Prevalence of Malaria and Hb E in Northeast India: An Econo-genomics Study

  • R. Sarada
  • B. K. Misra
  • T. VasuluEmail author
Part of the India Studies in Business and Economics book series (ISBE)


Malaria and Hb E are endemic in some regions of northeast India and the rate of prevalence varies among populations and between regions. Of the total burden, malaria and its mortality in northeastern states of India contribute 10% of malaria incidence and 20% of deaths and the frequency of Hb E varies from 10% to more than 50%. Apart from other reasons, genetic causes play a major role in the manifestation of the disease. Both are a major public health hazard issues with implications for economic, social and administrative problems to the state and the nation. To be able to minimise the economic burden of these health problems, it is necessary to understand the genetic basis of these traits. Genetic basis of diseases and health economics is an emerging area discussed under the purview of ‘econo-genomics’. Perhaps northeast region is one of the best examples that give us scope to get into the study of econo-genomics. Apart from health and hygiene, the variable distribution of malaria could be due to differential susceptibility attributed primarily to genetic causes. Some specific regional populations are more susceptible to malaria where some regional populations show resistance to malaria. These are little investigated among the regional populations and in other parts of India. It is known that the genetic traits like Hb E and G6PD deficiency are involved in the protection against malarial infection that might explain the differential prevalence of malaria in the region. Based on field studies in Meghalaya we investigated the health and genetic implications of malaria and Hb E and its social, health and other factors that manifest at the family level. Depending on the genetic status of the Hb E trait, the health (incidence of malaria) and other parameters (economic and others) vary. It is emphasised that ‘econo-genomics’ studies are important for national-level health economic planning and management of disease like malaria and Hb E.


Malaria Hb E Differential susceptibility Genetic causes Econo-genomics Geno-economics 


  1. Aggarwal, A., Saluja, S., Bhasin, S., Sharma, M., Gupta, D. K., Gupta, B., et al. (2011). Hb E variants—Retrospective analysis in a tertiary care centre. Journal Indian Academy of Clinical Medicine, 12(4), 263–265.Google Scholar
  2. Badens, C., Mattei, M. G., Imbert, A. M., Lapouméroulie, C., Martini, N., Michel, G., et al. (2002). A Novel mechanism for thalassaemia intermedia. The Lancet, 359, 132–133.CrossRefGoogle Scholar
  3. Balgir, R. S. (2000). The burden of haemoglobinopathies in India and the challenges ahead. Current Science, 79(11), 1536–1547.Google Scholar
  4. Balgir, R. S. (2014). Is hemoglobin E gene widely spread in the state of Madhya Pradesh in central India? Evidence from five typical families. Page Press Italy, 6(1), 1–7.Google Scholar
  5. Benjamin, D. J., Cesarini, D., Matthijs, J. H. M., van der Loos, M. J., Dawes, C. T., Koellinger, P. D., et al. (2012). The genetic architecture of economic and political preferences. Proceedings of National Academy of Sciences (PNAS), 109, 8026–8031.Google Scholar
  6. Benjamin, D. J., Chabris, F. C., Gleaser, E. L., Gudnason, V., Harris, T. B., Laibson, D. I., et al. (2007). Genoeconomics (Chapter 15). In M. Weinstein, J. W. Vaupel, & K. W. Wachter (Eds.), Biosocial surveys (428 pp). National Research Council. ISBN: 0-309-10868-3.
