Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Impact of Climate Change on Water Resources

Part of the book series: Springer Climate ((SPCL))

  • 1211 Accesses

Abstract

This chapter provides information about atmospheric activities and impacts of climate change. Causes for climate variability, such as El Niño Southern Oscillation, and its two different phases, La Niña and El Niño for cooling and warming, are discussed. Teleconnections, climate feedback, and forcing mechanisms (radiative and non-radiative, periodic and random, and external and internal) are also parts of the chapter. Direct and indirect effects of aerosols that influence the visibility in the atmosphere are also discussed briefly but critically. Greenhouse gases and consequences of global warming such as variations in rainfall, ice caps and glacier melting, temperature, likelihood increase in frequency of floods and droughts, and acidification due to carbonic acid formation are also explained. In addition, importance of atmospheric chemistry, Palaeo records, monsoon variability, and Holocene is also stressed. Extensive discussion on Intergovernmental Panel on Climate Change (IPCC) scenarios which relate to demographic, economic, technological, and social changes, i.e., Special Report on Emissions Scenarios (SRES) A1, A2, B1, and B2 and Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0, and 8.5 is also made. Impact of climate change on hydrology, water resources, urbanization, and hydrologic extremes is discussed extensively. In addition, climate change impacts on India are also covered in three aspects: What we know, what could happen, and what can be done? The reader is expected to understand various atmospheric processes/activities, impacts of climate change, and organization and utilization of the book by studying this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aerosols (2017). https://en.wikipedia.org/wiki/Aerosol. Accessed 31 Jan 2017

  • Anandhi A, Srinivas VV, Nagesh Kumar D (2013) Impact of climate change on hydrometeorological variables in a river basin in India for IPCC SRES scenarios. In: Rao YS, Zhang TC, Ojha CSP, Gurjar BR, Tyagi RD, Kao CM (eds) Climate change modeling, mitigation, and adaptation. American Society of Civil Engineers, pp 327–356

    Google Scholar 

  • Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  • Atmospheric Chemistry (2017). https://en.wikipedia.org/wiki/Atmospheric_chemistry. Accessed 31 Jan 2017

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126

    Article  Google Scholar 

  • Barnston AG, Livezey RE, Halpert MS (1991) Modulation of Southern Oscillation—Northern hemisphere mid-winter climate relationships by QBO. J Clim 4:203–217

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water: technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva, Switzerland. http://ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf. Accessed 31 Jan 2017

  • Bell GD, Basist AN (1994) Seasonal climate summary: the global climate of December 1992–January 1993: mature ENSO conditions continue in the tropical Pacific, California drought abates. J Clim 7:1581–1605

    Article  Google Scholar 

  • Bell GD, Janowiak JE (1995) Atmospheric circulation associated with the Midwest floods of 1993. Bull Am Met Soc 5:681–695

    Article  Google Scholar 

  • Bell GD, Chelliah M (2006) Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J Clim 19:590–612

    Article  Google Scholar 

  • Berger AL (1978) Long-term variations of caloric insolation resulting from the Earth’s orbital elements. Quatern Res 9(2):139–167

    Article  MathSciNet  Google Scholar 

  • Bergthórsson P, Björnsson H, Dórmundsson O, Gudmundsson B, Helgadóttir A, Jónmundsson JV (1988) The effects of climatic variations on agriculture in Iceland. In: Parry ML, Carter TR, Konijn NT (eds) The impact of climatic climate scenario development variations on agriculture, vol 1, Assessments in cool temperate and cold regions. Kluwer, The Netherlands, pp 381–509

    Google Scholar 

  • Bhatt D, Mall RK (2015) Surface water resources, climate change and simulation modeling. Aquat Procedia 4:730–738

    Article  Google Scholar 

  • Blanford HF (1886) Rainfall of India. Mem India Meteorol Dept 2:217–448

    Google Scholar 

  • Brekke LD, Kiang JE, Olsen JR, Pulwarty RS, Raff DA, Turnipseed DP, Webb RS, White KD (2009) Climate change and water resources management—a federal perspective: U.S. Geological Survey Circular 1331, p 65. http://pubs.usgs.gov/circ/1331/. Accessed 31 Jan 2017

  • Chahine MT (1992) The hydrological cycle and its influence on climate. Nature 359–379

