Skip to main content

Serine Proteases as Metabolic Regulators in Yeast

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

Serine proteases are enzymes that break peptidic bonds in proteins, being serine the nucleophilic amino acid at the enzyme’s active site. These proteases are found ubiquitously in both eukaryotes and prokaryotes. Based on their structure, serine proteases may be classified into two super families: chymotrypsin-like (trypsin-like) or subtilisin-like. This chapter focuses on aspects related to the molecular structure, subcellular localization, mechanism of action, and physiological role, among others, of Kexin, Ynm3p, Prb1p, Ssy5p, Lpx1p, and Pcp1p, the best characterized serine proteases found in yeast, taking as a reference the almost fully characterized yeast model Saccharomyces cerevisiae. Table 1 summarizes the general information about the proteases mentioned above, and such general information is illustrated in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hedstrom L (2002) Serine protease mechanism and specificity. Chem Rev 102(12):4501–4524. cr000033x [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Blow DM, Birktoft JJ, Hartley BS (1969) Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221(5178):337–340

    Article  CAS  PubMed  Google Scholar 

  3. Wickner RB, Leibowitz MJ (1976) Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. Genetics 82(3):429–442

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Leibowitz MJ, Wickner RB (1976) A chromosomal gene required for killer plasmid expression, mating, and spore maturation in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 73(6):2061–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuller RS, Sterne RE, Thorner J (1988) Enzymes required for yeast prohormone processing. Annu Rev Physiol 50:345–362. doi:10.1146/annurev.ph.50.030188.002021

    Article  CAS  PubMed  Google Scholar 

  6. Davey J, Davis K, Imai Y, Yamamoto M, Matthews G (1994) Isolation and characterization of krp, a dibasic endopeptidase required for cell viability in the fission yeast Schizosaccharomyces pombe. EMBO J 13(24):5910–5921

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tanguy-Rougeau C, Wesolowski-Louvel M, Fukuhara H (1988) The Kluyveromyces lactis KEX1 gene encodes a subtilisin-type serine proteinase. FEBS Lett 234(2):464–470. doi:10.1016/0014-5793(88)80139-X

    Article  CAS  PubMed  Google Scholar 

  8. Enderlin CS, Ogrydziak DM (1994) Cloning, nucleotide sequence and functions of XPR6, which codes for a dibasic processing endoprotease from the yeast Yarrowia lipolytica. Yeast 10(1):67–79. doi:10.1002/yea.320100107

    Article  CAS  PubMed  Google Scholar 

  9. Bader O, Schaller M, Klein S, Kukula J, Haack K, Muhlschlegel F, Korting HC, Schafer W, Hube B (2001) The KEX2 gene of Candida glabrata is required for cell surface integrity. Mol Microbiol 41(6):1431–1444. doi:2614 [pii]

    Google Scholar 

  10. Jalving R, van de Vondervoort PJ, Visser J, Schaap PJ (2000) Characterization of the kexin-like maturase of Aspergillus niger. Appl Environ Microbiol 66(1):363–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Newport G, Agabian N (1997) KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem 272(46):28954–28961

    Article  CAS  PubMed  Google Scholar 

  12. Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, Thomas G (2002) The ordered and compartment-specfific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J Biol Chem 277(15):12879–12890. doi:10.1074/jbc.M108740200; M108740200 [pii]

    Article  CAS  Google Scholar 

  13. Wilcox CA, Fuller RS (1991) Posttranslational processing of the prohormone-cleaving Kex2 protease in the Saccharomyces cerevisiae secretory pathway. J Cell Biol 115(2):297–307

    Article  CAS  PubMed  Google Scholar 

  14. Siezen RJ, Leunissen JA (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6(3):501–523. doi:10.1002/pro.5560060301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gluschankof P, Fuller RS (1994) A C-terminal domain conserved in precursor processing proteases is required for intramolecular N-terminal maturation of pro-Kex2 protease. EMBO J 13(10):2280–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Molloy SS, Anderson ED, Jean F, Thomas G (1999) Bi-cycling the furin pathway: from TGN localization to pathogen activation and embryogenesis. Trends Cell Biol 9(1):28–35. S0962-8924(98)01382-8

