Skip to main content

Proteolytic Networks at the Crossroads of Cancer Cell Life and Death: Cancer Stem Cell Deciding Cell Fate

  • Chapter
  • First Online:
Book cover Pathophysiological Aspects of Proteases

Abstract

Over the years, proteases have been implicated in the development of tumors. The proteolytic network, which critically modulates the functioning of a normal cell, is often dysregulated in cancers. In the recent past, the identification of a subpopulation of cancer cells, termed as cancer stem cells (CSCs), has helped gain a better understanding of the complex mechanisms involved in cancer development, progression, as well as recurrence. In this context, it is of considerable importance to comprehend the pivotal role of proteases in regulating the fate of cancer cells via the CSCs. In fact, the proteolytic network influences cancer cell’s fate via CSC and its associated niche, which coordinates the functions of CSCs. In this chapter, we have emphasized on the dynamic role displayed by the proteases in regulating numerous steps of tumorigenesis commencing from tumor initiation, angiogenesis, invasion and metastasis. Apart from this, CSCs also execute a survival mechanism with the help of proteases, upon induction of apoptosis. We have also revisited the mechanisms underlying the contribution of proteases in tumor drug resistance, which ultimately leads to cancer relapse, and the role of CSCs in the same. Similarly, proteases are also intricately involved in inflammation and immune surveillance of CSCs. Given the important role of proteases in carcinogenesis, further development of antiprotease therapeutics may enable better treatment procedures and minimize the risk of recurrence. This chapter has, therefore, epitomized the complex crosstalk involving proteases, CSCs and its niche.

The authors Shruti Banerjee and Apoorva Bhattacharya have contributed equally towards this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  3. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    Article  CAS  PubMed  Google Scholar 

  4. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumors: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  CAS  PubMed  Google Scholar 

  5. Kise K, Kinugasa-Katayama Y, Takakura N (2016) Tumor microenvironment for cancer stem cells. Adv Drug Deliv Rev 99:197–205

    Article  CAS  PubMed  Google Scholar 

  6. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331

    Article  CAS  PubMed  Google Scholar 

  7. Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598

    Article  CAS  PubMed  Google Scholar 

  9. Mao Y, Keller ET, Garfield DH et al (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32:303–315

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hewitt R, Danø K (1996) Stromal cell expression of components of matrix-degrading protease systems in human cancer. Enzyme Protein 49:163–173

    Article  CAS  PubMed  Google Scholar 

  11. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J BiolChem 283:30433–30437

    CAS  Google Scholar 

  13. López-Otín C, Hunter T (2010) The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer 10:278–292

    Article  PubMed  CAS  Google Scholar 

  14. Yang Y, Hao Hong H, Yin Zhang Y et al (2009) Molecular imaging of proteases in cancer. Cancer Growth Metastasis 2:13–27

    Article  CAS  PubMed  Google Scholar 

  15. Duffy MJ (1996) Proteases as prognostic markers in cancer. Clin Cancer Res 2:613–618

    CAS  PubMed  Google Scholar 

  16. Zucker S, Cao J, Chen WT (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Otin C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3:509–519

    Article  CAS  PubMed  Google Scholar 

  18. Rakashanda S, Rana F, Rafiq S et al (2012) Role of proteases in cancer: a review. Biotechnol Mol Biol Rev 7:90–101

    Article  CAS  Google Scholar 

  19. Quesada V, Ordóñez GR, Sánchez LM et al (2009) The Degradome database: mammalian proteases and diseases of proteolysis. Nucleic Acids Res 37:D239–D243

    Article  CAS  PubMed  Google Scholar 

  20. Puente XS, Sánchez LM, Overall CM et al (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4:544–558

    Article  CAS  PubMed  Google Scholar 

  21. Choi KY, Swierczewska M, Lee S et al (2012) Protease-activated drug development. Theranostics 2:156–178

    Google Scholar 

  22. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Article  CAS  PubMed  Google Scholar 

  23. López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumor suppression. Nat Rev Cancer 7:800–808

    Article  PubMed  CAS  Google Scholar 

  24. Schroter F, Adjaye J (2014) The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up? Stem Cell Res Ther 5:24

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rape M, Jentsch S (2002) Taking a bite: proteasomal protein processing. Nature Cell Bio 4:E113–E116