    Google Scholar 

  • Charney JG (1969) The intertropical convergence zone and the Hadley circulation of the atmosphere. In: Proceedings of WMO/IUCG symposium on numerical weather prediction, vol III. Japan Meteorological Agency, pp 73–79

    Google Scholar 

  • Climate Prediction Center (2017). http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml. Accessed 31 Jan 2017

  • Criteria for Selecting Climate Scenarios (2013). http://www.ipcc-data.org/guidelines/pages/scen_selection.html. Accessed 31 Jan 2017

  • Definition of Hydrologic (2017). http://www.thefreedictionary.com/hydrology. Accessed 31 Jan 2017

  • deMenocal P (2001) Cultural responses to climate change during the Late Holocene. Science 292:667–673

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Gadgil S, Abrol YP, Rao PRS (1999) On growth and fluctuation of Indian food grain production. Curr Sci 76(4):56–548

    Google Scholar 

  • Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467

    Article  Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA (2003) Droughts of the Indian summer monsoon: role of clouds over the Indian Ocean. Curr Sci 85(12):1713–1719

    Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian ocean oscillation. Geophys Res Lett 31:L12213

    Article  Google Scholar 

  • Global Change Hydrology Program: Hydroclimatology (2017). http://water.usgs.gov/osw/programs/globalchange.html. Accessed 31 Jan 2017

  • Glossary Relevant to Climate (2017). http://glossary.ametsoc.org/wiki/Main_Page. Accessed 31 Jan 2017

  • Glossary Relevant to RCPs (2017). http://www.ipcc-data.org/guidelines/pages/glossary/glossary_r.html. Accessed 31 Jan 2017

  • Goodess CM, Palutikof JP, Davies TD (1992) The nature and causes of climate change: assessing the long term future. Belhaven Press, London, p 248

    Google Scholar 

  • Gosain AK, Rao S, Arora A (2011) Climate change impact assessment of water resources of India. Curr Sci 101:356–371

    Google Scholar 

  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560

    Article  Google Scholar 

  • Gu H, Yu Z, Wang G, Wang J, Ju Q, Yang C, Fan C (2015) Impact of climate change on hydrological extremes in the Yangtze River Basin, China. Stoch Environ Res Risk Assess 29:693–707

    Article  Google Scholar 

  • Gupta AK, Anderson DM, Pandey DN, Singhvi AK (2006) Adaptation and human migration, and evidence of agriculture coincident with changes in the Indian summer monsoon during the Holocene. Curr Sci 90(8):1082–1090

    Google Scholar 

  • Halley E (1686) An historical account of the trade winds and monsoons observable in the seas between and near the tropics with an attempt to assign a physical cause of the said winds. Philos Trans R Soc Lond 16:153–168

    Google Scholar 

  • Hansen J, Sato M, Lacis A, Ruedy R, Tegen I, Matthews E (1998) Climate forcings in the industrial era. Proc Natl Acad Sci 95:12753–12758

    Article  Google Scholar 

  • Haylock M, Nicholls N (2000) Trends in extreme rainfall indices for an updated high quality data set for Australia, 1910–1998. Int J Climatol 20:1533–1541

    Article  Google Scholar 

  • Holocene (2017). https://en.wikipedia.org/wiki/Holocene. Accessed 31 Jan 2017

  • Houghton JT, Filho MLG, Callander BA, Harris N, Kattenburg A, Maskell K (1996) Climate change 1995: the science of climate change, WGI to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 584

    Google Scholar 

  • India: Climate Change Impacts (2017). http://www.worldbank.org/en/news/feature/2013/06/19/india-climate-change-impacts. Accessed 31 Jan 2017

  • India Environment Portal (2017) Climate change impacts on water resources in India. http://www.indiaenvironmentportal.org.in/files/india-climate-5-water-DEFRA.pdf. Accessed 31 Jan 2017

  • Integrated Assessment Modeling Consortium (2017). http://www.globalchange.umd.edu/iamc/. Accessed 31 Jan 2017

  • IPCC Special Report: Emission Scenarios (2000). https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf. Accessed 31 Jan 2017

  • IPCC (2001) The scientific basis: third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) The physical science basis: fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2008) Special report on managing the risks of extreme events and disasters to advance climate change adaptation. http://www.ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf. Accessed 31 Jan 2017

