Skip to main content

Image Compression

  • Chapter
  • First Online:
Digital Image Processing
  • 4731 Accesses

Abstract

Image compression is as essential as its processing, since images require large amounts of memory and, in their original form, it is difficult to transmit and store them. There are two types of image compression: (i) lossless and (ii) lossy. In lossless compression, the original image can be reconstructed exactly from its compressed version. Lossy compression is based on the fact that the magnitude of the frequency components of typical images decreases with increasing frequency. Emphasis is given to using the DWT, since it is a part of the current image compression standard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sundararajan .

Exercises

Exercises

13.1  Given a \(4\times 4\) image, compute the entropy. Find the Huffman code representation of its unique symbols and the bpp.

* (i)

$$ \left[ \begin{array}{rrrr} 144&{} 113&{} 121&{} 107\\ 144&{} 110&{} 121&{} 103\\ 129&{} 109&{} 120&{} 99\\ 116&{} 108&{} 121&{} 103 \end{array}\right] $$

(ii)

$$ \left[ \begin{array}{rrrr} 209&{} 190&{} 179&{} 179\\ 143&{} 136&{} 132&{} 129\\ 131&{} 130&{} 125&{} 117\\ 113&{} 109&{} 118&{} 143 \end{array}\right] $$

(iii)

$$ \left[ \begin{array}{rrrr} 85&{} 91&{} 91&{} 89\\ 79&{} 83&{} 88&{} 87\\ 90&{} 86&{} 86&{} 90\\ 97&{} 93&{} 88&{} 90 \end{array}\right] $$

13.2  Given a \(4\times 4\) image, decompose it into 4 bit planes and represent each of them by run-length coding. Use both the methods.

(i)

$$ \left[ \begin{array}{rrrr} 6&{} 6&{} 15&{} 14\\ 8&{} 8&{} 4&{} 11\\ 9&{} 9&{} 10&{} 12\\ 10&{} 14&{} 13&{} 1 \end{array}\right] $$

* (ii)

$$ \left[ \begin{array}{rrrr} 11&{} 9 &{} 15 &{} 14\\ 13&{} 7&{} 6&{} 7\\ 6&{} 5&{} 5&{} 5\\ 11&{} 4&{} 4&{} 2 \end{array}\right] $$

(iii)

$$ \left[ \begin{array}{rrrr} 13&{} 9&{} 12&{} 10\\ 13 &{} 13&{} 12&{} 9\\ 13&{} 13&{} 12&{} 9\\ 11&{} 13&{} 12 &{} 10 \end{array}\right] $$

13.3  Given a \(4\times 4\) image, find the linear predictive code. Find the entropies of the input and the code.

(i)

$$ \left[ \begin{array}{rrrr} 15&{} 16&{} 20&{} 20\\ 15&{} 15&{} 19&{} 22\\ 15&{} 16&{} 19&{} 20\\ 15&{} 17&{} 19&{} 16 \end{array}\right] $$

(ii)

$$ \left[ \begin{array}{rrrr} 158&{} 157&{} 154&{} 149\\ 168&{} 153&{} 157&{} 149\\ 170&{} 152&{} 157&{} 149\\ 166&{} 153&{} 157&{} 142 \end{array}\right] $$

* (iii)

$$ \left[ \begin{array}{rrrr} 106&{} 103&{} 98&{} 99\\ 121&{} 122&{} 108&{} 93\\ 102&{} 102&{} 100&{} 99\\ 100&{} 101&{} 102&{} 96 \end{array}\right] $$

13.4  Given a 1-digit sequence, find its arithmetic code. Reconstruct the sequence from the code. Let there be three symbols \(\{1,2,3\}\) and number of occurrences of the symbols, respectively, be \(\{2,1,1\}\) in a sequence of length 4.

(i) \(\{1\}\)

(ii) \(\{2\}\)

13.5  Given a sequence x(n), find the 1-level DWT coefficients using the 9 / 7 filter. Assume whole-point symmetry at the borders. Verify that the reconstructed signal is the same as the input.

* (i)

$$ \{1, -4, 1, 3, 3, 1, 3, 0, 2, 2, 3, 1, -5, 2, 0, 3 \}$$

(ii)

$$ \{1, 2, 1, 1, 3 , 4 , 0, 3 , 1, 3 , 2, -1, 0 , 1, 4, -3 \}$$

(iii)

$$ \{ -2, 0, 2, -2, 1, 0, 3, 1, -2, 1, 2, -1, 2, 0, -2, 1 \}$$

13.6  Given a \(4\times 4\) image, find its compressed version using the 1-level Haar DWT and the Huffman code. What is the bpp and SNR.

(i)

$$ \left[ \begin{array}{rrrr} 170&{} 168&{} 164&{} 173\\ 179&{} 167&{} 167&{} 167\\ 184&{} 179&{} 173&{} 166\\ 183&{} 179&{} 184&{} 173 \end{array}\right] $$

* (ii)

$$ \left[ \begin{array}{rrrr} 172&{} 173&{} 170&{} 171\\ 171&{} 176&{} 173&{} 172\\ 174&{} 178&{} 172&{} 170\\ 176&{} 175&{} 171&{} 170 \end{array}\right] $$

(iii)

$$ \left[ \begin{array}{rrrr} 162&{} 163&{} 163&{} 161\\ 162&{} 164&{} 161&{} 161\\ 163&{} 165&{} 164&{} 162\\ 167&{} 161&{} 162&{} 164 \end{array}\right] $$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sundararajan, D. (2017). Image Compression. In: Digital Image Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-6113-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6113-4_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6112-7

  • Online ISBN: 978-981-10-6113-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics