Skip to main content

Role of Proteases in Diabetes Mellitus

  • Chapter
  • First Online:
  • 649 Accesses

Abstract

Dipeptidyl peptidase-4 (DPP-4), a 110 kDa exopeptidase, selectively cleaves N-terminal dipeptides from a vast array of substrates. DPP-4 is expressed on the surface of many cell types and plays various important roles in diseases like cancer, inflammation, diabetes, obesity. In type 2 diabetes mellitus (T2DM), incretin hormones, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) play major roles in the regulation of insulin secretion. Both GLP-1 and GIP are the substrates of DPP-4. That is why DPP-4 inhibitors have gained significantly increasing interest in treating T2DM recently. In addition to some general information on DPP-4, this chapter mainly describes its effects on relevant organs associated with T2DM and recent clinical trials. Besides, roles of some other proteases in diabetes mellitus have also been briefly discussed.

This is a preview of subscription content, log in via an institution.

References

  1. Brownlee M (2005) The pathobiology of diabetic complications. Unifying Mech 54:1615–1625

    CAS  Google Scholar 

  2. Rambhade S et al (2010) Diabetes mellitus—its complications, factors influencing complications and prevention—an overview. J Chem Pharm Res 2:2–7

    Google Scholar 

  3. Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit Basic Res 12:RA130-RA147

    Google Scholar 

  4. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  PubMed  Google Scholar 

  5. Lobmann R, Schultz G, Lehnert H (2005) Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 28:71–461

    Article  Google Scholar 

  6. Falanga V et al (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:43–1736

    Article  Google Scholar 

  7. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:7–30433

    Article  CAS  Google Scholar 

  8. Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:19–509

    Article  CAS  Google Scholar 

  9. Spravchikov N et al (2001) Glucose Effects on Skin Keratinocytes. Implic Diabetes Skin Complicat 50:1627–1635

    CAS  Google Scholar 

  10. Balasubramanyam M, Rema M, Premanand C (2002) Biochemical and molecular mechanisms of diabetic. Curr Sci 83(12)

    Google Scholar 

  11. Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 6:279–289

    Article  PubMed  Google Scholar 

  12. Bluestone JA, Herold K, Eisenbarth G (2010) Genetics, pathogenesis and clinical interventions in type[thinsp]1 diabetes. Nature 464:1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Association AD (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Supplement 1):S62–S69

    Google Scholar 

  14. Fierabracci A (2014) The putative role of proteolytic pathways in the pathogenesis of Type 1 diabetes mellitus: the ‘autophagy’ hypothesis. Med Hypotheses 82:553–557

    Article  CAS  PubMed  Google Scholar 

  15. Halban PA et al (2014) β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37:1751–1758

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hopsu-Havu VK, Glenner GG (1966) A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7:197–201

    Article  CAS  PubMed  Google Scholar 

  17. Mentlein R, Gallwitz B, Schmidt WE (1993) Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214:35–829

    Article  Google Scholar 

  18. Kieffer TJ, McIntosh CH, Pederson RA (1995) Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136:96–3585

    Article  CAS  PubMed  Google Scholar 

  19. Pospisilik JA et al (2001) Metabolism of glucagon by dipeptidyl peptidase IV (CD26). Regul Pept 96(3):41–133

    Article  Google Scholar 

  20. Misumi Y et al (1992) Molecular cloning and sequence analysis of human dipeptidyl peptidase IV, a serine proteinase on the cell surface. Biochim Biophys Acta 1131:6–333

    Google Scholar 

  21. Tanaka T et al (1992) Cloning and functional expression of the T cell activation antigen CD26. J Immunol 149:6–481

    Google Scholar 

  22. Engel M et al (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc Natl Acad Sci U S A 100:8–5063

    Article  CAS  Google Scholar 

  23. Hiramatsu H et al (2003) Crystallization and preliminary X-ray study of human dipeptidyl peptidase IV (DPPIV). Acta Crystallogr D Biol Crystallogr 59:6–595

    Article  CAS  Google Scholar 

  24. Rasmussen HB et al (2003) Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat Struct Biol 19–25

    Article  CAS  Google Scholar 

  25. Chien CH et al (2004) One site mutation disrupts dimer formation in human DPP-IV proteins. J Biol Chem 279:45–52338

    Google Scholar 

  26. Chien CH et al (2006) Identification of hydrophobic residues critical for DPP-IV dimerization. Biochemistry 45:12–7006