    Article  CAS  PubMed  Google Scholar 

  17. Perona JJ, Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Sci 4(3):337–360. doi:10.1002/pro.5560040301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rockwell NC, Wang GT, Krafft GA, Fuller RS (1997) Internally consistent libraries of fluorogenic substrates demonstrate that Kex2 protease specificity is generated by multiple mechanisms. Biochemistry 36(7):1912–1917. doi:10.1021/bi961779l; bi961779l [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Brenner C, Fuller RS (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci USA 89(3):922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holyoak T, Wilson MA, Fenn TD, Kettner CA, Petsko GA, Fuller RS, Ringe D (2003) 2.4 A resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor. Biochemistry 42(22):6709–6718. doi:10.1021/bi034434t

    Article  CAS  PubMed  Google Scholar 

  21. Wosten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bolker M, Kahmann R (1996) A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15(16):4274–4281

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pignede G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud JM (2000) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182(10):2802–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Julius D, Blair L, Brake A, Sprague G, Thorner J (1983) Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32(3):839–852. doi:10.1016/0092-8674(83)90070-3

  24. Goller SP, Schoisswohl D, Baron M, Parriche M, Kubicek CP (1998) Role of endoproteolytic dibasic proprotein processing in maturation of secretory proteins in Trichoderma reesei. Appl Environ Microbiol 64(9):3202–3208

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iguchi K, Hirano H, Kishida M, Kawasaki H, Sakai T (1997) Cloning of a protopectinase gene of Trichosporon penicillatum and its expression in Saccharomyces cerevisiae. Microbiology 143(Pt 5):1657–1664. doi:10.1099/00221287-143-5-1657

    Article  CAS  Google Scholar 

  26. Germain D, Dumas F, Vernet T, Bourbonnais Y, Thomas DY, Boileau G (1992) The pro-region of the Kex2 endoprotease of Saccharomyces cerevisiae is removed by self-processing. FEBS Lett 299(3):283–286. doi:10.1016/0014-5793(92)80132-Z

    Article  CAS  PubMed  Google Scholar 

  27. Komano H, Fuller RS (1995) Shared functions in vivo of a glycosyl-phosphatidylinositol-linked aspartyl protease, Mkc7, and the proprotein processing protease Kex2 in yeast. Proc Natl Acad Sci USA 92(23):10752–10756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oluwatosin YE, Kane PM (1998) Mutations in the yeast KEX2 gene cause a Vma(-)-like phenotype: a possible role for the Kex2 endoprotease in vacuolar acidification. Mol Cell Biol 18(3):1534–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martin C, Young RA (1989) KEX2 mutations suppress RNA polymerase II mutants and alter the temperature range of yeast cell growth. Mol Cell Biol 9(6):2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Newport G, Kuo A, Flattery A, Gill C, Blake JJ, Kurtz MB, Abruzzo GK, Agabian N (2003) Inactivation of Kex2p diminishes the virulence of Candida albicans. J Biol Chem 278(3):1713–1720. doi:10.1074/jbc.M209713200; M209713200 [pii]

  31. Fuller RS, Brake A, Thorner J (1989) Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci USA 86(5):1434–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Angliker H, Wikstrom P, Shaw E, Brenner C, Fuller RS (1993) The synthesis of inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast. Biochem J 293(Pt 1):75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rockwell NC, Fuller RS (2002) Specific modulation of Kex2/furin family proteases by potassium. J Biol Chem 277(20):17531–17537. doi:10.1074/jbc.M111909200; M111909200 [pii]

    Article  CAS  Google Scholar 

  34. Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26(2):209–221

    Article  CAS  PubMed  Google Scholar 

  35. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97(3):339–347. doi:10.1016/S0092-8674(00)80743-6

    Article  CAS  PubMed  Google Scholar 

  36. Belanger KD, Walter D, Henderson TA, Yelton AL, O’Brien TG, Belanger KG, Geier SJ, Fahrenkrog B (2009) Nuclear localisation is crucial for the proapoptotic activity of the HtrA-like serine protease Nma111p. J Cell Sci 122(21):3931–3941. doi:10.1242/jcs.056887; jcs.056887 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277(1):439–444. doi:10.1074/jbc.M109784200; M109784200 [pii]

    Article  CAS  Google Scholar 

  38. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8(3):613–621. doi:10.1016/S1097-2765(01)00341-0