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582

    Google Scholar 

  • IPCC (2014) The physical science basis: working group 1: contribution to the IPCC fifth assessment report. Cambridge University Press, Cambridge

    Google Scholar 

  • Islam A, Sikka AK (2010) Climate change and water resources in india: impact assessment and adaptation strategies. In: Jha MK (ed) Natural and anthropogenic disasters: vulnerability, preparedness and mitigation. Springer, The Netherlands and Capital Publishing Company, New Delhi, pp 386–412

    Google Scholar 

  • Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37(12):3193–3205

    Article  Google Scholar 

  • Kane RP (1998) ENSO relationship to the rainfall of Sri Lanka. Int J Climatol 18(8):859–872

    Article  Google Scholar 

  • Khain AP, Benmoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: attempt of classification. J Atmos Sci 65:1721–1748

    Article  Google Scholar 

  • Kumar KK, Soman MK, Rupakumar K (1995) Seasonal forecasting of Indian summer monsoon rainfall: a review. Weather 150:449–467

    Article  Google Scholar 

  • Lankao PR (2008) Urban areas and climate change: review of current issues and trends. http://www.ral.ucar.edu/staff/prlankao/GRHS_2011_IssuesPaperfinal.pdf. Accessed 31 Jan 2017

  • Maity R, Nagesh Kumar D (2006) Bayesian dynamic modeling for monthly Indian summer monsoon rainfall using El Niño Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation (EQUINOO). J Geophys Res 111:D07104

    Article  Google Scholar 

  • Maity R, Nagesh Kumar D (2007) Hydroclimatic teleconnection between global sea surface temperature and rainfall over India at subdivisional monthly scale. Hydrol Process 21(14):1802–1813

    Article  Google Scholar 

  • Maity R, Nagesh Kumar D, Nanjundiah RS (2007) Review of hydroclimatic teleconnection between hydrologic variables and large-scale atmospheric circulation indices with Indian perspective. ISH J Hydraul Eng 13(1):77–92

    Article  Google Scholar 

  • Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, Whetton P (2001) Climate scenario development. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D, Maskell K (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 739–768

    Google Scholar 

  • Milly PCD, Bettencourt J, Falkenmark M, Hirsch RM, Kundezewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead—whither water management? Science 319:573–574

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Vuuren DPV, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Raihi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) IPCC special report on emissions scenarios. Cambridge University Press, Cambridge, p 599

    Google Scholar 

  • Nanjundiah RS, Francis PA, Ved M, Gadgil S (2013) Predicting the extremes of Indian summer monsoon rainfall with coupled ocean—atmosphere models. Curr Sci 104(10):1380–1393

    Google Scholar 

  • National Ocean Service (2017). http://oceanservice.noaa.gov/facts/ninonina.html. Accessed 31 Jan 2017

  • Natural Resources Defense Council (2010) Climate change and water resource management: adaptation strategies for protecting people and the environment. https://www.nrdc.org/water/files/waterandclimate.pdf. Accessed 31 Jan 2017

  • Palaeo Records (2017). http://climatica.org.uk/climate-science-information/palaeo-records. Accessed 31 Jan 2017

  • Panigrahy BP, Singh PK, Tiwari AK, Kumar B (2015) Impact of climate change on groundwater resources. Int Res J Environ Sci 4(3):86–92

    Google Scholar 

  • Pant GB, Parthasarathy B (1981) Some aspects of an association between the southern oscillation and Indian summer monsoon. Arch Meteorol Geophys Bioclimatol Ser B 29:245–251

    Article  Google Scholar 

  • Panwar S, Chakrapani GJ (2013) Climate change and its influence on groundwater resources. Curr Sci 105(1):37–46

    Google Scholar 

  • Parthasarathy B, Diaz HF, Eischeid JK (1988) Prediction of all India summer monsoon rainfall with regional and large-scale parameters. J Geophys Res 93(5):5341–5350

    Article  Google Scholar 

  • Philander SG (1985) El Niño and La Niña. J Atmos Sci 42:2652–2662

    Article  Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, London, p 289

    Google Scholar 

  • Ramachandran R (2007) Cloud of mystery: the atmosphere over the Indian Ocean perhaps holds the key to seasonal rainfall, and scientists are just beginning to understand its role. http://www.frontline.in/static/html/fl2421/stories/20071102506009600.htm. Accessed 31 Jan 2017