    Article  CAS  Google Scholar 

  27. Abbott CA et al (1994) Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics 40:8–331

    Article  Google Scholar 

  28. Ohnuma K et al (2004) CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1. Proc Natl Acad Sci U S A 101:91–14186

    Article  Google Scholar 

  29. Torimoto Y et al (1991) Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol 147:7–2514

    Google Scholar 

  30. Nagatsu I, Nagatsu T, Yamamoto T (1968) Hydrolysis of amino acid beta-naphthylamides by aminopeptidases in human parotid saliva and human serum. Experientia 24:8–347

    Google Scholar 

  31. Erickson RH et al (1999) Regulation of the gene for human dipeptidyl peptidase IV by hepatocyte nuclear factor 1 alpha. Biochem J 338:7–91

    Article  Google Scholar 

  32. Fan H et al (1997) Domain-specific N-glycosylation of the membrane glycoprotein dipeptidylpeptidase IV (CD26) influences its subcellular trafficking, biological stability, enzyme activity and protein folding. Eur J Biochem 246:51–243

    Article  Google Scholar 

  33. Delacour D et al (2003) 1-benzyl-2-acetamido-2-deoxy-alpha-D-galactopyranoside blocks the apical biosynthetic pathway in polarized HT-29 cells. J Biol Chem 278:809–37799

    Article  CAS  Google Scholar 

  34. Tiruppathi C et al (1993) Genetic evidence for role of DPP IV in intestinal hydrolysis and assimilation of prolyl peptides. Am J Physiol 265:G9–G81

    Google Scholar 

  35. Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:37–819

    Article  CAS  Google Scholar 

  36. Brubaker PL et al (1997) Circulating and tissue forms of the intestinal growth factor, glucagon-like peptide-2. Endocrinology 138:43–837

    Article  Google Scholar 

  37. Hartmann B et al (2000) In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab 85:8–2884

    Article  Google Scholar 

  38. Deacon CF et al (2000) Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85:81–3575

    Google Scholar 

  39. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:57–2131

    Article  CAS  Google Scholar 

  40. Kim SJ et al (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280:307–22297

    Google Scholar 

  41. Zander M et al (2002) Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359:30–824

    Article  Google Scholar 

  42. Holz GG, Kuhtreiber WM, Habener JF (1993) Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361:5–362

    Google Scholar 

  43. Larsson H, Holst JJ, Ahren B (1997) Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol Scand 160:22–413

    Article  Google Scholar 

  44. Deacon CF et al (2003) Differential regional metabolism of glucagon in anesthetized pigs. Am J Physiol Endocrinol Metab 285:E60–E552

    Article  Google Scholar 

  45. Lambeir AM et al (2001) Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett 507:30–327

    Article  Google Scholar 

  46. Ahren B, Hughes TE (2005) Inhibition of dipeptidyl peptidase-4 augments insulin secretion in response to exogenously administered glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, pituitary adenylate cyclase-activating polypeptide, and gastrin-releasing peptide in mice. Endocrinology 146:9–2055

    Article  CAS  Google Scholar 

  47. Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124

    Article  CAS  PubMed  Google Scholar 

  48. Ghosh S et al (2015) Curcumin protects rat liver from streptozotocin-induced diabetic pathophysiology by counteracting reactive oxygen species and inhibiting the activation of p53 and MAPKs mediated stress response pathways. Toxicol Rep 2:365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brandt I et al (2006) Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem 52:7–82

    Article  CAS  Google Scholar 

  50. Broxmeyer HE et al (2012) Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 18:96–1786

    Google Scholar 

  51. Struyf S et al (1999) CD26/dipeptidyl-peptidase IV down-regulates the eosinophil chemotactic potency, but not the anti-HIV activity of human eotaxin by affecting its interaction with CC chemokine receptor 3. J Immunol 162:9–4903

    Google Scholar 

  52. Manns J et al (2007) The allergy-associated chemokine receptors CCR3 and CCR5 can be inactivated by the modified chemokine NNY-CCL11. Allergy 62:17–24

    Article  CAS  PubMed  Google Scholar 

  53. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:705–1696

    Article  CAS  Google Scholar 

  54. Inzucchi SE, McGuire DK (2008) New drugs for the treatment of diabetes: part II: Incretin-based therapy and beyond. Circulation 117:84–574

    Article  Google Scholar 

  55. Raz I et al (2006) Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 49:71–2564

    Article  CAS  Google Scholar 

  56. Lambeir AM, Scharpe S, De Meester I (2008) DPP-4 inhibitors for diabetes–what next? Biochem Pharmacol 76:43–1637

    Article  CAS  Google Scholar 

  57. Jose T, Inzucchi SE (2012) Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis Res 9:16–109

    Article  Google Scholar 

  58. Pattzi HM et al (2010) Dutogliptin, a selective DPP-4 inhibitor, improves glycaemic control in patients with type 2 diabetes: a 12-week, double-blind, randomized, placebo-controlled, multicentre trial. Diabetes Obes Metab 12:55–348

    Article  Google Scholar 

  59. Pratley RE, Salsali A (2007) Inhibition of DPP-4: a new therapeutic approach for the treatment of type 2 diabetes. Curr Med Res Opin 23:919–931

    Article  CAS  PubMed  Google Scholar 

  60. Sell H et al (2013) Adipose Dipeptidyl peptidase-4 and obesity. Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro 36:4083–4090

    Google Scholar 

  61. Lamers D et al (2011) Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60:1917–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pacheco R et al (2005) CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci USA 102:9583–9588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schrader WP et al (1990) Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J Biol Chem 265:8–19312

    Google Scholar 

  64. Focosi D et al (2008) Conditioning response to granulocyte colony-stimulating factor via the dipeptidyl peptidase IV-adenosine deaminase complex. J Leukoc Biol 84:331–337

    Article  CAS  PubMed  Google Scholar 

  65. Lessard J et al (2015) Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS ONE 10:e0122065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rosmaninho-Salgado J et al (2012) Dipeptidyl-peptidase-IV by cleaving neuropeptide Y induces lipid accumulation and PPAR-γ expression. Peptides 37:49–54

    Article  CAS  PubMed  Google Scholar 

  67. Chinda K et al (2013) Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia–reperfusion injury. Int J Cardiol 167:451–457

    Article  PubMed  Google Scholar 

  68. Bhatt DL, Cavender MA (2014) Do dipeptidyl peptidase-4 inhibitors increase the risk of heart failure? JACC Heart Fail 2:583–585

    Article  PubMed  Google Scholar 

  69. Scirica BM et al (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326

    Article  CAS  PubMed  Google Scholar 

  70. White WB et al (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335

    Article  CAS  PubMed  Google Scholar 

  71. Ban K et al (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and–independent pathways. Circulation 117:2340–2350

    Article  CAS  PubMed  Google Scholar 

  72. Wei Y, Mojsov S (1996) Distribution of GLP-1 and PACAP receptors in human tissues. Acta Physiol Scand 157:355–357

    Article  CAS  PubMed  Google Scholar 

  73. Sokos GG et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Cardiac Fail 12:694–699

    Article  CAS  Google Scholar 

  74. Best JH et al (2011) Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies. A retrospective analysis of the LifeLink database 34:90–95

    Google Scholar 

  75. Fadini GP et al (2010) The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes. Possible role of stromal-derived factor-1α. 33:1607–1609

    Google Scholar 

  76. Kuhn M (2012) Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol 166:522–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawakami R et al (2004) Overexpression of brain natriuretic peptide facilitates neutrophil infiltration and cardiac matrix metalloproteinase-9 expression after acute myocardial infarction. Circulation 110:12–3306

    Article  CAS  Google Scholar 

  78. Krawczyk M, Bonfrate L, Portincasa P (2010) Nonalcoholic fatty liver disease. Best Pract Res Clin Gastroenterol 24:695–708

    Article  CAS  PubMed  Google Scholar 

  79. Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–1832

    Article  PubMed  Google Scholar 

  80. Itou M et al (2013) Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 19:306–2298

    Article  CAS  Google Scholar 

  81. Miyazaki M et al (2012) Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism. Mol Med Rep 5:33–729

    Google Scholar 

  82. Kaji K et al (2014) Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 49:481–491

    Article  CAS  PubMed  Google Scholar 

  83. Maiztegui B et al (2011) Sitagliptin prevents the development of metabolic and hormonal disturbances, increased β-cell apoptosis and liver steatosis induced by a fructose-rich diet in normal rats. Clin Sci 120:73–80

    Article  CAS  Google Scholar 

  84. Itou M et al (2012) Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient: a case report. Case Rep Gastroenterol 6:538–544

    Article  PubMed  PubMed Central  Google Scholar 

  85. Iwasaki T et al (2011) Sitagliptin as a novel treatment agent for non-alcoholic Fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology 58:5–2103

    Article  CAS  Google Scholar 

  86. Liu L et al (2014) Dipeptidyl peptidase-4 (DPP-4): localization and activity in human and rodent islets. Biochem Biophys Res Commun 453:398–404

    Article  CAS  PubMed  Google Scholar 

  87. Omar BA et al (2014) Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia 57:1876–1883

    Article  CAS  PubMed  Google Scholar 

  88. Shah P et al (2013) The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization. J Clin Endocrinol Metab 98:E1163–E1172

    Article  CAS  PubMed  Google Scholar 

  89. Duttaroy A et al (2011) The DPP-4 inhibitor vildagliptin increases pancreatic beta cell mass in neonatal rats. Eur J Pharmacol 650:703–707