  7. Bhasin, M. K., & Walter, H. (2001). Genetics of castes and tribes of India. Delhi, India: KRE publishers.Google Scholar
  8. Bhaskar, D., & Sengupta, R. (2013). Hemoglobin E genotype and fertility—A study among the Ahoms of Upper Assam, India. International Journal of Research In Medical Sciences, 1(4), 378.CrossRefGoogle Scholar
  9. Brittles, H. (2002). Endogamy, consanguinity and community genetics. Indian Academy of Sciences, Journal of Genetics, 81(3), 91–97.Google Scholar
  10. Chattopadhyay, K., Biswas, R., Bhattacherjee, S., & Bandyopadhyay, R. (2012). An epidemiological study on the clinico-hematological profile of patients with congenital haemolytic anemia in a tertiary care hospital of Kolkata. Indian Journal of Preventive and Social Medicine, 43(4), 372–377.Google Scholar
  11. Chotivanich, K., Udomsangpetch, R., Pattanapanyasat, K., Chierakul, W., Simpson, J., Looareesuwan, S., et al. (2010). Hemoglobin E: A balanced polymorphism protective against high parasitemias and thus severe P. falciparum malaria. Blood, 100, 1172–1176.Google Scholar
  12. Christopher Thomas, S., Claire, Dikson F., & Weiss, Matchell J. (2013). Hemoglobin variants: Biochemical properties and clinical correlates. Cold Spring Harbour Perspectives in Medicine, 3(3), 1–8.Google Scholar
  13. Das, B. M. (1993). Physical anthropology of the tribes of northeast. Kamala Raj Enterprises, Ed IV: 183.Google Scholar
  14. Das, B. M., Chakravartti, M. R., Delbruk, H., & Flatz, G. (1971). High prevalence of Haemoglobin E, in two populations of Assam. Human Genetics, 12, 264–266.Google Scholar
  15. Das, S. K., & Talukdar, G. (2001). A review on the origin and spread of deleterious mutations of the β-globin genes in Indian populations. HOMO-Journal of Comparative Human Biology, 52(2), 93–109.CrossRefGoogle Scholar
  16. Dash, A. P., Valecha, N., Anvikar, A. R., & Kumar, A. (2008). Malaria in India: Challenges and opportunities. Journal of Bioscience, 33, 583–592.CrossRefGoogle Scholar
  17. Deb, T., Deb, D., Kar, G., Pujar, R., & Bhattacherjee, R. K. (2015). Clinicohaematological specturn of haemoglobinopathies, a hospital based study. Journal of Evolution of Medical and Dental Sciences, 4(86), 14934–14941.CrossRefGoogle Scholar
  18. Deka, R., Reddy, A. P., Mukherjee, B. N., Das, B. M., Banerjee, S., Roy, M., et al. (1988). Haemoglobin distribution in ten endogamous population groups of Assam, India. Human Heredity, 38(5), 261–266.CrossRefGoogle Scholar
  19. Detels, R., Guilford, M., Abdul Karim, Q., & Tan, C. C. (2015). Global public health (6th ed.). China: Oxford University Press.Google Scholar
  20. Dhiman, S., Gopalakrishnan, R., Goswami, D., Rabha, B., Baruah, I., & Singh, L. (2011). Malaria incidence among paramilitary personnel in an endemic area of Tripura. Indian Journal of Medical Research, 133, 665–669. (PMID: 21727668).Google Scholar
  21. Dutta, P., Khan, S. A., Khan, A. M., Sharma, C. K., & Mahanta, J. (2010). Survey of mosquito species in Nagaland, a hilly state of north east region of India. Journal of Environmental Biology, 31(5), 781–785.Google Scholar
  22. Fredrickson, B. L., Grewenb, K. M., Coffeya, K. A., Algoea, S. B., Firestinea, A. M., Arevaloc, J. M., et al. (2013). A functional genomics perspective on human well-being. Proceedings of National American Academy of Sciences (PNAS), 110, 13684–13689.Google Scholar
  23. Fucharoen, S., & Winichagoon, P. (2011). Haemoglobinopathies in Southeast Asia. The Indian Journal of Medical Research, 134, 498–506 (PMID: 22089614).Google Scholar
  24. Gaikwad, S., Ashma, R., Kumar, N., Trivedi, R., & Kashayap, K. (2005). Host microsatellite alleles in malaria predisposition. Malaria Journal, 4, 50. doi: 10.1136/11475-2875-4-50.CrossRefGoogle Scholar
  25. Galanello, R., & Origa, R. (2010). Beta-Thalassemia. Bio-Med-Central Ltd. Orphanet Journal of Rare Diseases, 5(11), 1–15.Google Scholar
  26. Garo’s cultural and basic lifestyle. Retrieved From on 01.07.2014.
  27. Gaur, A. S., & Gaur, S. S. (2009). Statistical methods for practice and research—A guide to data analysis using SPSS (2nd ed.). Thousand Okas California: Sage. ISBN: 9788132101000.Google Scholar
  28. Haldane, J. B. S. (1949). The rate of mutation of human genes. Hereditas, 35, 267–273.CrossRefGoogle Scholar
  29. Kohne, E. (2011). Hemoglobinopathies: Clinical manifestations, diagnosis, and treatment. Deutscher Arzteblatt International, 108, 532.Google Scholar
  30. Kwaitkoski, D. P. (2005). How malaria has affected the human genome and what genetics can teach us about malaria? American Journal of Human Genetics, 77, 171–193.Google Scholar
  31. Lithanatudom, P., Wipasa, J., Inti, P., Chawansuntati, K., Svasti, S., Fucharoen, S., et al. (2016). Haemoglobin E prevalence among ethnic groups residing in malarial-endemic areas of northern Thailan and its lack of association with Plasmodium falcipaurm invasion in vitro. PLoS ONE, 11(1), e0148079. doi: 10.1371/journalpone.0148079.
  32. Luomi, J., Ohashi, J., Naka, I., Patarapotikul, J., Hananantachal, H., Looareeswan, S., et al. (2002). Polymorphism of CD36 in Thai malaria patients. Southeast Asian Journal of Tropical Medicine and Public Health, 33(Supp. 3), 1–4.Google Scholar
  33. Mahajan, R. C., Narian, K., & Mahanta, J. (2011). Anemia & expression levels of CD35, CD55 & CD59 on red blood cells in Plasmodium falciparum malaria patients from India. Indian Journal of Medical Research, 132, 662–664 (PMID: 21727667).Google Scholar
  34. Moiz, B., Hashmini Mashhooda, R., Nasir, A., Rashid, A., & Moatter, T. (2012). Hemoglobin E syndromes in Pakistan population. Bio-Med-Central Haematology, 12(3), 1–6.Google Scholar
  35. Mu, J., Myers, R. A., Jiang, H., Liu. S., Ricklefs, S., Waisberg, M., et al. (2010). Plasmodium falciparum genome-wide scans for positive selection, recombination hotspots and resistance to anti-malarial drugs. Nature Genetics, 42(3), 268–271.Google Scholar
  36. Muller, I., Pioto, N., Julius, K., Rex, I., Tony, T., Steven, B., et al. (2005). Endemic malaria in the highlands of Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 72(5), 554–560.Google Scholar
  37. Olivieri, N. F., Muraca, G. M., O’Donnell, A., Premawardhena, A., Fisher, C., & Weatherall, D. J. (2008). Studies in haemoglobin E beta-thalassaemia. Blackwell Publishing Ltd., British Journal of Hematology, 141, 388–397.Google Scholar
  38. OlivierNancy, F., Pakbaz, Z., & Vichinsky, E. (2011). Hb E/beta-thalassemia: A common & clinically diverse disorder. Journal of Medical Research, 134(4), 522–531.Google Scholar
  39. Pallant, J. (2011). SPSS survival manual—A step guide to data analysis using SPSS (4th ed.). Australia: Allen and Unwin. ISBN: 9781742373928.Google Scholar
  40. Persons, D. A. (1998). Hematopoietic stem cell gene transfer for the treatment of hemoglobin disorders. American society of haematology, 2009(1), 690–697.Google Scholar
  41. Rees, D. C., Porter, J. B., Clegg, J. B., & Weatherall, D. J. (2010). Why are haemoglobin F levels increased in HbE/β-thalassemia? Blood, 94, 3199–3204.Google Scholar
  42. Rietveld, C. A., Cesarini, D., Benjamin, D. J., Koellinger, P. D., De Neve, J. E., Tiemeier, H., et al. (2013). Molecular genetics and subjective well-being. Proceedings of National Academy of Sciences (PNAS), 110, 9692–9697.Google Scholar
  43. Saleh-Gohari, N., Khademi Bami, M., Nikbakh, R., & Karimi-Maleh, N. (2015). Effects of α-thalassemia mutations on the haematological parameters of β-thalasemia carriers. Journal of Clinical Pathology (Online First). doi: 10.1136/jclinpath-2014-202825.
