Skip to main content

Cytological Analyses by Advanced Electron Microscopy

  • Chapter
  • First Online:
Cyanidioschyzon merolae

Abstract

Recently several microscopy techniques have revealed the dynamics and structure of intracellular material such as organelles and supramolecular proteins for a better understanding of the fundamental properties of a cell. Electron microscopy provides information on extremely small biological specimens, providing images of several target molecules and organelles, including mitochondria and plastids, and their surrounding intracellular environments. Technical development using several advanced electron microscopes has been advanced to obtain 3D structural modeling. Among them, cryo-TEM and tomography techniques are useful for visualization of fine structures, but the observation area is limited. Conversely, “FIB-SEM” theoretically is not affected by the thickness of the sample, and FIB-SEM and reconstruction are effective for 3D structural modeling of C. merolae cells (2–5 microns) during cell division at the whole cell level. Another technique, UHVEM tomography, visualizes a detailed 3D structure of the light-harvesting complex on the surface of the thylakoid membrane in the plastid and the micro-compartments (cristae) in mitochondria. Furthermore, fine whole cell 3D structural model using cryo-STEM tomography, which is obtained under physical fixation and without staining, instead of chemical fixation, is compared with the models of FIB-SEM and 3D reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

3D:

Three-dimensional

ATUM-SEM:

Automated tape-collecting ultramicrotome

BSE:

Backscattered electron

CMOS:

Complementary metal oxide semiconductor

EM:

Electron microscopy

FIB-SEM:

Focused ion beam SEM

HAADF:

High-angle annular dark field

HPF:

High-pressure freezing

LM:

Light microscopy

SBF-SEM:

Serial block-face scanning electron microscopy

SBF-SEM:

Serial block-face SEM

SEM:

Scanning electron microscopy

STEM:

Scanning transmission electron microscopy

TEM:

Transmission electron microscopy

UHVEM:

Ultra-high-voltage electron microscopy

References

  • Asano S, Engel BD, Baumeister W (2016) Situ Cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428:332–343. https://doi.org/10.1016/j.jmb.2015.09.030. Review.

    Article  CAS  PubMed  Google Scholar 

  • Dahl R, Staehelin LA (1989) High-pressure freezing for the preservation of biological structure: theory and practice. J Electron Microsc Tech 13:165–174

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubochet J, Booy FP, Freeman R, Jones RF, Walter CA (1981) Low temperature electron microscopy. Annu Rev Biophys Bioeng 10:133–149. https://doi.org/10.1146/annurev.bb.10.060181.001025

    Article  CAS  PubMed  Google Scholar 

  • Dunn DN, Hull R (1999) Reconstruction of three-dimensional chemistry and geometry using focused ion beam microscopy. Appl Phys Lett 75:3414–3416

    Article  CAS  Google Scholar 

  • Fijita H (1986) Ultra-high voltage electron microscopy: past, present and future. EM Tech 3:243–304

    Google Scholar 

  • Giannuzzi LA, Prenitzer BI, Drown–MacDonald JL, Shofner TL, Brown SR, Irwin RB, Stevie FA (1999) Electron microscopy sample preparation for the biological and physical sciences using focused ion beams. J Process Anal Chem 4:162–167

    Google Scholar 

  • Hampton CM, Strauss JD, Ke Z, Dillard RS, Hammonds JE, Alonas E, Desai TM, Marin M, Storms RE, Leon F, Melikyan GB, Santangelo PJ, Spearman PW, Wright ER (2017) Correlated fluorescence microscopy and cryo-electron tomography of virus-infected or transfected mammalian cells. Nat Protoc 12:150–167

    Article  CAS  PubMed  Google Scholar 

  • Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DGC, Lichtman JW (2014) Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front Neural Circuits 27:68. https://doi.org/10.3389/fncir.2014.00068. eCollection