    Article  CAS  Google Scholar 

  26. Yasutaka O, Keiichi IN (2012) UPS delivers pluripotency. Cell Stem Cell 11:728–730

    Article  CAS  Google Scholar 

  27. Pan J, Zhang Q, Wang Y et al (2010) 26S Proteasome activity is down-regulated in lung cancer stem-like cells propagated in vitro. PLoS ONE 5:e13298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chinchar E, Makey KL, Gu, JW (2014) Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells. Vasc Cell. 6

    Google Scholar 

  29. Hill RP, Marie-Egyptienne DT, Hedley DW (2009) Cancer stem cells, hypoxia and metastasis. Semin Radiat Oncol 19:106–111

    Article  PubMed  Google Scholar 

  30. Catalano V, Turdo A, Di Franco S et al (2013) Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol 23:522–532

    Article  CAS  PubMed  Google Scholar 

  31. Han L, Shi S, Gong T et al (2013) Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B 3:65–75

    Article  Google Scholar 

  32. Clarke MF, Dick JE, Dirks PB (2006) Cancer stem cells—perspectives on current status and future directions: ACCR workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  33. Baker M (2008) Cancer stem cells, becoming common. Nat Rep Stem Cells. doi:10.1038/stemcells.2008.153

    Article  Google Scholar 

  34. Seton-Rogers S (2011) Cancer stem cells. VEGF promotes stemness. Nat Rev Cancer 11:831

    Article  CAS  PubMed  Google Scholar 

  35. Tang S, Xiang T, Huang S et al (2016) Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling. Cancer Lett 376:137–147

    Article  CAS  PubMed  Google Scholar 

  36. Bussolati B, Grange C, Sapino A et al (2009) Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med 13:309–319

    Article  CAS  PubMed  Google Scholar 

  37. Kumar D, Kumar S, Gorain M et al (2016) Notch1-MAPK signaling axis regulates CD133+ cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol pii: S0022-202X(16)32232-1

    Google Scholar 

  38. Saha S, Mukherjee S, Mazumdar M et al (2014) Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res 165:558–577

    Article  PubMed  CAS  Google Scholar 

  39. Saha S, Mukherjee S, Khan P et al (2016) Aspirin suppress the acquisition of chemoresistance in breast cancer by disrupting an NFкB-IL6 signaing axis responsible for the generation of Cancer Stem Cells. Cancer Res 76:2000–2012

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee S, Mazumdar M, Chakraborty S et al (2014) Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther 5:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mukherjee S, Manna A, Bhattacharjee P et al (2016) Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4+ migrating cancer stem cells. Oncogene. doi:10.1038/onc.2016.26

    Article  CAS  PubMed  Google Scholar 

  42. Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22:457–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chakraborty C, Chin KY, Das S (2016) miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumor Biol. doi:10.1007/s13277-016-5156-1

    Article  CAS  PubMed  Google Scholar 

  44. Korkaya H, Liu S, Wicha MS (2006) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121:3804–3809

    Article  CAS  Google Scholar 

  45. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  PubMed  Google Scholar 

  46. Fessler E, Dijkgraaf FE, De Sousa E, Melo F et al (2013) Cancer stem cell dynamics in tumor progression and metastasis: is the microenvironment to blame? Cancer Lett 34:97–104

    Article  CAS  Google Scholar 

  47. Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumorxenografts by flow cytometry. Cancer Res 64:6183–6189

    Article  CAS  PubMed  Google Scholar 

  48. Wong DJ, Liu H, Ridky TW et al (2008) Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vermeulen L, De Sousa E, Melo F, van der Heijden M (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  CAS  PubMed  Google Scholar 

  50. Ohishi K, Varnum-Finney B, Bernstein ID (2002) The Notch pathway: modulation of cell fate decisions in hematopoiesis. Int J Hematol 75:449–459

    Google Scholar 

  51. Chanmee T, Ontong P, Mochizuki N et al (2014) Excessive hyaluronan production promotes acquisition of cancer stem cell signatures through the coordinated regulation of Twist and the transforming growth factor β (TGF-β)-Snail signaling axis. J BiolChem 289:26038–26056

