Carbon Metabolism

  • Takashi Moriyama
  • Natsumi Mori
  • Naoki SatoEmail author


Photosynthetic eukaryotes synthesize organic compounds through photosynthesis. The compounds are then consumed for energy production or converted into other compounds through various metabolic pathways in organelles. Recently, studies on carbohydrate and lipid metabolism were performed on the red alga Cyanidioschyzon merolae. These studies were possible due to advancements in genomics and transformation techniques. The C. merolae genome encodes enzymes related to basic carbohydrate and lipid metabolism, and the subcellular distribution of metabolic pathways of C. merolae is basically identical to that of land plants. However, some metabolic enzymes, such as NAD-dependent malic enzyme, glyoxylate cycle enzymes, some mitochondrial translocators, and several fatty acid desaturases, are not found in C. merolae, indicating the metabolic pathways of C. merolae are simpler than those of green plants. In this chapter, we will summarize our current understanding of carbon metabolism and describe unique features of C. merolae metabolism by comparing metabolic enzymes among different species of sequenced red algae.


Carbohydrate Desaturase Fatty acid Floridean starch Lipid Translocator 


  1. Araki S, Sakurai T, Omata T et al (1986) Lipid and fatty acid composition in the red alga Porphyra yezoensis. Jpn J Phycol 34:94–100Google Scholar
  2. Araki S, Sakurai T, Kawaguchi A, Murata N (1987) Positional distribution of fatty acids in glycerolipids of the marine red alga, Porphyra yezoensis. Plant Cell Physiol 28:761–766CrossRefGoogle Scholar
  3. Araki S, Sakurai T, Oohusa T et al (1989) Characterization of sulfoquinovosyl diacylglycerol from marine red algae. Plant Cell Physiol 30:775–781Google Scholar
  4. Awai K, Ohta H, Sato N (2014) Oxygenic photosynthesis without galactolipids. Proc Natl Acad Sci U S A 111:13571–13575CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barbier G, Oesterhelt C, Larson MD et al (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant. Plant Physiol 137:460–474CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhattacharya D, Price DC, Chan CX et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bricker DK, Taylor EB, Schell JC et al (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337:96–100CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burgess SJ, Taha H, Yeoman JA et al (2016) Identification of the elusive pyruvate reductase of Chlamydomonas reinhardtii chloroplasts. Plant Cell Physiol 57:82–94CrossRefPubMedGoogle Scholar
  9. Catt JW, Hills GJ, Roberts K (1978) Cell wall glycoproteins from Chlamydomonas reinhardii, and their self-assembly. Planta 138:91–98CrossRefPubMedGoogle Scholar
  10. Cole LK, Vance JE, Vance DE (2012) Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 1821:754–761CrossRefPubMedGoogle Scholar
  11. Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Luca P, Moretti A (1983) Floridosides in Cyanidium caldarium, Cyanidioschyzon merolae and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). J Phycol 19:368–369CrossRefGoogle Scholar
  13. Dennis D, Miernyk J (1982) Compartmentation of nonphotosynthetic carbohydrate metabolism. Annu Rev Plant Physiol 33:27–50CrossRefGoogle Scholar
  14. Deschamps P, Colleoni C, Nakamura Y et al (2008) Metabolic symbiosis and the birth of the plant kingdom. Mol Biol Evol 25:536–548CrossRefPubMedGoogle Scholar
  15. Gao J, Ajjawi I, Manoli A et al (2009) Fatty acid desaturase4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839CrossRefPubMedGoogle Scholar
  16. Gibellini F, Smith TK (2010) The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428CrossRefPubMedGoogle Scholar
  17. Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142CrossRefPubMedGoogle Scholar
  18. Gretz MR, Aronson JM, Sommerfeld MR (1980) Cellulose in the cell walls of the bangiophyceae (rhodophyta). Science 207:779–781CrossRefPubMedGoogle Scholar
  19. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638Google Scholar
  20. Gruber A, Weber T, Bártulos CR et al (2009) Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms. J Basic Microbiol 49:58–72CrossRefPubMedGoogle Scholar
  21. Herzig S, Raemy E, Montessuit S et al (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96CrossRefPubMedGoogle Scholar