    Article  CAS  PubMed  Google Scholar 

  39. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ, Vaux DL (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277(1):445–454. doi:10.1074/jbc.M109891200; M109891200 [pii]

  40. Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12(3):152–162. doi:10.1038/nrm3065; nrm3065 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Harris BZ, Lim WA (2001) Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114(Pt 18):3219–3231

    CAS  PubMed  Google Scholar 

  42. Vande Walle L, Lamkanfi M, Vandenabeele P (2008) The mitochondrial serine protease HtrA2/Omi: An overview. Cell Death Differ 15(3):453–460. doi:10.1038/sj.cdd.4402291; 4402291 [pii]

    Article  CAS  Google Scholar 

  43. Ponting CP (1997) Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 6(2):464–468. doi:10.1002/pro.5560060225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fahrenkrog B, Sauder U, Aebi U (2004) The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci 117(1):115–126. doi:10.1242/jcs.00848; 117/1/115 [pii]

  45. Padmanabhan N, Fichtner L, Dickmanns A, Ficner R, Schulz JB, Braus GH (2009) The yeast HtrA orthologue Ynm3 is a protease with chaperone activity that aids survival under heat stress. Mol Biol Cell 20(1):68–77. doi:10.1091/mbc.E08-02-0178; E08-02-0178 [pii]

  46. Vaux DL, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6(4):287–297. doi:10.1038/nrm1621; nrm1621 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Walter D, Wissing S, Madeo F, Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119 (9):1843–1851. doi:10.1242/jcs.02902; jcs.02902 [pii]

  48. Krojer T, Sawa J, Huber R, Clausen T (2010) HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat Struct Mol Biol 17(7):844–852. doi:10.1038/nsmb.1840; nsmb.1840 [pii]

    Article  CAS  Google Scholar 

  49. Tong F, Black PN, Bivins L, Quackenbush S, Ctrnacta V, DiRusso CC (2006) Direct interaction of Saccharomyces cerevisiae Faa1p with the Omi/HtrA protease orthologue Ynm3p alters lipid homeostasis. Mol Genet Genomics 275(4):330–343. doi:10.1007/s00438-005-0089-1

    Article  CAS  PubMed  Google Scholar 

  50. Thoms S, Debelyy MO, Nau K, Meyer HE, Erdmann R (2008) Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J 275(3):504–514. doi:10.1111/j.1742-4658.2007.06217.x; EJB6217 [pii]

    Article  CAS  Google Scholar 

  51. Campetelli AN, Monesterolo NE, Previtali G, Santander VS, Amaiden MR, Arce CA, Valdez-Taubas J, Casale CH (2013) Activation of H(+)-ATPase by glucose in Saccharomyces cerevisiae involves a membrane serine protease. Biochim Biophys Acta 1830(6):3593–3603. doi:10.1016/j.bbagen.2013.03.012; S0304-4165(13)00090-1 [pii]

    Article  CAS  Google Scholar 

  52. McCulloch KM, Mukherjee T, Begley TP, Ealick SE (2010) Structure determination and characterization of the vitamin B6 degradative enzyme (E)-2-(acetamidomethylene)succinate hydrolase. Biochemistry 49(6):1226–1235. doi:10.1021/bi901812p

    Article  CAS  PubMed  Google Scholar 

  53. Park SY, Lee SH, Lee J, Nishi K, Kim YS, Jung CH, Kim JS (2008) High-resolution structure of ybfF from Escherichia coli K12: a unique substrate-binding crevice generated by domain arrangement. J Mol Biol 376(5):1426–1437. doi:10.1016/j.jmb.2007.12.062; S0022-2836(07)01711-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Kim JH, Jang KS, Yang YH, Kim YG, Lee JH, Oh MK, Kim BG, Lee CS (2008) Rapid functional identification of putative genes based on the combined in vitro protein synthesis with mass spectrometry: a tool for functional genomics. Anal Biochem 375(1):11–17. doi:10.1016/j.ab.2008.01.007; S0003-2697(08)00011-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. Thoms S, Erdmann R (2006) Peroxisomal matrix protein receptor ubiquitination and recycling. Biochim Biophys Acta 1763 (12):1620–1628. doi:10.1016/j.bbamcr.2006.08.046; S0167-4889(06)00249-7 [pii]

  56. Hiraga K, Suzuki K, Tsuchiya E, Miyakawa T (1993) Cloning and characterization of the elongation factor EF-1 beta homologue of Saccharomyces cerevisiae. EF-1 beta is essential for growth. FEBS Lett 316 (2):165–169. doi:10.1016/0014-5793(93)81208-H

  57. McDonald HB, Byers B (1997) A proteasome cap subunit required for spindle pole body duplication in yeast. J Cell Biol 137(3):539–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thoms S, Hofhuis J, Thoing C, Gartner J, Niemann HH (2011) The unusual extended C-terminal helix of the peroxisomal alpha/beta-hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization. J Struct Biol 175(3):362–371. doi:10.1016/j.jsb.2011.06.008; S1047-8477(11)00189-4 [pii]

  59. Lucau-Danila A, Delaveau T, Lelandais G, Devaux F, Jacq C (2003) Competitive promoter occupancy by two yeast paralogous transcription factors controlling the multidrug resistance phenomenon. J Biol Chem 278(52):52641–52650. doi:10.1074/jbc.M309580200; M309580200 [pii]

    Article  CAS  Google Scholar 

  60. Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ, Ideker T, Galitski T, Dimitrov K, Rachubinski RA, Aitchison JD (2002) Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 158(2):259–271. doi:10.1083/jcb.200204059; jcb.200204059 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Campetelli AN, Previtali G, Arce CA, Barra HS, Casale CH (2005) Activation of the plasma membrane H-ATPase of Saccharomyces cerevisiae by glucose is mediated by dissociation of the H(+)-ATPase-acetylated tubulin complex. FEBS J 272(22):5742–5752. doi:10.1111/j.1742-4658.2005.04959.x; EJB4959 [pii]

    Article  CAS  Google Scholar 

  62. Moehle CM, Tizard R, Lemmon SK, Smart J, Jones EW (1987) Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol 7(12):4390–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Teichert U, Mechler B, Muller H, Wolf DH (1989) Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem 264(27):16037–16045

    CAS  PubMed  Google Scholar 

  64. Mark KG, Meza-Gutierrez F, Johnson JR, Newton BW, Krogan NJ, Toczyski DP (2015) Prb1 protease activity is required for its recognition by the F-box protein Saf1. Biochemistry 54(29):4423–4426. doi:10.1021/acs.biochem.5b00504

    Article  CAS  PubMed  Google Scholar 

  65. Xue Y, Vashisht AA, Tan Y, Su T, Wohlschlegel JA (2014) PRB1 is required for clipping of the histone H3N terminal tail in Saccharomyces cerevisiae. PLoS ONE 9(2):e90496. doi:10.1371/journal.pone.0090496; PONE-D-13-50140 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. doi:10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  67. Mann RK, Grunstein M (1992) Histone H3N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J 11(9):3297–3306

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-Knaak MA, Bartholomew B (2011) Histone H3 tail acetylation modulates ATP-dependent remodeling through multiple mechanisms. Nucleic Acids Res 39(19):8378–8391. doi:10.1093/nar/gkr535; gkr535 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sperling AS, Grunstein M (2009) Histone H3N-terminus regulates higher order structure of yeast heterochromatin. Proc Natl Acad Sci USA 106(32):13153–13159. doi:10.1073/pnas.0906866106; 0906866106 [pii]

    Article  Google Scholar 

  70. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10(5):1223–1233. doi:S1097276502007025

    Google Scholar 

  71. Burgess RJ, Zhou H, Han J, Zhang Z (2010) A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37 (4):469–480. doi:10.1016/j.molcel.2010.01.020; S1097-2765(10)00071-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perez J, Gomez A, Roncero C (2010) Upregulation of the PRB1 gene in the Saccharomyces cerevisiae rim101Delta mutant produces proteolytic artefacts that differentially affect some proteins. Yeast 27(8):575–581. doi:10.1002/yea.1776

    Article  CAS  PubMed  Google Scholar 

  73. Slusarewicz P, Xu Z, Seefeld K, Haas A, Wickner WT (1997) I2B is a small cytosolic protein that participates in vacuole fusion. Proc Natl Acad Sci USA 94(11):5582–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Esser K, Tursun B, Ingenhoven M, Michaelis G, Pratje E (2002) A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J Mol Biol 323(5):835–843. doi:S0022283602010008