    Article  CAS  PubMed  Google Scholar 

  90. Takeda Y et al (2012) Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia 55:404–412

    Article  CAS  PubMed  Google Scholar 

  91. Han SJ et al (2011) Effect of sitagliptin plus metformin on β-cell function, islet integrity and islet gene expression in Zucker diabetic fatty rats. Diabetes Res Clin Pract 92:213–222

    Article  CAS  PubMed  Google Scholar 

  92. Foley JE et al (2011) Beta cell function following 1 year vildagliptin or placebo treatment and after 12 week washout in drug-naive patients with type 2 diabetes and mild hyperglycaemia: a randomised controlled trial. Diabetologia 54:1985–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mari A et al (2008) Characterization of the influence of vildagliptin on model-assessed β-cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab 93:103–109

    Article  CAS  PubMed  Google Scholar 

  94. Leibowitz G et al (2015) Impact of treatment with saxagliptin on glycaemic stability and β-cell function in the SAVOR-TIMI 53 study. Diabetes Obes Metab 17:487–494

    Article  CAS  PubMed  Google Scholar 

  95. Rungby J (2009) Inhibition of dipeptidyl peptidase 4 by BI-1356, a new drug for the treatment of beta-cell failure in type 2 diabetes. Expert Opin Investig Drugs 18:8–835

    Article  CAS  Google Scholar 

  96. Friedrich C et al (2013) Pharmacokinetic and pharmacodynamic evaluation of linagliptin in African American patients with type 2 diabetes mellitus. Br J Clin Pharmacol 76:54–445

    Article  CAS  Google Scholar 

  97. Van Raalte DH et al (2014) The effect of alogliptin and pioglitazone combination therapy on various aspects of beta-cell function in patients with recent-onset type 2 diabetes. Eur J Endocrinol 170:74–565

    Google Scholar 

  98. Choi HY et al (2015) Evaluation of the pharmacokinetics of the DPP-4 inhibitor gemigliptin when coadministered with rosuvastatin or irbesartan to healthy subjects. Curr Med Res Opin 31:41–229

    Article  CAS  Google Scholar 

  99. Terra SG et al (2011) A dose-ranging study of the DPP-IV inhibitor PF-734200 added to metformin in subjects with type 2 diabetes. Exp Clin Endocrinol Diabetes 119:7–401

    Article  CAS  Google Scholar 

  100. Vardarli I et al (2011) Inhibition of DPP-4 with vildagliptin improved insulin secretion in response to oral as well as “isoglycemic” intravenous glucose without numerically changing the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab 96:54–945

    Article  CAS  Google Scholar 

  101. Devin JK et al (2014) Dipeptidyl-peptidase 4 inhibition and the vascular effects of glucagon-like peptide-1 and brain natriuretic peptide in the human forearm. J Am Heart Assoc 3

    Google Scholar 

  102. Wang B, Sun J, Kitamoto S (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem 281:6020–6029

    Article  CAS  PubMed  Google Scholar 

  103. Lafarge JC et al (2014) Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia 57:1674–1683

    Article  CAS  PubMed  Google Scholar 

  104. Oltman CL et al (2009) Treatment of Zucker diabetic fatty rats with AVE7688 improves vascular and neural dysfunction. Diabetes Obes Metab 11:223–233

    Article  CAS  PubMed  Google Scholar 

  105. Hadi ARH et al (2007) Endothelial dysfunction in diabetes mellitus. Vascul Health Risk Manag 3:853–876

    CAS  Google Scholar 

  106. Nangle MR, Cotter MA, Cameron NE et al (2006) The calpain inhibitor, A-705253, corrects penile nitrergic nerve dysfunction in diabetic mice. Eur J Pharmacol 538(1–3):148–153

    Google Scholar 

  107. Muller M, Trocme C, Lardy B, Morel F, Halimi S, Benhamou PY (2008) Matrix metalloproteinases and diabetic foot ulcers: the ratio of MMP-1 to TIMP-1 is a predictor of wound healing. Diabetic Med 25(4):419–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Caseiro Armando et al (2012) Protease profiling of different biofluids in type 1 diabetes mellitus. Clin Biochem 45:1613–1619

    Article  CAS  PubMed  Google Scholar 

  109. Nowak C et al (2016) Protein biomarkers for insulin resistance and type 2 diabetes risk in two large community cohorts. Diabetes 65:276–284

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parames C. Sil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, S., Pandey, B., Sil, P.C. (2017). Role of Proteases in Diabetes Mellitus. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_20

Download citation

Publish with us

Policies and ethics