  22. Hirabaru C, Izumo A, Fujiwara S et al (2010) The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, α-glucan. Plant Cell Physiol 51:682–693CrossRefPubMedGoogle Scholar
  23. Imamura S, Kawase Y, Kobayashi I et al (2015) Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol 89:309–318CrossRefPubMedGoogle Scholar
  24. Jenner HL, Winning BM, Millar AH et al (2001) NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. Plant Physiol 126:1139–1149CrossRefPubMedPubMedCentralGoogle Scholar
  25. Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793CrossRefPubMedPubMedCentralGoogle Scholar
  26. Joyard J, Ferro M, Masselon C et al (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158CrossRefPubMedGoogle Scholar
  27. Katayama K, Sakurai I, Wada H (2004) Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett 577:193–198CrossRefPubMedGoogle Scholar
  28. Khozin-Goldberg I, HZ Y, Adlerstein D et al (2000) Triacylglycerols of the red microalga Porphyridium cruentum can contribute to the biosynthesis of eukaryotic galactolipids. Lipids 35:881–889CrossRefPubMedGoogle Scholar
  29. Li C-L, Wang M, Ma X-Y, Zhang W (2014) NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. Mol Plant 7:1508–1521CrossRefPubMedGoogle Scholar
  30. Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipid metabolism. Arab B 11:e0161CrossRefGoogle Scholar
  31. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  32. Melo T, Alves E, Azevedo V et al (2015) Lipidomics as a new approach for the bioprospecting of marine macroalgae – unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res 8:181–191CrossRefGoogle Scholar
  33. Merchant SS, Kropat J, Liu B et al (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363CrossRefPubMedGoogle Scholar
  34. Misumi O, Matsuzaki M, Nozaki H et al (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137:567–585CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mongrand S, Bessoule J-J, Cabantous F, Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064CrossRefGoogle Scholar
  36. Mori N, Moriyama T, Toyoshima M, Sato N (2016) Construction of global acyl lipid metabolic map by comparative genomics and subcellular localization analysis in the red alga Cyanidioschyzon merolae. Front Plant Sci 7:958PubMedPubMedCentralGoogle Scholar
  37. Moriyama T, Sakurai K, Sekine K, Sato N (2014) Subcellular distribution of central carbohydrate metabolism pathways in the red alga Cyanidioschyzon merolae. Planta 240:585–598CrossRefPubMedGoogle Scholar
  38. Moriyama T, Mori N, Sato N (2015) Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae: evidence for heterotrophic growth. Springer Plus 4:559Google Scholar
  39. Mukai LS, Craigie JS, Brown RG (1981) Chemical composition and structure of the cell walls of the Conchocelis and thallus phases of Porphyra tenera (Rhodophyceae). J Phycol 17:192–198CrossRefGoogle Scholar
  40. Nakahigashi K, Toya Y, Ishii N et al (2009) Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 5:306CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nakamura Y, Sasaki N, Kobayashi M et al (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8:e57122CrossRefPubMedPubMedCentralGoogle Scholar
  42. Naumann I, Darsow KH, Walter C et al (2007) Identification of sulfoglycolipids from the alga Porphyridium purpureum by matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:3185–3192CrossRefPubMedGoogle Scholar
  43. Nichols B, Appleby R (1969) The distribution and biosynthesis of arachidonic acid in algae. Phytochemistry 8:1907–1915CrossRefGoogle Scholar
  44. Nozaki H, Takano H, Misumi O et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  45. Oh SH, Han JG, Kim Y et al (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108:429–434CrossRefPubMedGoogle Scholar
  46. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pade N, Linka N, Ruth W et al (2015) Floridoside and isofloridoside are synthesized by trehalose 6-phosphate synthase-like enzymes in the red alga Galdieria sulphuraria. New Phytol 205:1227–1238CrossRefPubMedGoogle Scholar
  48. Pettitt T, Jones A, Harwood J (1989) Lipids of the marine red algae, Chondrus crispus and Polysiphonia lanosa. Phytochemistry 28:399–405CrossRefGoogle Scholar