  44. Sanchaisuriya, K., Fuchareon, S., Ratanasiri, T., Sanchaisuriya, P., Fuchareon, G., Dietz, E., et al. (2007). Effect of the maternal β/E-globin gene on haematological responses to iron supplementation during pregnancy. The American Journal of Clinical Nutrition, 85(2), 474–479.Google Scholar
  45. Sarkar, S., Biswas, N. K., Dey, B., Mukhopadhyay, D., & Majumder, P. P. (2010). A large systematic molecular-genetic study of G6PD in Indian populations indicates a new non-synonymous variant and supports recent positive selection. Infection, Genetics and. Evolution, 10(8), 1228–1236.Google Scholar
  46. Sharma, S. K., & Mahanta, J. (2009). Prevalence of haemoglobin variants in malaria endemic in northeast India. Journal of Biological Sciences, 9(3), 288–291.CrossRefGoogle Scholar
  47. Sharma, V., & Saxena, R. (2009). Effect of α-gene numbers on phenotype of HbE/β thalassemia patients, Springer, Annals of Haematology, 88, 1035–1036. Google Scholar
  48. Sherva, R., Sripichai, O., Abel, K., Ma Q., Whitacre J., Angkachatchai V., et al. (2010). Genetic modifiers of Hb E/β 0 thalassemia identified by two stage genome—Wide association study. BMC Medical Genetics, 11, 51.Google Scholar
  49. Shiv Lal, G., Sonal, S., & Phukan, P. K. (1998). Status of malaria in India. Journal of Indian Academy of Clinical Medicine, 5(1), 19–23.Google Scholar
  50. Singh, M. R., Choudhury, B., & Singh, T. S. (2010). Haemoglobin E distribution in four endogamous population of Manipur (India), Moment Publication. Eurasian Journal of Anthropology, 1(2), 109–117.Google Scholar
  51. Taylor, S. M., Parobek, C. M., & Fairhurst, R. M. (2012). Haemoglobinopathies and the clinical epidemioilogy of malaria: A systematic review and meta-analysis. The Lancet Infectious Diseases, 12, 457–468.CrossRefGoogle Scholar
  52. Teeuw, M. E., Loukili, G., Bartels, E. A., Ten Kate, L. P., Cornel, M. C., & Henneman, L. (2013). Consanguineous marriage and reproductive risk: Attitudes and understanding of ethnic groups practicing consanguinity in western society. European Journal of Human Genetics, 22, 452–457.CrossRefGoogle Scholar
  53. Trachtenberg, F., Foote, D., Martin, M., Carson, S., Coates, T., Beams, O., et al. (2010). Pain as an emergent issue in thalassemia. American society of hematology, 85(5), 367–370.Google Scholar
  54. Vichinsky, E. (2007). Haemoglobin E syndromes. American Society of Hematology, 2007, 79–83.CrossRefGoogle Scholar
  55. Wajcman, H., & Moradkhani, K. (2011). Abnormal hemoglobins: Detection and characterization. Indian Journal of Medical Research, 1(134), 538–546.Google Scholar
  56. Wajcman, H., Prehu, C., Bardakdjian-Michau, J., Prome, D., Riou, J., Godart, C., et al. (2001). Abnormal hemoglobin: Laboratory methods. Hemoglobin. Public Medicine, 25, 169–181.Google Scholar
  57. Weatherall, D. (2011). The inherited disorders of haemoglobin: An increasingly neglected global health burden. Indian Journal of Medical Research, 134, 493–497 (PMID: 22089613).Google Scholar
  58. Weatherall, D. J., Allen, A., Fisher, C., Premawardhena, A., Peto, T., Allen, S., et al. (2010). Adaptation to anemia in hemoglobin E-β Thalassemia. Blood, 116, 5368–5370.CrossRefGoogle Scholar
  59. Weatherall, D. J., & Clegg, J. B. (2001). Inherited haemoglobin disorders: An increasing global health problem. Bulletin of World Health Organisation, 79, 704–712.Google Scholar
  60. W.H.O. (2001). Severe falciparum malaria. Transactions of Royal Society of Tropical Medicine and Hygine, 94, S1/1–S/90.Google Scholar
  61. Zarin Khattak, A., Sohail Taj, A., Ali Shah, S. M., & Farooq Khattak, M. (2013). Clinical and haematological presentations of Hb E disorders from northern Pakistan. Journal of Medical Sciences, 21(3), 134–136.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.RDAPNorth-Eastern Hill UniversityTura CampusIndia
  2. 2.BAU, Indian Statistical InstituteKolkataIndia

Personalised recommendations