Skip to main content

On Certain New Method to Construct Weighted Hardy-Type Inequalities and Its Application to the Sharp Hardy-Poincaré Inequalities

  • Conference paper
  • First Online:
  • 810 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 206))

Abstract

We apply the recent method of Drábek and the authors in order to construct the Hardy–Poincaré–type inequalities

$$\begin{aligned} \bar{C}_{\gamma ,n,p,r}\int _{\mathbb {R}^{n}}\ |\xi |^p \left( 1+r|x|^{\frac{p}{p-1}}\right) \left( 1+|x|^{\frac{p}{p-1}}\right) ^{\gamma (p-1)-p}\, dx\\ \le \int _{\mathbb {R}^{n}}|\nabla \xi |^p\left( 1+|x|^{\frac{p}{p-1}}\right) ^{\gamma (p-1)}\, dx.\end{aligned}$$

Some of the derived inequalities are proven to hold with the best constants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anh, C.T., Ke, T.D.: On quasilinear parabolic equations involving weighted \(p\)-Laplacian operators. Nonlinear Differ. Equ. Appl. (NoDEA) 17(2), 195–212 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baras, P., Goldstein, J.: The heat equation with a singular potential. Trans. Amer. Math. Soc. 284(1), 121–139 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.-L.: Hardy-Poincaré inequalities and applications to nonlinear diffusions. C. R. Math. Acad. Sci. Paris 344(7), 431–436 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.-L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Ration. Mech. Anal. 191(2), 347–385 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Natl. Acad. Sci. USA 107(38), 16459–16464 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis, H., Vázquez, J.-L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid 10(2), 443–469 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Chaudhuri, A.N., Ramaswamy, M.: An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc. 130(2):489–505 (2002) (electronic)

    Google Scholar 

  8. Dhara, R.N., Kałamajska, A.: On equivalent conditions for the validity of Poincaré inequality on weighted Sobolev space with applications to the solvability of degenerated PDEs involving \(p\)-Laplacian. J. Math. Anal. Appl. 432(1), 463–483 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dolbeault, J., Toscani, G.: Fast diffusion equations: matching large time asymptotics by relative entropy methods. Kinet. Relat. Models 4(3), 701–716 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dolbeault, J., Volzone, B.: Improved Poincaré inequalities. Nonlinear Anal. 75(16), 5985–6001 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Drábek, P., Kałamajska, A., Skrzypczak, I.: Caccioppoli–type estimates and hardy–type inequalities derived from degenerated \(p\)-harmonic problems. (2016, submitted)

    Google Scholar 

  12. García Azorero, J.P., Peral Alonso, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144(2), 441–476 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghoussoub, N., Moradifam, A.: Bessel pairs and optimal hardy and hardy-rellich inequalities. Math. Ann. 349(1), 1–57 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition

    Google Scholar 

  15. Kałamajska, A., Pietruska-Pałuba, K.: New orlicz variants of Hardy type inequalities with power, power-logarithmic, and power-exponential weights. Cent. Eur. J. Math. 10(6), 2033–2050 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Kałamajska, A., Pietruska-Pałuba, K., Skrzypczak, I.: Nonexistence results for differential inequalities involving \(A\)-Laplacian. Adv. Differ. Equ. 17(3–4), 307–336 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25(3), 537–554 (1984)

    MATH  MathSciNet  Google Scholar 

  18. Maz’ja, V.: Sobolev spaces. In: Shaposhnikova, T.O. (Trans) Springer Series in Soviet Mathematics, Springer, Berlin (1985)

    Google Scholar 

  19. Mitidieri, È., Pokhozhaev, S.I.: Absence of positive solutions for quasilinear elliptic problems in \({\bf R}^N\). Tr. Mat. Inst. Steklova, 227(Issled. po Teor. Differ. Funkts. Mnogikh Perem. i ee Prilozh. 18):192–222 (1999)

    Google Scholar 

  20. Skrzypczak, I.: Hardy-type inequalities derived from \(p\)-harmonic problems. Nonlinear Anal. 93, 30–50 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Skrzypczak, I.: Hardy-Poincaré type inequalities derived from \(p\)-harmonic problems. In: Calculus of variations and PDEs, vol. 101, pp. 225–238. Banach Center Publication (2014) Polish Acad. Sci. Inst. Math., Warsaw

