death. FEBS J 22:21–25

    Google Scholar 

  2. Dodson G, Wlodawer A (1998) Catalytictriads and their relatives. Trends Biochem Sci 23(9):347–352

    Article  CAS  Google Scholar 

  3. Medina C, Radomski MW (2006) Role of matrix metalloproteinases in intestinal inflammation. J Pharmacol Exp Ther 318:933–938

    Article  CAS  Google Scholar 

  4. Neurath H, Walsh KA (1976) Role of proteolytic enzymes in biological regulation (a review). Proc Natl Acad Sci USA 73:3825–3832

    Article  CAS  Google Scholar 

  5. Eggermont E et al (1971) Distribution of enterokinase activity in the human intestine. Acta Gastroenterol Belg 34:655–662

    CAS  PubMed  Google Scholar 

  6. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  Google Scholar 

  7. Netzel-Arnett S et al (2002) Collagen dissolution by keratinocytes requires cell surface plasminogen activation and matrix metalloproteinase activity. J BiolChem 277:45154–45161

    CAS  Google Scholar 

  8. Yana I, Weiss SJ (2000) Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. MolBiol Cell 11:2387–2401

    CAS  Google Scholar 

  9. Jacob C et al (2005) Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem 280:31936–31948

    Article  CAS  Google Scholar 

  10. Hooper JD et al (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276:857–860

    Article  CAS  Google Scholar 

  11. Netzel-Arnett S et al (2003) Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22:237–258

    Article  CAS  Google Scholar 

  12. Antalis TM, Lawrence DA (2004) Serpin mutagenesis. Methods 32:130–140

    Article  CAS  Google Scholar 

  13. Kawabata A (2003) Gastrointestinal functions of proteinase-activated receptors. Life Sci 74:247–254

    Article  CAS  Google Scholar 

  14. MacNaughton WK (2005) Epithelial effects of proteinase-activated receptors in the gastrointestinal tract. Mem Inst Oswaldo Cruz 100(Suppl 1):211–215

    Article  CAS  Google Scholar 

  15. Broughton G et al (2006) The basic science of wound healing. Plast Reconstr Surg 117:12S–34S

    Article  CAS  Google Scholar 

  16. Salmela MT et al (2004) Collagenase-1 (MMP-1), matrilysin-1 (MMP-7), and stromelysin-2 (MMP-10) are expressed by migrating enterocytes during intestinal wound healing. Scand J Gastroenterol 39:1095–1104

    Article  CAS  Google Scholar 

  17. Bartnik W (2008) Clinical aspects of Helicobacter pylori infection. Pol Arch Med Wewn 118:426–430

    CAS  PubMed  Google Scholar 

  18. Vogiatzi P, Cassone M, Luzzi I et al (2007) Helicobacter pylori as a class I carcinogen: physiopathology and management strategies. J Cell Biochem 102:264–273

    Article  CAS  Google Scholar 

  19. Hatakeyama M, Higashi H (2005) Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci 96:835–843

    Article  CAS  Google Scholar 

  20. Clark IM, Swingler TE, Sampieri CL et al (2008) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40:1362–1378

    Article  CAS  Google Scholar 

  21. Krueger S, Hundertmark T, Kalinski T et al (2006) Helicobacter pylori encoding the pathogenicity island activates matrix metalloproteinase 1 in gastric epithelial cells via JNK and ERK. J BiolChem 281:2868–2875

    CAS  Google Scholar 

  22. Bergin PJ, Anders E, Sicheng W et al (2004) Increased production of matrix metalloproteinases in Helicobacter pylori-associated human gastritis. Helicobacter 9:201–210

    Article  CAS  Google Scholar 

  23. Rautelin HI, Oksanen AM, Veijola LI et al (2009) Enhanced systemic matrix metalloproteinase response in Helicobacter pylori gastritis. Ann Med 41:208–215

    Article  CAS  Google Scholar 

  24. Yin Y, Grabowska AM, Clarke PA et al (2010) Helicobacter pylori potentiates epithelial: mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 59:1037–1045

    Article  CAS  Google Scholar 

  25. Wroblewski LE, Noble PJ, Pagliocca A et al (2003) Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. J Cell Sci 116:3017–3026

    Article  CAS  Google Scholar 

  26. McCaig C, Duval C, Hemers E et al (2003) The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology 130:1754–1763

    Article  Google Scholar 

  27. Achyut BR, Ghoshal UC, Moorchung N et al (2003) Transforming growth factor-B1 and matrix metalloproteinase-7 promoter variants induce risk for Helicobacter pylori-associated gastric precancerous lesions. DNA Cell Biol 28:295–301