    CAS  Google Scholar 

  52. Kitamura T, Qian BZ, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20:210–216

    Article  PubMed  Google Scholar 

  55. Kessenbrock K, Dijkgraaf GJ, Lawson DA et al (2013) A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 13:300–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  57. Chen J (2012) Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 114:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hagerling C, Casbon AJ, Werb Z (2015) Balancing the innate immune system in tumor development. Trends Cell Biol 25:214–220

    Article  CAS  PubMed  Google Scholar 

  59. Boumahdi S, Driessens G, Lapouge G (2014) SOX2 controls tumor initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511:246–250

    Article  CAS  PubMed  Google Scholar 

  60. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells. Cell Stem Cell 16:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen DY, Liu H, Takeda S et al (2010) Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis. Cancer Res 70:5358–5367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115:293–303

    Article  CAS  PubMed  Google Scholar 

  63. Wünsch D, Hahlbrock A, Jung S et al (2016) Taspase1: a ‘misunderstood’ protease with translational cancer relevance. Oncogene 35:3351–3364

    Article  PubMed  CAS  Google Scholar 

  64. Kumar S, Kulkarni R, Sen S (2016) Cell motility and ECM proteolysis regulate tumor growth and tumor relapse by altering the fraction of cancer stem cells and their spatial scattering. PhysBiol 13:036001

    Google Scholar 

  65. Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28:2331–2347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  67. Muthukkaruppan VR, Kubai L, Auerbach R (1982) Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 69:699–708

    CAS  PubMed  Google Scholar 

  68. Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balance proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    Article  CAS  PubMed  Google Scholar 

  69. Parangi S, O’Reilly M, Christofori G et al (1996) Angiogenesis therapy of transgenic mice impairs de novo tumor growth. Proc Natl Acad Sci USA 93:2002–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dameron KM, Volpert OV, Tainsky MA et al (1994) Control of angiogenesis in fibroblasts by p53 regulation of thorombospondin-1. Science 265:1582–1584

    Article  CAS  PubMed  Google Scholar 

  71. Gu JW, Rizzo P, Pannuti A et al (2012) Notch signals in the endothelium and cancer “stem-like” cells: opportunities for cancer therapy. Vascular Cell 4:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsuda S, Yan T, Mizutani A et al (2014) Cancer stem cells maintain a hierarchy of differentiation by creating their niche. Int J Cancer 135:27–36

    Article  CAS  PubMed  Google Scholar 

  73. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  74. Kiba A, Yabana N, Shibuya M (2003) A set of loop-1 and -3 structures in the novel VEGF family member, VEGF-ENZ-7, is essential for the activation of VEGFR-2 signaling. J Biol Chem 278:13453–13461

    Article  CAS  PubMed  Google Scholar 

  75. Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    Article  CAS  PubMed  Google Scholar 

  76. Hadjimichael C, Chanoumidou K, Papadopoulou N (2015) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7:1150–1184

    PubMed  PubMed Central  Google Scholar 

  77. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  PubMed  Google Scholar 

  78. Yana I, Weiss SJ (2000) Regulation of membrane type-1 matrix metalloproteinase activation by proproteinconvertases. Mol Biol Cell 11:2387–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Handsley MM, Edwards DR (2005) Metalloproteinases and their inhibitors in tumor angiogenesis. Int J Cancer 115:849–860

    Article  CAS  PubMed  Google Scholar 

  80. Kajita M, Itoh Y, Chiba T et al (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194:1–11

    Article  CAS  PubMed  Google Scholar 

  82. Brooks PC, Stromblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693

    Article  CAS  PubMed  Google Scholar 

  83. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Brauer R, Beck IM, Roderfeld M et al (2011) Matrix metalloproteinase-19 inhibits growth of endothelial cells by generating angiostatin-like fragments from plasminogen. BMC Biochem 12:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Felbor U, Dreier L, Bryant RA et al (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19:1187–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J CellBiochem 96:1110–1126