  49. Plancke C, Colleoni C, Deschamps P et al (2008) Pathway of cytosolic starch synthesis in the model glaucophyte Cyanophora paradoxa. Eukaryot Cell 7:247–257CrossRefPubMedGoogle Scholar
  50. Plancke C, Vigeolas H, Höhner R et al (2014) Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. Plant J 77:404–417CrossRefPubMedGoogle Scholar
  51. Popper ZA, Michel G, Hervé C et al (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590CrossRefPubMedGoogle Scholar
  52. Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048CrossRefPubMedPubMedCentralGoogle Scholar
  53. Raven J, Johnston A, MacFarlane J (1990) Carbon metabolism. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, UKGoogle Scholar
  54. Roberts E, Roberts AW (2009) A cellulose synthase (CESA) gene from the red alga Porphyra yezoensis (Rhodophyta). J Phycol 45:203–212CrossRefPubMedGoogle Scholar
  55. Sakurai T, Aoki M, Ju X et al (2016) Profiling of lipid and glycogen accumulations under different growth conditions in the sulfothermophilic red alga Galdieria sulphuraria. Bioresour Technol 200:861–866CrossRefPubMedGoogle Scholar
  56. Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell 6:1006–1017CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sato N, Kobayashi S, Aoki M et al (2016a) Identification of genes for sulfolipid synthesis in primitive red alga Cyanidioschyzon merolae. Biochem Biophys Res Commun 470:123–129CrossRefPubMedGoogle Scholar
  58. Sato N, Mori N, Hirashima T, Moriyama T (2016b) Diverse pathways of phosphatidylcholine biosynthesis in algae as estimated by labeling studies and genomic sequence analysis. Plant J 87:281–292CrossRefPubMedGoogle Scholar
  59. Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 33:74CrossRefPubMedGoogle Scholar
  60. Schönknecht G, Chen W-H, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210CrossRefPubMedGoogle Scholar
  61. Shimonaga T, Fujiwara S, Kaneko M et al (2007) Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol (NY) 9:192–202CrossRefGoogle Scholar
  62. Shimonaga T, Konishi M, Oyama Y et al (2008) Variation in storage alpha-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol 49:103–116CrossRefPubMedGoogle Scholar
  63. Siddhanta AK, Kumar S, Mehta GK et al (2013) Cellulose contents of some abundant Indian seaweed species. Nat Prod Commun 8:497–500PubMedGoogle Scholar
  64. Sumiya N, Kawase Y, Hayakawa J et al (2015) Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol 56:1962–1980CrossRefPubMedGoogle Scholar
  65. Takusagawa M, Nakajima Y, Saito T, Misumi O (2016) Primitive red alga Cyanidioschyzon merolae accumulates storage glucan and triacylglycerol under nitrogen depletion. J Gen Appl Microbiol 62:111–117CrossRefPubMedGoogle Scholar
  66. Toyoshima M, Mori N, Moriyama T et al (2016) Analysis of triacylglycerol accumulation under nitrogen deprivation in the red alga Cyanidioschyzon merolae. Microbiology 162:803–812CrossRefPubMedGoogle Scholar
  67. Tronconi MA, Fahnenstich H, Gerrard Weehler MC et al (2008) Arabidopsis NAD-malic enzyme functions as a homodimer and heterodimer and has a major impact on nocturnal metabolism. Plant Physiol 146:1540–1552CrossRefPubMedPubMedCentralGoogle Scholar
  68. Tyra HM, Linka M, Weber APM, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212CrossRefPubMedPubMedCentralGoogle Scholar
  69. Viola R, Nyvall P, Pedersén M (2001) The unique features of starch metabolism in red algae. Proc Biol Sci 268:1417–1422CrossRefPubMedPubMedCentralGoogle Scholar
  70. Vítová M, Goecke F, Sigler K, Řezanka T (2016) Lipidomic analysis of the extremophilic red alga Galdieria sulphuraria in response to changes in pH. Algal Res 13:218–226CrossRefGoogle Scholar
  71. Wada H, Shintani D, Ohlrogge J (1997) Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc Natl Acad Sci U S A 94:1591–1596CrossRefPubMedPubMedCentralGoogle Scholar
  72. Weber APM, Oesterhelt C, Gross W et al (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55:17–32Google Scholar
  73. Wiese A, Gröner F, Sonnewald U et al (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461:13–18CrossRefPubMedGoogle Scholar
  74. Yang W, Catalanotti C, D’Adamo S et al (2014) Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. Plant Cell 26:4499–4518CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoMeguro-kuJapan

Personalised recommendations