    Article  Google Scholar 

  28. Ogden SR, Wroblewski LE, Weydig C et al (2008) p120 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol Biol Cell 19:4110–4121

    Article  CAS  Google Scholar 

  29. Bodger K, Ahmed S, Pazmany L et al (2006) Altered gastric corpus expression of tissue inhibitors of metalloproteinases in human and murine helicobacter infection. J Clin Pathol 61:72–78

    Article  Google Scholar 

  30. Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29:258–289

    Article  CAS  Google Scholar 

  31. Schirrmeister W, Gnad T, Wex T et al (2009) Ectodomain shedding of E-cadherin and c-Met is induced by Helicobacter pylori infection. Exp Cell Res 315:3500–3508

    Article  CAS  Google Scholar 

  32. Sampieri Clara L (2013) Helicobacter pylori and gastritis: the role of extracellular matrix metalloproteases, their inhibitors, and the disintegrins and metalloproteases—a systematic literature review. Dig Dis Sci 58:2777–2783

    Article  CAS  Google Scholar 

  33. Erin N, Türker S, Elpek Ö, Yıldırım B (2012) Differential changes in substance P, VIP as well as neprilysin levels in patients with gastritis or ulcer. Peptides 35:218–224

    Article  CAS  Google Scholar 

  34. Browning KN (2010) Protease-activated receptors: novel central role in modulation of gastric functions. Neuro Gastroenterol Motil 22:361–365

    Article  CAS  Google Scholar 

  35. Beutler E, Grabowski G, Scriver CR, Beaudet AL, Sly WS, Valle D, editors (1995) Gaucher disease In: The metabolic basis of inherited disease. McGraw-Hill, New York 2641–2670

    Google Scholar 

  36. Moran MT, Schofield JP, Hayman AR, Shi G-P, Young E, Cox TM (2000) Pathologic gene expression in gaucher disease: up-regulation of cysteine proteinases including osteoclastic cathepsin K. Blood 96:1969–1978

    CAS  PubMed  Google Scholar 

  37. Moyses C (2003) Substrate reduction therapy: clinical evaluation in type 1 gaucherdisease. Philos Trans R Soc Lond B Biol Sci 358(1433):955–960

    Article  CAS  Google Scholar 

  38. Villanueva J, Shaffer DR, Philip J et al (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116:271–284

    Article  CAS  Google Scholar 

  39. van Breemen MJ, Aerts JMFG, Sprenger RR, Speijer D (2006) Potential artefacts in proteome analysis of plasma of gaucher patients due to protease abnormalities. Clinica Chimica Acta 396:26–32

    Article  Google Scholar 

  40. Aerts JMFG, Hollak CEM (1997) Plasma and metabolic abnormalities in gaucher’s disease. Baillieres Clin Haematol 10:691–709

    Article  CAS  Google Scholar 

  41. Asehnoune K, Moine P (2013) Protease activated receptor-1: key player in the sepsis coagulation—inflammation crosstalk. Crit Care 17:119

    Article  Google Scholar 

  42. Adams MN, Ramachandran R, Yau M-K, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD (2013) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130:248–282

    Article  Google Scholar 

  43. van der Poll T, Levi M (2012) Crosstalk between inflammation and coagulation: the lessons of sepsis. CurrVasc Pharmacol 10:632–638

    Google Scholar 

  44. Petäjä J (2013) Inflammation and coagulation. an overview. Thromb Res 127(Suppl 2):S34–S37

    Article  Google Scholar 

  45. Jenkins RG, Su X, Su G, Scotton CJ, Camerer E, Laurent GJ, Davis GE, Chambers RC, Matthay MA, Sheppard D (2006) Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J Clin Invest 116:1606–1614

    Article  CAS  Google Scholar 

  46. Gonzalo S, Valero MS, de Salinas FM, Vergara C, Arruebo MP, Plaza MA, Murillo MD, Grasa L (2015) Roles of toll-like receptor 4, IjB kinase, and the proteasome in the intestinal alterations caused by sepsis. Dig Dis Sci 60:1223–1231

    Google Scholar 

  47. Savioli L, Smith H, Thompson A (2006) Giardia and cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol 22(5):203–208

    Article  CAS  Google Scholar 

  48. Cotton JA, Beatty JK, Buret AG (2011) Host parasite interactions and pathophysiology in giardia infections. Int J Parasitol 41(9):925–933

