Skip to main content

Pseudomonas aeruginosa and Its Arsenal of Proteases: Weapons to Battle the Host

  • Chapter
  • First Online:
Pathophysiological Aspects of Proteases

Abstract

Pseudomonas aeruginosa is a ubiquitous and opportunistic human pathogen that represents a critical problem to the clinician due to the increased number of resistant strains isolated from hospital settings. In addition, there is a great variety of pathologies associated with this versatile Gram-negative bacterium. P. aeruginosa cells are able to produce an incredible arsenal of virulence factors, especially secreted molecules that act singly or together to ensure the establishment, maintenance, and persistence of a successful infection in susceptible hosts. In this context, pseudomonal proteases’ roles are highlighted due to their ability to cleave key host proteinaceous substrates as well as to modulate several biological processes, for example, escaping and modulating the host immune responses in the bacterial own favor. Proteases secreted by P. aeruginosa include elastase A (LasA), elastase B (LasB), alkaline protease (AP), protease IV (PIV), Pseudomonas small protease (PASP), large protease A (LepA), MucD, and P. aeruginosa aminopeptidase (PAAP). In the present review, we discuss the role of each of these relevant proteases produced by P. aeruginosa taking into consideration their main biological functions in the bacterium–host interaction that favors the establishment of the infectious process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tümmler B, Wiehlmann L, Klockgether J et al (2014) Advances in understanding Pseudomonas. F1000 Prime 6:9

    Google Scholar 

  2. Jayaseelan S, Ramaswamy D, Dharmaraj S (2014) Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30:1159–1168

    Article  CAS  Google Scholar 

  3. Vasil ML (1986) Pseudomonas aeruginosa: biology, mechanisms of virulence, epidemiology. J Pediatr 108:800–805

    Article  CAS  Google Scholar 

  4. Wiehlmann L, Wagner G, Cramer N et al (2007) Population structure of Pseudomonas aeruginosa. PNAS 104:8101–8106

    Article  CAS  Google Scholar 

  5. Ghodhbane H, Elaidi S, Sabatier JM et al (2015) Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infect Disord Drug Targets 15:2–12

    Article  CAS  Google Scholar 

  6. Bartram J, Cotruvo J, Exner M, Fricker C, Glasmacher A (2003) WHO—World Health Organization. Heterotrophic plate counts and drinking-water safety. IWA Publishing, London. ISBN: 1 84339 025 6

    Google Scholar 

  7. Nielsen SL (2015) The incidence and prognosis of patients with bacteremia. Dan Med J 62:B5128

    PubMed  Google Scholar 

  8. Rosenthal VD, Maki DG, Mehta Y, Leblebicioglu H et al (2014) International nosocomial Infection Control Consortium. International Nosocomial Infection Control Consortium (INICC) report, data summary of 43 countries for 2007–2012. Device-associated module. Am J Infect Control 42:942–956

    Article  Google Scholar 

  9. Centers for Disease Control and Prevention. Healthcare-associated Infections (HAIs). Pseudomonas aeruginosa in Healthcare Settings. Available in: http://www.cdc.gov/hai/organisms/pseudomonas.html. Accessed on 17 June 2016

  10. Public Health England (2012) Pseudomonas aeruginosa: guidance, data and analysis—voluntary surveillance of Pseudomonas spp. and Stenotrophomonas spp. causing bacteraemia in England, Wales and Northern Ireland. Available in: https://www.gov.uk/government/publications/pseudomonas-spp-and-stenotrophomonas-spp-voluntary-surveillance-2012. Accessed on 17 June 2016

  11. ANVISA—Agência Nacional de Vigilância Sanitária. Boletim Informativo Segurança do Paciente e Qualidade em Serviços de Saúde—Ano V nº 09|Dezembro de 2014. Available in: http://portal.anvisa.gov.br. Accessed on 17 June 2016

  12. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11:297–308

    Article  CAS  Google Scholar 

  13. Buhl M, Peter S, Willmann M (2013) Prevalence and risk factors associated with colonization and infection of extensively drug-resistant Pseudomonas aeruginosa: a systemic review. Expert Rev Anti-infect Ther 13:1159–1170

    Article  Google Scholar 

  14. El Zowalaty ME, Al Thani AA, Webster TJ et al (2015) Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 10:1683–1706

    Article  Google Scholar 

  15. Bentzmann S, Plésiat P (2011) The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 13:1655–1665

    Article  Google Scholar 

  16. Silva LV, Galdino ACM, Nunes APF et al (2014) Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa. Int J Med Microbiol 304:990–1000

    Article  Google Scholar 

  17. Balasubramanian D, Schneper L, Kumari H, Mathee K (2013) A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20

    Article  CAS  Google Scholar 

  18. Savoia D (2014) New perspectives in the management of Pseudomonas aeruginosa infections. Future Microbiol 9:917–928

    Article  CAS  Google Scholar 

  19. Kaye KS, Pogue JM (2015) Infections caused by resistant Gram-negative bacteria: epidemiology and management. Pharmacotherapy 35:949–962

    Article  CAS  Google Scholar 

  20. McCarthy K (2015) Pseudomonas aeruginosa: evolution of antimicrobial resistance and implications for therapy. Semin Respir Crit Care Med 36:44–55

    Article  Google Scholar 

  21. Sousa AM, Pereira MO (2014) Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—a review. Pathogens 3:680–703

    Article  Google Scholar 

  22. Oliver A, Mulet X, López-Causapé C, Juan C (2015) The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Update 22:41–59

    Article  Google Scholar 

  23. Kung VL, Ozer EA, Hauser AR (2010) The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol 74:621–664

    Article  CAS  Google Scholar 

  24. Crousilles A, Maunders E, Bartlett S, Fan C et al (2015) Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol 10:1825–1836

    Article  CAS  Google Scholar 

  25. Ballok AE, O’Toole GA (2013) Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl flux in the lung. J Bacteriol 195:4013–4019

    Article  CAS  Google Scholar 

  26. Kessler E, Safrin M (2014) Elastinolytic and proteolytic enzymes. In Pseudomonas methods and protocols. Methods Mol Biol 1149:135–169

    Article  CAS  Google Scholar 

  27. McCarty SM, Cochrane CA, Clegg PD, Percival SL (2012) The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair Regen 20:125–136

    Article  Google Scholar 

  28. Gellatly SL, Hancock REW (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173

    Article  CAS  Google Scholar 

  29. Schmidtchen A, Wolff H, Hansson C (2001) Differential proteinase expression by Pseudomonas aeruginosa derived from chronic leg ulcers. Acta Derm Venereol 81:406–409

    Article  CAS  Google Scholar 

  30. Tingpej P, Smith L, Rose B et al (2007) Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis. J Clin Microbiol 45:1697–1704

    Article  CAS  Google Scholar 

  31. Thibodeau PH, Butterworth MB (2013) Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 351:309–323

    Article  CAS  Google Scholar 

  32. Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  Google Scholar 

  33. Marquart ME, Dajcs JJ, Caballero AR et al (2005) Calcium and magnesium enhance the production of Pseudomonas aeruginosa protease IV, a corneal virulence factor. Med Microbiol Immunol 194:39–45

    Article  CAS  Google Scholar 

  34. Hastie AT, Hingley ST, Kueppers F (1983) Protease production by Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Infect Immun 40:506–513

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoge R, Pelzer A, Rosenau F, Wilhelm S (2010) Weapons of a pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz, pp. 383–395

    Google Scholar 

  36. Hamdaoui A, Wund-Bisseret F, Bieth JG (1987) Fast solubilization of human lung elastin by Pseudomonas aeruginosa elastase. Am Rev Respir Dis 135:860–863

    Article  CAS  Google Scholar 

  37. Saulnier JM, Curtil FM, Duclos MC, Wallach JM (1989) Elastolytic activity of Pseudomonas aeruginosa elastase. Biochim Biophys Acta 995:285–290

    Article  CAS  Google Scholar 

  38. Yang J, Zhao HL, Ran YL et al (2015) Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. Sci Rep 9936

    Google Scholar 

  39. Bruce MC, Poncz L, Klinger JD et al (1985) Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis 132:529–535

    CAS  PubMed  Google Scholar 

  40. Erickson DL, Endersby R, Kirkham A et al (2002) Pseudomonas aeruginosa quorum-sensing systems may control virulence factor expression in the lungs of patients with cystic fibrosis. Infect Immun 70:1783–1790

    Article  CAS  Google Scholar 

  41. Kosorok MR, Zeng L, West SE et al (2001) Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 32:277–287

    Article  CAS  Google Scholar 

  42. Voynow JA, Fischer BM, Zheng S (2008) Proteases and cystic fibrosis. Int J Biochem Cell Biol 40:1238–1245

    Article  CAS  Google Scholar 

  43. Van’t Wout EF, van Schadewijk A, van Boxtel R et al (2015) Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells. PLoS Pathog 11:e1004946

    Article  Google Scholar 

  44. Schultz DR, Miller KD (1974) Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect Immun 10:128–135

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hamood A, Griswold G, Colmer J (1996) Characterization of elastase-deficient clinical isolates of Pseudomonas aeruginosa. Infect Immun 64:3154–3160

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Woods DE, Schaffer MS, Rabin HR et al (1988) Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Bacteriol 170:4309–4314

    Article  Google Scholar 

  47. Komori Y, Nonogaki T, Nikai T (2001) Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase). Toxicon 39:1327–1332


    Article  CAS  Google Scholar 

  48. Bentzmann S, Polette M, Zahm JM et al (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing overactivation of epithelial matrix metalloproteinase-2. Lab Invest 80:209–219

    Article  Google Scholar 

  49. Kida Y, Higashimoto Y, Inoue H et al (2008) A novel secreted protease from Pseudomonas aeruginosa activates NF-kappaB through protease-activated receptors. Cell Microbiol 10:491–504

    Article  Google Scholar 

  50. Clark CA, Thomas LK, Azghani AO (2011) Inhibition of protein kinase C attenuates Pseudomonas aeruginosa elastase-induced epithelial barrier disruption. Am J Respir Cell Mol Biol 45:1263–1271

    Article  CAS  Google Scholar 

  51. Cosgrove S, Chotirmall SH, Greene CM et al (2011) Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway. J Biol Chem 286:692–704

    Article  Google Scholar 

  52. Kuang Z, Hao Y, Walling BE et al (2011) Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS ONE 6:e27091

    Article  CAS  Google Scholar 

  53. Nomura K, Obata K, Keira T et al (2014) Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res 18:15–21

    Google Scholar 

  54. Parmely M, Gale A, Clabaugh M et al (1990) Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 58:3009–3014


    Google Scholar 

  55. Horvat RT, Clabaugh M, Duval-Jobe C, Parmely MJ (1989) Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infect Immun 57:1668–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Theander TG, Kharazmi A, Pedersen BK et al (1988) Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect Immun 56:1673–1677

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Leidal KG, Munson KL, Johnson MC et al (2003) Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78. J Interferon Cytokine Res 23:307–318

    Article  CAS  Google Scholar 

  58. Mariencheck WI, Alcorn JF, Palmer SM (2003) Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol 28:528–537


    Google Scholar 

  59. Meyer KC, Sharma R, Brown M et al (2000) Function and composition of pulmonary surfactant and surfactant-derived fatty acid profiles are altered in young adults with cystic fibrosis. Chest 118:164–174

    Article  CAS  Google Scholar 

  60. McCormick CC, Hobden JA, Balzli CL et al (2007) Surfactant protein D in Pseudomonas aeruginosa keratitis. Ocular Immun Inflam 15:371–379

    Article  CAS  Google Scholar 

  61. Bainbridge T, Fick RB (1989) Functional importance of cystic fibrosis immunoglobulin G fragments generated by Pseudomonas aeruginosa elastase. J Lab Clin Med 114:728–733

    CAS  PubMed  Google Scholar 

  62. Heck LW, Alarcon PG, Kulhavy RM et al (1990) Degradation of IgA proteins by Pseudomonas aeruginosa elastase. J Immunol 144:2253–2257


    Google Scholar 

  63. Lomholt JA, Kilian M (2008) Degradation of uniquely glycosylated secretory immunoglobulin A in tears from patients with Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 49:1944–4939

    Article  Google Scholar 

  64. Tielen P, Rosenau F, Wilhelm S et al (2010) Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology 156:2239–2252

    Article  CAS  Google Scholar 

  65. Yu H, He X, Xie W et al (2014) Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can J Microbiol 60:227–235

    Article  CAS  Google Scholar 

  66. Schad PA, Iglewski BH (1988) Nucleotide sequence and expression in Escherichia coli of the Pseudomonas aeruginosa lasA gene. J Bacteriol 170:2784–2789

    Article  CAS  Google Scholar 

  67. Kessler E, Safrin M, Gustin JK et al (1998) Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem 273:30225–30231

    Article  CAS  Google Scholar 

  68. Engel LS, Hill JM, Caballero AR (1998) Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa. J Biol Chem 273:16792–16797


    Article  CAS  Google Scholar 

  69. Wilderman PJ, Vasil AI, Johnson Z (2001) Characterization of an endoprotease (prpl) encoded by a pvds-regulated gene in Pseudomonas aeruginosa. Infect Immun 69:5385–5394

    Article  CAS  Google Scholar 

  70. Barequet IS, Bourla N, Pessach YN et al (2012) Staphylolysin is an effective therapeutic agent for Staphylococcus aureus experimental keratitis. Graefes Arch Clin Exp Ophthalmol 250:223–229

    Article  CAS  Google Scholar 

  71. Kessler E, Safrin M, Abrams WR, Rosenbloom J, Ohman DE (1997) Inhibitors and specificity of Pseudomonas aeruginosa LasA. J Biol Chem 272:9884–9889