    Google Scholar 

  • Ichimura K, Miyazaki N, Sadayama S, Murata K, Koike M, Nakamura K, Ohta K, Sakai T (2015) Three-dimensional architecture of podocytes revealed by block-face scanning electron microscopy. Sci Rep 5:8993. https://doi.org/10.1038/srep08993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imoto Y, Fujiwara T, Yoshida Y, Kuroiwa H, Maruyama S, Kuroiwa T (2010) Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74. https://doi.org/10.1007/s00709-010-0107-y

    Article  PubMed  Google Scholar 

  • Itoh R, Takano H, Ohta N, Miyagishima S, Kuroiwa H, Kuroiwa T (1999) Two ftsH-family genes encoded in the nuclear and chloroplast genomes of the primitive red alga Cyanidioschyzon merolae. Plant Mol Biol 41:321–337

    Article  CAS  PubMed  Google Scholar 

  • Iwane AH, Ohta K (2015) Three-dimensional microstructural visualization of mitosis using Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) and 3Mv Ultra-High Voltage Electron Microscope (UHVEM) tomography with nanoscale resolution at whole cell level. Biophys J 108. 618p

    Google Scholar 

  • Iwane AH, Ohta K (2016) 3D microstructural visualization of the simplest of eukaryotic cell (Cyanidioschyzon Merolae) during mitosis process using several new microscopic techniques. Biophys J 110. 155p

    Google Scholar 

  • Klotz A, Georg J, Bucinska L, Watanabe S, Reimann V, Januszewski W, Sobotka R, Jendrossek D, Hess WR, Forchhammer K (2016) Awakening of a dormant Cyanobacterium from nitrogen Chlorosis reveals a genetically determined program. Cell 26:2862–2872

    CAS  Google Scholar 

  • Knott G, Marchman H, Wall D, Lich B (2008) Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J Neurosci 28:2959–2964

    Article  CAS  PubMed  Google Scholar 

  • Kuijper M, van Hoften G, Janssen B, Geurink R, De Carlo S, Vos M, van Duinen G, van Haeringen B, Storms M (2015) FEI's direct electron detector developments: embarking on a revolution in cryo-TEM. J Struct Biol 192:179–187

    Article  PubMed  Google Scholar 

  • Kunimoto K, Yamazaki Y, Nishida T, Shinohara K, Ishikawa H, Hasegawa T, Okanoue T, Hamada H, Noda T, Tamura A, Tsukita S, Tsukita S (2012) Coordinated ciliary beating requires Odf2-Mediated polarization of basal bodies via basal feet. Cell 148:189–200. https://doi.org/10.1016/j.cell.2011.10.052

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa T, Nishida K, Yoshida Y, Fujiwara T, Mori T, Kuroiwa H, Misumi O (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochem Biophys Acta 1763(5–6):510–521

    Article  CAS  PubMed  Google Scholar 

  • Leunissen JLM, Yi H (2009) Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy. J Microsc 235:25–35

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ghosh S, Rouns TN, Weiland H, Richimond O, Hunt W (1998) Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs. Mater Charact 41:81–95

    Article  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–757

    Google Scholar 

  • Maunsbach AB (1966) The influence of different fixatives and fixation methods on the ultrastructure of rat kidney proximal tubule cells. I. Comparison of different perfusion fixation methods and of glutaraldehyde, formaldehyde and osmium tetroxide fixatives. J Ultrastruct Res 15:242–282

    Article  CAS  PubMed  Google Scholar 

  • Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998) Orderly formation of the double ring structures for plastid and mitochondrial division in the unicellular red alga Cyanidioschyzon merolae. Planta 206:551–560

    Google Scholar 

  • Miyagishima S, Itoh R, Toda K, Kuroiwa H, Nishimura M, Kuroiwa T (1999) Microbody proliferation and segregation cycle in the single-microbody alga Cyanidioschyzon merolae. Planta 208:326–336

    Article  CAS  Google Scholar 

  • Miyagishima S, Kuroiwa H, Kuroiwa T (2001) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212:517–528