    Article  CAS  Google Scholar 

  49. DuBois KN, Abodeely M, Sakanari J, Craik CS, Lee M, McKerrow JH et al (2008) Identification of the major cysteine protease of giardia and its role in encystation. J Biol Chem 283(26):18024–18031

    Article  CAS  Google Scholar 

  50. Kissoon-Singh V, Mortimer L, Chadee K (2011) Entamoebahistolyticacathepsin-like enzymes: interactions with the host gut. Adv Exp Med Biol 712:62–83

    Article  CAS  Google Scholar 

  51. Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S et al (2009) GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens giardia lamblia and trichomonas vaginalis. Nucleic acids Res 37(Database issue):D526–D530

    Article  CAS  Google Scholar 

  52. Cotton JA, Bhargava A, FerrazJG Yates RM, Beck PL, Buret AG (2014) Giardia duodenaliscathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun 45:53–67

    Google Scholar 

  53. Scott KG, Meddings JB, Kirk DR, Lees-Miller SP, Buret AG (2002) Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion. Gastroenterology 123(4):1179–1190

    Article  CAS  Google Scholar 

  54. Teoh DA, Kamieniecki D, Pang G, Buret AG (2000) Giardia lamblia rearranges F-actin and alpha-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. J Parasitol 86(4):800–806

    CAS  PubMed  Google Scholar 

  55. Wang Y, Srinivasan K, Siddiqui MR, George SP, Tomar A, Khurana S (2008) A novel role for villin in intestinal epithelial cell survival and homeostasis. J Biol Chem 283(14):9454–9464

    Article  CAS  Google Scholar 

  56. Bhargaval A, Cotton JA, Dixon BR, Gedamu L, Yates RM, Buret AG (2010) Giardia duodenalis surface cysteine proteases induce cleavage of the intestinal epithelial cytoskeletal protein villin via myosin light chain kinase. PLOS One 1110–1117

    Google Scholar 

  57. Kaser A, Zeissig S, Blumberg RS (2010) Genes and environment: how will our concepts on the pathophysiology of IBD develop in the future? Dig Dis 28:395–405

    Article  Google Scholar 

  58. Bouguen G, Chevaux JB, Peyrin-Biroulet L (2011) Recent advances in cytokines: therapeutic implications for inflammatory bowel diseases. World J Gastroenterol 17:547–556

    Article  CAS  Google Scholar 

  59. Anand PK, Malireddi RK, Lukens JR, Vogel P et al (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488:389–393

    Article  CAS  Google Scholar 

  60. Chen GY, Liu M, Wang F, Bertin J et al (2011) Afunctional role for Nlrp6 in intestinal inflammation and tumorigenesis. J. Immunol. 186:7187–7194

    Article  CAS  Google Scholar 

  61. Elinav E, Strowig T, Kau AL, Thaiss CA et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  CAS  Google Scholar 

  62. Qie BS, Vallance BA, Blennerhassett PA, Collins SM (1999) The role of CD4+lymphocytes in thesusceptibility of mice to stress-induced reactivation of experimental colitis. Nat Med 5:1–5

    Article  Google Scholar 

  63. Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. Gut 47:861–869

    Article  CAS  Google Scholar 

  64. Hollander D (2003) Inflammatory bowel diseases and brain-gut axis. J Physiol Pharmacol 54:183–190

    PubMed  Google Scholar 

  65. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    Google Scholar 

  66. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  CAS  Google Scholar 

  67. Rath T, Roderfeld M, Graf J, Wagner S et al (2006) Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential? Inflamm Bowel Dis 12:1025–1035

    Article  Google Scholar 

  68. Vizoso FJ, Gonzalez LO, Corte MD, Corte MG, Bongera M, Martinez A, Martin A, Andicoechea A, Gava RR (2006) Collagenase-3 (MMP-13) expression by inflamed mucosa in inflammatory bowel disease. Scand J Gastroenterol 41:1050–1055

    Article  CAS  Google Scholar 

  69. Roosmarijn VE, Hauwermeiren FV et al (2013) Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF. EMBO Mol Med 5: 932–948

    Google Scholar 

  70. Rath T, Roderfeld M, Graf J, Wagner S, Vehr AK et al (2006) Enhanced expression of MMP-7 and MMP-13 in inflammatory bowel disease: a precancerous potential? Inflamm Bowel Dis 12:1025–1035

    Article  Google Scholar 

  71. Dłubacz AK,, Matusiewicz M, Krzesiek E et al (2014) Metalloproteinase-3 and -9 as novel markers in the evaluation of ulcerative colitis activity in children. Adv Clin Exp Med 23: 103–110