    CAS  Google Scholar 

  88. Iivanainen E, Kähäri VM, Heino J et al (2003) Endothelial cell-matrix interactions. Microsc Res Tech 60:13–22

    Article  CAS  PubMed  Google Scholar 

  89. Du R, Lu KV, Petritsch C (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wojtukiewicz MZ, Sierko E, Klement P et al (2001) The hemostatic system and angiogenesis in malignancy. Neoplasia 3:371–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qiao L, Liang N, Zhang J et al (2015) Advanced research on vasculogenic mimicry in cancer. J Cell Mol Med 19:315–326

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zijl FV, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Iqbal W, Alkarim S, AlHejin A et al (2016) Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget. doi:10.18632/oncotarget.10942

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chabottaux V, Ricaud S, Host L et al (2009) Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumor vascular architecture. J Cell Mol Med 13:4002–4013

    Article  PubMed  PubMed Central  Google Scholar 

  95. Klimstra D, Reinheckel T, Peters C et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Noë V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    PubMed  Google Scholar 

  97. Najy AJ, Day KC, Day ML (2008) Theectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem 283:18393–18401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grabowska MM, Sandhu B, Day ML (2012) EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell Signal 24:532–538

    Article  CAS  PubMed  Google Scholar 

  99. Juncker-Jensen A, Deryugina EI, Rimann I (2013) Tumor MMP-1 activates endothelial PAR1 to facilitate vascular intravasation and metastatic dissemination. Cancer Res 73:4196–4211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Feng S, Cen J, Huang Y (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE 6:e20599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mani SA, Guo W, Liao MJ (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nishida C, Kusubata K, Tashiro Y et al (2011) MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood 119:5405–5416

    Article  CAS  Google Scholar 

  104. Wang Z, von Au A, Schnölzer M et al (2016) CD44v6-competent tumorexosomes promote motility, invasion and cancer-initiating cell marker expression. Oncotarget. doi:10.18632/oncotarget.10580

  105. D’Eliseo D, Di Rocco G, Loria R et al (2016) Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J ExpClin Cancer Res. doi:10.1186/s13046-016-0302-6

  106. Gao Y, Feng J, Wu L et al (2015) Expression and pathological mechanism of MMP-9 and HIF-2α in CD133(+) lung cancer stem cells. Zhonghua Yi XueZaZhi 95:2607–2611

    CAS  Google Scholar 

  107. Talukdar S, Das SK, Pradhan AK, Emdad et al (2016) Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget. doi:10.18632/oncotarget.10851

  108. Ito K, Ito K (2016) Metabolism and the control of cell fate decisions and stem cell renewal. Annu Rev Cell Dev Biol. doi:10.1146/annurev-cellbio-111315-125134

  109. Baxter RC (2014) IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer 14:329–341

    Article  CAS  PubMed  Google Scholar 

  110. Miyamoto S, Yano K, Sugimoto S et al (2004) Matrix metalloproteinase-7 facilitates insulin-like growth factor bioavailability through its proteinase activity on insulin-like growth factor binding protein 3. Cancer Res 64:665–671

    Article  CAS  PubMed  Google Scholar 

  111. Hemers E, Duval C, McCaig C et al (2005) Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications for epithelial-mesenchymalsignaling. Cancer Res 65:7363–7369

    Article  CAS  PubMed  Google Scholar 

  112. Mochizuki S, Shimoda M, Shiomi T et al (2004) ADAM28 is activated by MMP-7 (matrilysin-1) and cleaves insulin-like growth factor binding protein-3. Bio Chem Biophys Res Commun 315:79–84

    Google Scholar 

  113. Sylvain MG, Thorsten M, Priya D et al (2010) ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 123:3913–3922

    Article  CAS  Google Scholar 

  114. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  PubMed Central  Google Scholar 

  115. Lahiry L, Saha B, Chakraborty J et al (2010) Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 31:259–268

    Article  CAS  PubMed  Google Scholar 

  116. Kessenbrock K, Wang WY, Werb Z (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 44:184–190

    Article  PubMed  CAS  Google Scholar 

  117. Nasri I, Bonnet D, Zwarycz B et al (2016) PAR2-dependent activation of GSK3β regulates the survival of colon stem/progenitor cells. Am J Physiol Gastrointest Liver Physiol 311:G221–G236