    Article  CAS  PubMed  Google Scholar 

  • Miyagishima S, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moor H, Riehle U (1968) Snap freezing under high pressure: a new fixation technique for freeze-etching. Proc 4th Eur Reg Conf Electron Microsc Rome 2:33–34

    Google Scholar 

  • Nishida K, Takahara M, Miyagishima S, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. PNAS 100:2146–2151. https://doi.org/10.1073/pnas.0436886100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta K, Sadayama S, Togo A, Higashi R, Tanoue R, Nakamura K (2012) Beam deceleration for block-face scanning electron microscopy of embedded biological tissue. Micron 43:612–620

    Article  CAS  PubMed  Google Scholar 

  • Peddie CJ, Collinson LM (2014) Exploring the third dimension: volume electron microscopy comes of age. Micron 61:9–19

    Article  PubMed  Google Scholar 

  • Pinali C, Kitmitto A (2014) Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol 76:1–11. https://doi.org/10.1016/j.yjmcc

    Article  CAS  PubMed  Google Scholar 

  • Schalek R, Kasthuri N, Hayworth K, Berger D, Tapia JC, Morgan JL, Turaga SC, Fagerholm E, Seung HS, Lichtman JW (2011) Development of high-throughput, high-resolution 3D reconstruction of large-volume biological tissue using automated tape collection ultramicrotomy and scanning electron microscopy. Microsc Microanal 17:966–967. https://doi.org/10.1017/S1431927611005708

    Article  Google Scholar 

  • Studer D, Michel M, Muller M (1989) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–268

    CAS  PubMed  Google Scholar 

  • Takahashi T, Nishida T, Saito C, Yasuda H, Nozaki H (2015) Ultra-high voltage electron microscopy of primitive algae illuminates 3D ultrastructures of the first photosynthetic eukaryote. Sci Rep 5:14735. https://doi.org/10.1038/srep14735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaoka A, Hasegawa T, Yoshida K, Mori H (2008) Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy 108:230–238

    Article  CAS  PubMed  Google Scholar 

  • Titze B, Genoud C (2016) Volume scanning electron microscopy for imaging biological ultrastructure. Biol Cell 108:307–323. https://doi.org/10.1111/boc.201600024

    Article  CAS  PubMed  Google Scholar 

  • Toda K, Takano H, Miyagishima S, Kuroiwa H, Kuroiwa T (1998) Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidophilic red alga Cyanidioschyzon merolae. Biochim Biophys Acta 1403:72–84

    Google Scholar 

  • Vanhecke D, Graber W, Studer D (2008) Close-to-native ultrastructural preservation by high pressure freezing. Methods Cell Biol 88:151–164

    Article  PubMed  Google Scholar 

  • Wanner AA, Kirschmann MA, Genoud C (2015) Challenges of microtome-based serial block-face scanning electron microscopy in neuroscience. J Microsc 259:137–142. https://doi.org/10.1111/jmi.12244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willingham MC, Rutherford AV (1984) The use of osmium -thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods to enhance membrane contrast and preservation in cultured cells. J Hisrochemi Sciety 32:455–460

    CAS  Google Scholar 

  • Yoshida Y, Kuroiwa H, Misumi O, Yoshida M, Ohnuma M, Fujiwara T, Yagisawa F, Hirooka S, Imoto Y, Matsushita K, Kawano S, Kuroiwa T (2010) Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329:949–953. doi: https://doi.org/10.1126%20/science.1190791b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Ohta, Ph.D. (Kurume University) and T. Nishida, Ph.D. (Osaka University) for FIB-SEM operation/discussion and UHVEM operation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuko H. Iwane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichinose, T.M., Iwane, A.H. (2017). Cytological Analyses by Advanced Electron Microscopy. In: Kuroiwa, T., et al. Cyanidioschyzon merolae. Springer, Singapore. https://doi.org/10.1007/978-981-10-6101-1_9

Download citation

Publish with us

Policies and ethics