    Article  CAS  Google Scholar 

  72. Kessler E, Safrin M, Blumberg S, Ohman DE (2004) A continuous spectrophotometric assay for Pseudomonas aeruginosa LasA prote- ase (staphylolysin) using a two-stage enzymatic reaction. Anal Biochem 328:225–232

    Article  CAS  Google Scholar 

  73. Vessillier S, Delolme F, Bernillon J, Saulnier J, Wallach J (2001) Hydrolysis of glycine-containing elastin pentapeptides by LasA, a metalloelastase from Pseudomonas aeruginosa. Eur J Biochem 268:1049–1057


    Article  CAS  Google Scholar 

  74. Peters JE, Galloway DR (1990) Purification and characterization of an active fragment of the LasA protein from Pseudomonas aeruginosa: enhancement of elastase activity. J Bacteriol 172:2236–2240


    Google Scholar 

  75. Peters JE, Park SJ, Darzins A et al (1992) Further studies on Pseudomonas aeruginosa LasA: analysis of specificity. Mol Microbiol 6:1155–1162


    Article  CAS  Google Scholar 

  76. Laarman AJ, Bardoel BW, Ruyken M et al (2012) Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 188:386–393

    Article  CAS  Google Scholar 

  77. Kharazmi A, Hoiby N, Doring G, Valerius NH (1984) Pseudomonas aeruginosa exoproteases inhibit human neutrophil chemiluminescence. Infect Immun 44:587–591


    Google Scholar 

  78. Hong YQ, Ghebrehiwet B (1992) Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133–138

    Article  CAS  Google Scholar 

  79. Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ (2012) Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity. J Mol Biol 415:573–583

    Article  CAS  Google Scholar 

  80. Kim SJ, Park RY, Kang SM (2006) Pseudomonas aeruginosa alkaline protease can facilitate siderophore-mediated iron-uptake via the proteolytic cleavage of transferrins. Biol Pharm Bull 29:2295–22300

    Article  CAS  Google Scholar 

  81. Gupta SK, Masinick SA, Hobden JA et al (1996) Bacterial proteases and adherence of Pseudomonas aeruginosa to mouse cornea. Exp Eye Res 62:641–650

    Article  CAS  Google Scholar 

  82. Malloy JL1, Veldhuizen RA, Thibodeaux BA et al (2005) Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Physiol Lung Cell Mol Physiol 288:409–418

    Article  CAS  Google Scholar 

  83. Traidej M, Caballero AR, Marquart ME et al (2003) Molecular analysis of Pseudomonas aeruginosa protease IV expressed in Pseudomonas putida. Invest Ophthalmol Vis Sci 44:190–196

    Article  Google Scholar 

  84. Matsumoto K (2004) Role of bacterial proteases in pseudomonal and serratial keratitis. Biol Chem 385:1007–1016

    Article  CAS  Google Scholar 

  85. Engel LS, Hobden JA, Moreau JM et al (1997) Pseudomonas deficient in protease IV has significantly reduced corneal virulence. Invest Ophthalmol Vis Sci 38:1535–1542

    CAS  PubMed  Google Scholar 

  86. Tang A, Marquart ME, Fratkin JD et al (2009) Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest Ophthalmol Vis Sci 50:3794–3801

    Article  Google Scholar 

  87. Tang A, Caballero AR, Marquart ME, O’callaghan RJ (2013) Pseudomonas aeruginosa small protease (PASP), a keratitis virulence factor. Invest Ophthalmol Vis Sci 54:2821–2828

    Article  CAS  Google Scholar 

  88. Kida Y, Shimizu T, Kuwano K (2011) Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice. Infect Immun 79:211–219

    Article  CAS  Google Scholar 

  89. Mochizuki Y, Suzuki T, Oka N, Zhang Y et al (2014) Pseudomonas aeruginosa MucD protease mediates keratitis by inhibiting neutrophil recruitment and promoting bacterial survival. Invest Ophthalmol Vis Sci 55:240–246

    Article  CAS  Google Scholar 

  90. Okuda J, Hayashi N, Tanabe S et al (2011) Degradation of interleukin 8 by the serine protease MucD of Pseudomonas aeruginosa. Infect Chemother 17:782–792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the following Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André L. S. Santos or Lívia Viganor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galdino, A.C.M., Branquinha, M.H., Santos, A.L.S., Viganor, L. (2017). Pseudomonas aeruginosa and Its Arsenal of Proteases: Weapons to Battle the Host. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_16

Download citation

Publish with us

Policies and ethics