    Article  PubMed  PubMed Central  Google Scholar 

  118. Amoury M, Kolberg K, Pham AT et al (2016) Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett 372:201–209

    Article  CAS  PubMed  Google Scholar 

  119. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292

    Article  CAS  PubMed  Google Scholar 

  120. Mohanty S, Saha S, Md D, Hossain S (2014) ROS-PIASγ cross talk channelizes ATM signaling from resistance to apoptosis during chemosensitization of resistant tumors. Cell Death Dis 5:e1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dean M, Fojo T, Bates S (2005) Tumor stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  CAS  PubMed  Google Scholar 

  122. Liu G, Yuan X, Zeng Z et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Eckford PD, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109:2989–3011

    Article  CAS  PubMed  Google Scholar 

  124. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    Article  CAS  PubMed  Google Scholar 

  125. Wang J, Sullenger BA, Rich JN (2012) Notch signaling in cancer stem cells. Adv Exp Med Biol 727:174–185

    Article  CAS  PubMed  Google Scholar 

  126. Wang Z, Da Silva TG, Jin K et al (2014) Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Res 74:6364–6374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. D’Angelo RC, Ouzounova M, Davis A et al (2015) Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther 14:779–787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Theys J, Yahyanejad S, Habets R et al (2013) High Notch activity induces radiation resistance in non small cell lung cancer. Radiother Oncol1 08:440–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yahyanejad S, Theys J, Vooijs M (2016) Targeting Notch to overcome radiation resistance. Oncotarget 7:7610–7628

    PubMed  Google Scholar 

  130. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  131. Lagadec C, Vlashi E, Alhiyari Y et al (2013) Radiation-induced Notch signaling in breast cancer stem cells. Int J Radiat Oncol Biol Phys 87:609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mamaeva V, Niemi R, Beck M et al (2016) Inhibiting Notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase Inhibitors. Mol Ther 24:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Austin KM, Covic L, Kuliopulos A (2013) Matrix metalloproteases and PAR1 activation. Blood 121:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fujimoto D, Ueda Y, Hirono Y et al (2015) PAR1 participates in the ability of multidrug resistance and tumorigenesis by controlling Hippo-YAP pathway. Oncotarget 6:34788–34799

    Article  PubMed  PubMed Central  Google Scholar 

  135. He YC, Zhou FL, Shen Y et al (2014) Apoptotic death of cancer stem cells for cancer therapy. Int J MolSci 15:8335–8351

    Article  CAS  Google Scholar 

  136. Inohara N, Nuñez G (2001) The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 20:6473–6481

    Article  CAS  PubMed  Google Scholar 

  137. Cecconi F, Alvarez-Bolado G, Meyer BI et al (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737

    Article  CAS  PubMed  Google Scholar 

  138. Yoshida H, Kong YY, Yoshida R et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750

    Article  CAS  PubMed  Google Scholar 

  139. Yu CJ, Ou JH, Wang ML et al (2015) Elevated survivin mediated multidrug resistance and reduced apoptosis in breast cancer stem cells. J BUON 20:1287–1294

    PubMed  Google Scholar 

  140. Yan H, Tong J, Lin X et al (2015) Effect of the WWOX gene on the regulation of the cell cycle and apoptosis in human ovarian cancer stem cells. Mol Med Rep 12:1783–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jinesh GG, Choi W, Shah JB et al (2013) Blebbishields, the emergency program for cancer stem cells: sphere formation and tumorigenesis after apoptosis. Cell Death Differ 20:382–395

    Article  CAS  PubMed  Google Scholar 

  142. Lu Y, Zhang C, Li Q et al (2015) Inhibitory effect of salinomycin on human breast cancer cells MDA-MB-231 proliferation through Hedgehog signaling pathway. Zhonghua Bing Li XueZaZhi 44:395–398

    CAS  Google Scholar 

  143. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454(436):444

    Google Scholar 

  144. Lowe DB, Storkus WJ (2011) Chronic inflammation and immunologic-based constraints in malignant disease. Immunotherapy 3:1265–1274

    Article  PubMed  Google Scholar 

  145. Colotta F, Allavena P, Sica A et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    Article  CAS  PubMed  Google Scholar 

  146. Shigdar S, Li Y, Bhattacharya S et al (2014) Inflammation and cancer stem cells. Cancer Lett 345:271–278

    Article  CAS  PubMed  Google Scholar 

  147. Jinushi M (2014) Role of cancer stem cell-associated inflammation in creating pro-inflammatory tumorigenic microenvironments. Oncoimmunology 15:e28862

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hagemann T, Robinson SC, Schulz M et al (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549

    Article  CAS  PubMed  Google Scholar 

  149. Bengsch F, Buck A, Günther SC et al (2014) Cell type-dependent pathogenic functions of overexpressed human cathepsin B in murine breast cancer progression. Oncogene 33:4474–4484

    Google Scholar 

  150. Mohamed MM, Cavallo-Medved D, Rudy D et al (2010) Interleukin-6 increases expression and secretion of cathepsin B by breast tumor-associated monocytes. Cell Physiol Biochem 25:315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gopinath S, Malla R, Alapati K et al (2013) Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis 34:550–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  PubMed  Google Scholar 

  153. Ryungsa K, Manabu E, Kazuaki T et al (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14

    Google Scholar 

  154. Swann Jeremy B, Smyth Mark J (2007) Immune surveillance of tumors. J Clin Invest 117:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cullen SP, Brunet M, Martin SJ (2010) Granzymes in cancer and immunity. Cell Death Differ 17:616–623

    Article  CAS  PubMed  Google Scholar 

  156. Waldhauer I, Steinle A (2008) NK cells and cancer immuno surveillance. Oncogene 27:5932–5943

    Article  CAS  PubMed  Google Scholar 

  157. Strik MC, de Koning PJ, Kleijmeer MJ et al (2007) Human mast cells produce and release the cytotoxic lymphocyte associated protease granzyme B upon activation. MolImmunol 44:3462–3472

    CAS  Google Scholar 

  158. Dimitriadou V, Koutsilieris M (1997) Mast cell–tumor cell interactions: for or against tumor growth and metastasis. Anticancer Res 17:1541–1549

    CAS  PubMed  Google Scholar 

  159. Ames E, Canter RJ, Grossenbacher SK et al (2015) NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol 195:4010–4019

    Article  CAS  PubMed  Google Scholar 

  160. Waldhauer I, Goehlsdorf D, Gieseke F et al (2008) Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68:6368–6376

    Article  CAS  PubMed  Google Scholar 

  161. Jachetti E, Caputo S, Mazzoleni S et al (2015) Tenascin-C protects cancer stem-like cells from immune surveillance by arresting T-cell activation. Cancer Res 75:2095–2108

    Article  CAS  PubMed  Google Scholar 

  162. Sarkar S, Zemp FJ, Senger D et al (2015) ADAM-9 is a novel mediator of tenascin-C-stimulated invasiveness of brain tumor-initiating cells. Neuro Oncol 17:1095–1105

    Google Scholar 

  163. Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72(9):2339–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Butler GS, Hutton M, Wattam BA et al (1999) The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J BiolChem 274:20391–20396

    CAS  Google Scholar 

  165. Djafarzadeh R, Noessner E, Engelmann H et al (2006) GPI-anchored TIMP-1 treatment renders renal cell carcinoma sensitive to FAS-meditated killing. Oncogene 25:1496–1508

    Article  CAS  PubMed  Google Scholar 

  166. Darini CY, Martin P, Azoulay S et al (2013) Targeting cancer stem cells expressing an embryonic signature with anti-proteases to decrease their tumor potential. Cell Death Dis 4:e706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bernstein WB, Dennis PA (2008) Repositioning HIV protease inhibitors as cancer therapeutics. CurrOpin HIV AIDS 3:666–675

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, P., Banerjee, S., Bhattacharya, A., Chowdhury, D.D., Dutta, A., Das, T. (2017). Proteolytic Networks at the Crossroads of Cancer Cell Life and Death: Cancer Stem Cell Deciding Cell Fate. In: Chakraborti, S., Dhalla, N. (eds) Pathophysiological Aspects of Proteases. Springer, Singapore. https://doi.org/10.1007/978-981-10-6141-7_11

Download citation

Publish with us

Policies and ethics