    Google Scholar 

  75. Urban S, Lee JR, Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107(2):173–182. doi:S0092-8674(01)00525-6

    Google Scholar 

  76. Urban S, Schlieper D, Freeman M (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12(17):1507–1512. doi:S0960982202010928

    Google Scholar 

  77. Sekine S, Kanamaru Y, Koike M, Nishihara A, Okada M, Kinoshita H, Kamiyama M, Maruyama J, Uchiyama Y, Ishihara N, Takeda K, Ichijo H (2012) Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 287(41):34635–34645. doi:10.1074/jbc.M112.357509; M112.357509 [pii]

  78. Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N, Neupert W, Westermann B (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13(3):847–853. doi:10.1091/mbc.01-12-0588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McQuibban GA, Saurya S, Freeman M (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423 (6939):537–541. doi:10.1038/nature01633; nature01633 [pii]

    Article  CAS  PubMed  Google Scholar 

  80. Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278(30):27781–27788. doi:10.1074/jbc.M211311200; M211311200 [pii]

    Article  CAS  Google Scholar 

  81. Breugelmans B, Simonet G, van Hoef V, Van Soest S, Vanden Broeck J (2009) Pacifastin-related peptides: Structural and functional characteristics of a family of serine peptidase inhibitors. Peptides 30(3):622–632. doi:10.1016/j.peptides.2008.07.026; S0196-9781(08)00324-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Omnus DJ, Pfirrmann T, Andreasson C, Ljungdahl PO (2011) A phosphodegron controls nutrient-induced proteasomal activation of the signaling protease Ssy5. Mol Biol Cell 22(15):2754–2765. doi:10.1091/mbc.E11-04-0282; mbc.E11-04-0282 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299(2):499–520. doi:10.1006/jmbi.2000.3741; jmbi.2000.3741 [pii]

    Article  CAS  Google Scholar 

  84. Fuhrmann CN, Kelch BA, Ota N, Agard DA (2004) The 0.83 A resolution crystal structure of alpha-lytic protease reveals the detailed structure of the active site and identifies a source of conformational strain. J Mol Biol 338(5):999–1013. doi:10.1016/j.jmb.2004.03.018; S0022283604003080 [pii]

    Article  CAS  PubMed  Google Scholar 

  85. Forsberg H, Ljungdahl PO (2001) Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol Cell Biol 21(3):814–826. doi:10.1128/MCB.21.3.814-826.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Abdel-Sater F, El Bakkoury M, Urrestarazu A, Vissers S, Andre B (2004) Amino acid signaling in yeast: casein kinase I and the Ssy5 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stp1 transcription factor. Mol Cell Biol 24(22):9771–9785. doi:10.1128/MCB.24.22.9771-9785.2004; 24/22/9771 [pii]

  87. Poulsen P, Lo Leggio L, Kielland-Brandt MC (2006) Mapping of an internal protease cleavage site in the Ssy5p component of the amino acid sensor of Saccharomyces cerevisiae and functional characterization of the resulting pro- and protease domains by gain-of-function genetics. Eukaryot Cell 5(3):601–608. doi:10.1128/EC.5.3.601-608.2006; 5/3/601 [pii]

  88. Wu B, Ottow K, Poulsen P, Gaber RF, Albers E, Kielland-Brandt MC (2006) Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p. J Cell Biol 173(3):327–331. doi:10.1083/jcb.200602089; jcb.200602089 [pii]

  89. Liu Z, Thornton J, Spirek M, Butow RA (2008) Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol 28(2):551–563. doi: 10.1128/MCB.00929-07; MCB.00929-07 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Andreasson C, Ljungdahl PO (2002) Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev 16(24):3158–3172. doi:10.1101/gad.239202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pfirrmann T, Heessen S, Omnus DJ, Andreasson C, Ljungdahl PO (2010) The prodomain of Ssy5 protease controls receptor-activated proteolysis of transcription factor Stp1. Mol Cell Biol 30(13):3299–3309. doi:10.1128/MCB.00323-10; MCB.00323-10 [pii]

  92. Chien J, Campioni M, Shridhar V, Baldi A (2009) HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets 9(4):451–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis N. Campetelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campetelli, A.N., Monesterolo, N.E. (2017). Serine Proteases as Metabolic Regulators in Yeast. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_17

Download citation

Publish with us

Policies and ethics