    Google Scholar 

  72. Vizoso FJ, González LO, Corte MD, Corte MG, Bongera M et al (2006) Collagenase-3 (MMP-3) expression by inflamed mucosa in inflammatory bowel disease. Scand J Gastroenterol 41:1050–1055

    Article  CAS  Google Scholar 

  73. Kirkegaard T, Hansen A, Bruun E, Brynskov J (2004) Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn’s disease. Gut 53:701–709

    Article  CAS  Google Scholar 

  74. Yoo J, Perez CER, Nie W, Smith JS et al (2011) Protein Kinase D1 mediates synergistic MMP-3 expression induced by TNF-α and bradykinin in human colonic myofibroblasts. Biochem Biophys Res Commun 413:30–35

    Article  CAS  Google Scholar 

  75. Saskia Braber S, Mary E Morgan ME, A J HenricksA J, Roda MA et al (2014) Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut 63:578–587

    Google Scholar 

  76. Stallmach A, Chan CC, Ecker KW, Feifel G, Herbst H et al (2000) Comparable expression of matrix metalloproteinases 1 and 2 in pouchitis and ulcerative colitis. Gut 47:415–422

    Article  CAS  Google Scholar 

  77. Cupi ML, Sarra M, Marafini I, Monteleone I, Ortenzi FEA (2014) Plasma cells in the mucosa of patients with inflammatory bowel disease produce granzyme b and possess cytotoxic activities. J Immunol 192:6083–6091

    Article  CAS  Google Scholar 

  78. Biancheri P, Brezski J, Di Sabatino, Greenplate R et al (2015) Proteolytic cleavage and loss of function of biologic agentsthat neutralize tumor necrosis factor in the mucosa of patients with inflammatory bowel disease. Gastroenterology 149:1564–1574

    Article  CAS  Google Scholar 

  79. Gaisano HY, Gorelick FS (2009) New insights into the mechanisms of pancreatitis. Gastroenterology 136(7) 2040–2044

    Article  CAS  Google Scholar 

  80. Willemer S, Bialek R, Adler G (1990) Localization of lysosomal and digestive enzymes in cytoplasmic vacuoles in caerulein-pancreatitis. Histochem 94:161–170

    Article  CAS  Google Scholar 

  81. Binker MG, Daniel Richards D, Gaisano HY et al (2015) ER stress-associated CTRC mutants decrease stimulated pancreatic zymogen secretion through SIRT2-mediated microtubule Dysregulation. Biochem Biophys Res Commun 463:329–335

    Google Scholar 

  82. Jancsó Z, Sahin-Tóth M (2016) Tighter control by chymotrypsin C (CTRC) explains lack of association between human anionic trypsinogen and hereditary pancreatitis. J Biol Chem 291(25) pii: jbc.M116.725374

    Article  Google Scholar 

  83. von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55:167–193

    Google Scholar 

  84. Hentze M, Hasilik A, von Figura K (1984) Enhanced degradation of cathepsin D synthesized in the presence of the threonine analog beta-hydroxynorvaline. Arch Biochem Biophys 230:375–382

    Article  CAS  Google Scholar 

  85. Samarel AM, Ferguson AG, Decker RS, Lesch M (1989) Effects of cysteine protease inhibitors on rabbit cathepsin D maturation. Am J Physiol 257:C1069–C1079

    Article  CAS  Google Scholar 

  86. Gieselmann V, Von Figura AK (1985) Processing of human cathepsin D inlysosomes in vitro. J Biol Chem 260:3215–3220

    Google Scholar 

  87. Mehanna S, Suzuki C, Shibata M, Sunabori T et al (2016) Cathepsin D in pancreatic acinar cells is implicated in cathepsin B and L degradation, but not in autophagic activity. Biochem Biophys Res Commun 469:405–411

    Article  CAS  Google Scholar 

  88. Li H, Liu J, Wang W, Zhang Z et al (2015) Matrix metalloproteinase 9 and vasodilator-stimulated phosphoprotein related to acute kidney injury in severe acute pancreatitis rats. Dig Dis Sci 60:3647–3655

    Article  CAS  Google Scholar 

  89. Wereszczynska-Siemiatkowska U, Siemiatkowski A, Swidnicka-Siergiejko A, Mroczko B, Dabrowski A (2015) The imbalance between matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 in acutepancreatitis. Z Gastroenterol. 53:199–204

    Article  CAS  Google Scholar 

  90. Rygiel AM, Beer S, Simon P, Tysarowska KW (2015) Gene conversion between cationic trypsinogen (PRSS1) and the pseudogene trypsinogen 6 (PRSS3P2) in patients with chronic pancreatitis. Hum Mutat 36:350–356

    Article  CAS  Google Scholar 

  91. Emal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  Google Scholar 

  92. Sun D, Zhang Y, Qi Y, Xing-tong Zhou X et al (2015) Prognostic significance of MMP-7 expression in colorectal cancer: a meta-analysis. Cancer Epidemiol 39(2):135–142.