  • Rao GN (1997) Interannual variations of monsoon rainfall in Godavari river basin-connections with the southern oscillation. J Clim 11:768–771

    Article  Google Scholar 

  • Refsgaard JC, Sonnenborg TO, Butts MB, Christensen JH, Christensen S, Drews M, Jensen KH, Jørgensen F, Jørgensen LF, Larsen MAD, Rasmussen SH, Seaby LP, Seifert D, Vilhelmsen TN (2016) Climate change impacts on groundwater hydrology—where are the main uncertainties and can they be reduced? Hydrol Sci J. doi:10.1080/02626667.2015.1131899

    Google Scholar 

  • Representative Concentration Pathways, Part 1: An Introduction to Scenarios (2017). http://www.skepticalscience.com/rcp.php?t=1. Accessed 31 Jan 2017

  • Representative Concentration Pathways, Part 2: Creating New Scenarios (2017). http://www.skepticalscience.com/rcp.php?t=2. Accessed 31 Jan 2017

  • Representative Concentration Pathways, Part 3: RCP Technical Summary (2017). http://www.skepticalscience.com/rcp.php?t=3. Accessed 31 Jan 2017

  • Representative Concentration Pathways Description (2017). http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html. Accessed 31 Jan 2017

  • Saraswat R, Naik DK, Nigam R, Gaur AS (2016) Timing, cause and consequences of mid-Holocene climate transition in the Arabian Sea. Quatern Res 86(2):162–169

    Article  Google Scholar 

  • Satheesh SK, Srinivasan J (2002) Enhanced aerosol loading over Arabian Sea during pre-monsoon season: natural or anthropogenic? Geophys Res Lett doi:10.1029/2002GL015687

  • Satheesh SK, Lubin D (2003) Short wave versus long wave radiative forcing due to aerosol over Indian Ocean: role of sea-surface winds. Geophys Res Lett 30(13): Art no 1695

    Google Scholar 

  • Satheesh SK, Krishna Moorthy K (2005) Radiative effects of natural aerosols: a review. Atmos Environ 39(11):2089–2110

    Article  Google Scholar 

  • Satheesh SK (2006) Pollution, aerosols, and the climate, leader page articles. The Hindu, Published on 04 Sept 2006

    Google Scholar 

  • Scenario Process for AR5 (2017). http://sedac.ipcc-data.org/ddc/ar5_scenario_process/scenario_overview.html. Accessed 31 Jan 2017

  • Sedlacek A, Lee J (2007) Photothermal interferometric aerosol absorption spectrometry. Aerosol Sci Technol 41(12):1089–1101

    Article  Google Scholar 

  • Shah T (2009) Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ Res Lett 4(3):13

    Article  Google Scholar 

  • Shelton ML (2009) Hydroclimatology: perspectives and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Shine KP, Derwent RG, Wuebbles DJ, Morcette JJ (1990) Radiative forcing of climate. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change: the IPCC scientific assessment, intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 41–68

    Google Scholar 

  • Shukla J, Paolino DA (1983) The southern oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon Weather Rev 111:1830–1837

    Article  Google Scholar 

  • Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14:1863–1880

    Article  Google Scholar 

  • Sikka DR (1980) Some aspects of the large-scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc Indian Acad Sci—Earth Planet Sci 89(2):179–195

    Google Scholar 

  • Singhvi AK, Kale VS (2009) Paleoclimate studies in India: last iceage to the present. Indian National Science Academy ICRPWCRP-SCOPE report series 4, New Delhi

    Google Scholar 

  • Singhvi AK, Krishnan R (2014) Past and the present climate of India. In: Kale VS (ed) Landscapes and landforms of India, world geomorphological landscapes. Springer, pp 15–23

    Google Scholar 

  • Smith JB, Hulme M (1998) Climate change scenarios in Chapter 3. In: Feenstra J, Burton I, Smith JB, Tol RSJ (eds) Handbook on methods of climate change impacts assessment and adaptation strategies, October, UNEP/IES, Amsterdam

    Google Scholar 

  • SRES Emissions Scenarios (2017a). http://sedac.ipcc-data.org/ddc/sres/index.html. Accessed 31 Jan 2017

  • SRES Emissions Scenarios (2017b). http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=3. Accessed 31 Jan 2017

  • Srivastava P, Singh IB, Sharma S, Shukla UK, Singhvi AK (2003) Late Pleistocene–Holocene hydrologic changes in the interfluve areas of the central Ganga Plain, India. Geomorphology 54279–54292

    Google Scholar 

  • Taye MT, Willems P, Block P (2015) Implications of climate change on hydrological extremes in the Blue Nile basin: a review. J Hydrol: Reg Stud 4:280–293

    Google Scholar 

  • Tohver IM, Hamlet AF, Lee SY (2014) Impacts of 21st-century climate change on hydrologic extremes in the Pacific Northwest Region of North America. J Am Water Resour Assoc 50(6):1461–1476

    Article  Google Scholar 

  • Treidel H, Martin-Bordes JL, Gurdak J (eds) (2012) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. CRC Press/Balkema

    Google Scholar 

  • Umbgrove JHF (1947) The pulse of the Earth. Springer, Netherlands, p 385

    Book  Google Scholar 

  • Vuuren DPV, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Wang C, Deser C, Yu J, DiNezio P, Clement A (2012) El Niño and Southern Oscillation (ENSO): a review. http://www.aoml.noaa.gov/phod/docs/ENSO_Revision.pdf. Accessed 31 Jan 2017

  • Wateraid (2017) Climate Change and Water Resources. http://www.wateraid.org/. Accessed 31 Jan 2017

  • Wayne G (2013) The beginner’s guide to representative concentration pathways. Skeptical Sci

    Google Scholar 

  • Webster PJ (1987) The elementary monsoon. In: Fein JS, Stephens PL (eds) Monsoons. Wiley, New York, pp 3–32

    Google Scholar 

Suggested Further Reading

  • Bai X (2003) The process and mechanism of urban environmental change: an evolutionary view. Int J Environ Pollut 19(5):528–541

    Article  Google Scholar 

  • Betsill MM, Bulkeley H (2007) Looking back and thinking ahead: a decade of cities and climate change research. Local Environ 12(5):447–456

    Article  Google Scholar 

  • Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in central and South Asia. J Geophys Res 111:D16105

    Article  Google Scholar 

  • Knutti R, Sedlacek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373

    Article  Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17401

    Article  Google Scholar 

  • Manton MJ, Della-Marta PM, Haylock MR, Hennessy KJ, Nicholls N, Chambers LE, Collins DA, Daw G, Finet A, Gunawan D, Inape K, Isobe H, Kestin TS, Lefale P, Leyu CH, Lwin T, Maitrepierre L, Ouprasitwong N, Page CM, Pahalad J, Plummer N, Salinger MJ, Suppiah R, Tran VJ, Trewin B, Tibig I, Yee D (2001) Trend in extreme daily rainfall and temperature in Southeast Asia and South Pacific: 1961–1998. Int J Climatol 21:269–284

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low-elevation coastal zones. Environ Urban 19(1):17–37

    Article  Google Scholar 

  • Muller M (2007) Adapting to climate change: water management for urban resilience. Environ Urban 9(1):99–113

    Article  Google Scholar 

  • Preethi B, Kripalani RH (2010) Indian summer monsoon rainfall variability in global coupled ocean-atmospheric models. Clim Dyn 35:1521–1539

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between the eastern Pacific sea surface temperature and rainfall over India and Sri Lanka. Mon Weather Rev 111:84–354

    Article  Google Scholar 

  • Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Process 13:1277–1287

    Article  Google Scholar 

  • WWAP (2009) The United Nations World Water Development Report 3: water in a changing world, World water assessment programme. Paris, UNESCO Publishing, UNESCO, p 349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komaragiri Srinivasa Raju .

1.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 863 kb)

Supplementary material 2 (PPT 2738 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasa Raju, K., Nagesh Kumar, D. (2018). Introduction. In: Impact of Climate Change on Water Resources . Springer Climate. Springer, Singapore. https://doi.org/10.1007/978-981-10-6110-3_1

Download citation

Publish with us

Policies and ethics