    Google Scholar 

  22. Talenti, G.: Best constant in sobolev inequality. Ann. Mat. Pura Appl. 4(110), 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vazquez, J.-L., Zuazua, E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173(1), 103–153 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Xiang, C.-L.: Asymptotic behaviors of solutions to quasilinear elliptic equations with critical sobolev growth and hardy potential. J. Differ. Equ. 259(8), 3929–3954 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors were supported by Polish NCN grant 2011/03/N/ST1/00111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Kałamajska .

Editor information

Editors and Affiliations

Appendix

Appendix

We have the following two lemmas, which we apply to prove Lemma 1.

Lemma 3

Let

$$\begin{aligned} \varPhi _q(\lambda )=|\lambda |^{q-2}\lambda ,\quad \lambda \in {\mathbb {R}^{n}},\quad q>1,\quad s\in {\mathbb {R}}, \end{aligned}$$

where the same notation is used also for \(n=1\). Then we have

$$\begin{aligned} \begin{array}{cc} \begin{array}{rcl} \varPhi _q(s\lambda )&{}=&{}\varPhi _q(s)\varPhi _q(\lambda );\\ \varPhi _q(\varPhi _r(\lambda ))&{}=&{} \varPhi _{(q-1)(r-1)+1}(\lambda );\nonumber \\ \varPhi _q(s)&{}=&{}s^{q-1},\ \ \mathrm{when}\ s\ge 0;\nonumber \\ \nabla |x|^q&{}=&{}q\varPhi _q(x);\nonumber \\ \end{array} &{} \begin{array}{rcl} \nabla \varPhi _q(s)&{}=&{} (q-1)|s|^{q-2};\nonumber \\ \varPhi _2(\lambda )&{}=&{}\lambda ;\nonumber \\ \varPhi _q(x)\cdot x&{}=&{}|x|^q.\nonumber \end{array} \end{array} \end{aligned}$$

Using the above lemma, it is easy to verify the statements presented below.

Lemma 4

When \(u_\alpha \) is given by (8), we have

$$\begin{aligned} \nabla u_\alpha= & {} (-\alpha p{'})u_{\alpha +1}(x)\varPhi _{p{'}}(x);\\ \varPhi _p (\nabla u_\alpha )= & {} \varPhi _p(-\alpha p{'}) u_{(\alpha +1)(p-1)}\cdot x,\ \ \varPhi _p(-\alpha p{'})=- \mathrm{sgn\alpha } (|\alpha |p{'})^{p-1} ;\\ u_\beta \varPhi _p(\nabla u_\alpha )= & {} \varPhi _p(-\alpha p{'})u_{(\alpha +1)(p-1)+\beta }\cdot x;\\ \mathrm{div}(u_\gamma \cdot x)= & {} n\cdot u_{\gamma +1}\left[ 1+\left( 1-\frac{\gamma p{'}}{n}\right) |x|^{p{'}}\right] ;\\ -\varDelta _{p,u_\beta } u_\alpha= & {} n\varPhi _p(\alpha p{'})\cdot u_{(\alpha +1)(p-1)+\beta +1}\left[ 1+ c_{(\alpha ,\beta ,p,n)}|x|^{p{'}}\right] ,\ \mathrm{where}\\ \ \ \ \ c_{(\alpha ,\beta ,p,n)}= & {} 1-\frac{\left( (\alpha +1)(p-1)+\beta \right) p{'}}{n} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this paper

Cite this paper

Kałamajska, A., Skrzypczak, I. (2017). On Certain New Method to Construct Weighted Hardy-Type Inequalities and Its Application to the Sharp Hardy-Poincaré Inequalities. In: Jain, P., Schmeisser, HJ. (eds) Function Spaces and Inequalities. Springer Proceedings in Mathematics & Statistics, vol 206. Springer, Singapore. https://doi.org/10.1007/978-981-10-6119-6_7

Download citation

Publish with us

Policies and ethics