    Google Scholar 

  93. Lonny GM, Fonnet H, Bleeker E, Lauritzen B, Bahns S et al (2000) Comparative localization of cathepsin B protein and activity in colorectal cancer. J Histochem Cytochem 48:1421–1430

    Article  Google Scholar 

  94. Mook ORF, Frederiks WM, Van Noorden CJF (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochem Biophy Acta 1705:69–89

    CAS  Google Scholar 

  95. Ndinguri MW, Bhowmick M, Tokmina-Roszyk D, Robichaud TK (2012) Peptide-based selective inhibitors of matrix metalloproteinase mediated activities. Molecules 30:14230–14248

    Article  Google Scholar 

  96. Darmoul D, Gratio V, Devaud H (2004) Protease-activated Receptor 2 in Colon Cancer. J Biol Chem 279:20927–20934

    Article  CAS  Google Scholar 

  97. Herszényi L, Lakatos G, Hritz I, Varga MZ et al (2012) The role of inflammation and proteinases intumor progression. Dig Dis 30:249–254

    Article  Google Scholar 

  98. Lambert E, Dassé E, Haye B, Petitfrère E (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49:187–198

    Article  Google Scholar 

  99. Yepes D, Costina V, Lothar R et al (2014) Multiplex profiling of tumor-associated proteolytic activity in serum of colorectal cancer patients. Proteomics Clin Appl 8: 308–316

    Article  CAS  Google Scholar 

  100. Ljungh A (2000) Helicobacter pylori interactions with plasminogen methods 21:151–157

    Google Scholar 

  101. Correa P, Fox J, Fontham E (1993) Helicobacter pylori and gastric carcinoma: serum antibody prevalence in populations with contrasting cancer risks. Cancer 66:2569–2574

    Article  Google Scholar 

  102. Makristathis A, Pasching E, Schütze K, Wimmer M, Rotter (1998) Detection of Helicobacter pylori in stool specimens by PCR and antigen enzyme immunoassay J Clin Microbiol 36:2772–2774

    Google Scholar 

  103. Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC (1996) Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87:709–716

    Article  CAS  Google Scholar 

  104. Romer J, Bugge TH, Pyke C, Lund LR et al (1996) Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 2:287–292

    Article  CAS  Google Scholar 

  105. Shen W, Xi H, Wei B, Chen Lin (2014) The prognostic role of matrix metalloproteinase 2 in gastric cancer: a systematic review with meta–analysis. J Cancer Res Clin Oncol 140:1003–1009

    Article  CAS  Google Scholar 

  106. Hata S, Abe M, Suzuki H, Kitamura F et al (2010) Calpain 8/nCL-2 and Calpain 9/nCL-4 constitute an active protease complex, G-calpain, involved in gastric mucosal defense. PLoS Genet 6:e1001040

    Article  Google Scholar 

  107. Cousin H, Abbruzzese G, Kerdavid E, Gaultier AA (2011) Translocation of the cytoplasmic domain of ADAM13 to the nucleus is essential for calpain8-a expression and cranial neural crest cell migration. Dev Cell 20:256–263

    Article  CAS  Google Scholar 

  108. Sorimachi H, Hata S, Ono Y (2011) Impact of genetic insights into calpain biology. J Biochem 150:23–37

    Article  CAS  Google Scholar 

  109. Sinha K, Sadhukhan P, Saha S, Pal PB, SilPC (2015) Morin protects gastric mucosa from nonsteroidal anti-inflammatory drug, indomethacin induced inflammatory damage and apoptosis by odulating NF-κB pathway. Biochim Biophys Acta 1850:769–783

    Google Scholar 

  110. Antalis TM, Donohue TS, Stefanie N Vogel et al (2007) Mechanisms of disease: protease functions in intestinal mucosal pathobiology. Nat Clin Pract Gastroenterol Hepatol 4:393–402

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Ghosh, S., Sinha, K., Sil, P.C. (2017). Unfolding the Mechanism of Proteases in Pathophysiology of Gastrointestinal Diseases. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_24

Download citation

Publish with us

Policies and ethics