Basic Techniques in Fluorescence and Electron Microscopy

  • Haruko KuroiwaEmail author


The primitive red alga Cyanidioschyzon merolae is a single cell with a very small size (1.5–2 μm) and has no thick cell wall; therefore, preparation of samples for fluorescence and electron microscopy requires different procedures compared to those for green algae or higher plants. Here, fluorescence microscopy methods, such as cell staining with fluorescent dye and the setup of the immunofluorescence microscope, are described. For electron microscopy, methods for transmission electron microscopy, immunoelectron microscopy, and negative staining methods are described. In addition, scanning electron microscopy methods for visualizing cells or organelles are presented.


Fluorescence microscopy DAPI Electron microscopy DiOC6 Negative staining Immunoelectron microscopy Scanning microscopy 


  1. Elrod VA, Johnson KS, Coale KH (1991) Determination of subnanomolar levels of iron (II) and total dissolved iron in seawater by flow injection analysis with chemiluminescence detection. Anal Chem 63:893–898CrossRefGoogle Scholar
  2. Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T (2010) The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Plant Cell 22:772–781. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Imoto Y, Fujiwara T, Yoshida Y, Kuroiwa H, Maruyama S, Kuroiwa T (2010) Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74. CrossRefPubMedGoogle Scholar
  4. Imoto Y, Kuroiwa H, Ohnuma M, Kawano S, Kuroiwa T (2012) Identification of peroxisome-dividing ring in Cyanidioschyzon merolae based on organelle partner hypothesis. Cytologia 77(4):515–522. CrossRefGoogle Scholar
  5. Imoto Y, Abe Y, Okumoto K, Honsho M, Kuroiwa H, Kuroiwa T, Fujiki Y (2017) Defining the dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae. J Cell Sci 130:853–867. CrossRefPubMedGoogle Scholar
  6. Kuroiwa T, Suzuki T (1980) An improved method for the demonstration of the in situ chloroplast nuclei in higher plants. Cell Struct Funct 5:195–197CrossRefGoogle Scholar
  7. Kuroiwa T, Suzuki T, Ogawa K, Kawano S (1981) The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol 22:381–396Google Scholar
  8. Kuroiwa T, Suzuki T, Itoh R, Toda K, O’Keefe TC, Kuroiwa H (1995) Mitochondria-dividing ring : ultrastructural basis for the mechanism of mitochondrial division in Cyanidioschyzon merolae. Protoplasma 186:12–23. CrossRefGoogle Scholar
  9. Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657. CrossRefPubMedGoogle Scholar
  10. Miyagishima S, Itoh R, Toda H, Takahashi H, Kuroiwa H, Kuroiwa T (1998a) Visualization of the microbody division in Cyanidioschyzon merolae with the fluorochrome brilliant sulfoflavin. Protoplasma 201:115–119. CrossRefGoogle Scholar
  11. Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998b) Orderly formation of the double ring structures for plastid and mitochondrial division in the unicellular red alga Cyanidioschyzon merolae. Planta 206:551–560. CrossRefGoogle Scholar
  12. Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H, Kuroiwa T (1998c) Identification of a triple ring structure involved in plastid division in the primitive red alga Cyanidioschyzon merolae. J Electron Microsc 47(3):269–272CrossRefGoogle Scholar
  13. Miyagishima S, Itoh R, Aita S, Kuroiwa H, Kuroiwa T (1999a) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209:371–375. CrossRefPubMedGoogle Scholar
  14. Miyagishima S, Itoh R, Toda K, Kuroiwa H, Kuroiwa T (1999b) Real-time analyses of chloroplast and mitochondrial division and differences in the behavior of their dividing rings during contraction. Planta 207:343–353. CrossRefGoogle Scholar
  15. Miyagishima S, Itoh R, Toda K, Kuroiwa H, Nishimura M, Kuroiwa T (1999c) Microbody proliferation and segregation cycle in the single-microbody alga Cyanidioschyzon merolae. Planta 208:326–336. CrossRefGoogle Scholar
  16. Miyagishima S, Kuroiwa H, Kuroiwa T (2001a) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212:517–528. CrossRefPubMedGoogle Scholar
  17. Miyagishima S, Takahara M, Kuroiwa T (2001b) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13:707–721. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Miyagishima S, Takahara M, Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2001c) Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13:2258–2268CrossRefGoogle Scholar
  19. Miyagishima S, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H, Kuroiwa T (2003) A plant-specific Dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15:655–665. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nishibayashi S, Kuroiwa T (1985) Division of mitochondrial nuclei in protozoa, a green alga and a higher plant. Cytologia 50:75–82CrossRefGoogle Scholar
  21. Nishida K, Takahara M, Miyagishima S, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci 100:2146–2151. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2004) Triple Immunofluorescent labeling of FtsZ, Dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 52:1–7. CrossRefGoogle Scholar
  23. Nishida K, Yagisawa F, Kuroiwa H, Yoshida Y, Kuroiwa T (2007) WD40 protein Mda1 is purified with Dnm1 and forms a dividing ring for mitochondria before Dnm1 in Cyanidioschyzon merolae. Proc Natl Acad Sci 104(11):4736–4741. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon. BMC Biol 5:28–37. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288PubMedGoogle Scholar
  26. Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi M, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893. CrossRefPubMedGoogle Scholar
  27. Yagisawa F, Fujiwara T, Kuroiwa H, Nishida K, Imoto Y, Kuroiwa T (2012) Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma 249:1129–1135. CrossRefPubMedGoogle Scholar
  28. Yagisawa F, Kuroiwa H, Fujiwara T, Kuroiwa T (2016) Intracellular structure of the unicellular red alga, Cyanidioschyzon merolae, in response to phosphate depletion and resupplementation. Cytologia 81(3):341–347. CrossRefGoogle Scholar
  29. Yamada M, Sudo A, Suzuki S (1985) Chemiluminescence method for selective determination of iron (II) and chromium (II) with single reaction system. Che Lett Chem Soc Jpn:801–804Google Scholar
  30. Yoshida Y, Kuroiwa H, Misumi O, Nishida K, Yagisawa F, Fujiwara T, Nanamiya H, Kawamura F, Kuroiwa T (2006) Isolated chloroplast division machinery can actively constrict after stretching. Science 313:1435–1438. CrossRefPubMedGoogle Scholar
  31. Yoshida Y, Kuroiwa H, Hirooka S, Fujiwara T, Ohnuma M, Yoshida M, Misumi O, Kawano S, Kuroiwa T (2009) The bacterial ZapA-like protein ZED is required for mitochondrial division. Curr Biol 19:1–7. doi: 101016/j.cub.2009.07.035 CrossRefGoogle Scholar
  32. Yoshida Y, Kuroiwa K, Misumi O, Yoshida M, Ohnuma M, Fujiwara T, Yagisawa F, Hirooka S, Imoto Y, Matsushita K, Kawano S, Kuroiwa T (2010) Chloroplasts divide by contraction of a bundle of Nanofilaments consisting of Polyglucan. Science 329:949–953. CrossRefPubMedGoogle Scholar
  33. Yoshida Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2012) The plastid-dividing machinery: formation, constriction and fission. Curr Opin Plant Biol 15:1–8. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Chemical and Biological Science, Faculty of ScienceJapan Women’s UniversityTokyoJapan

Personalised recommendations