• Naoki SatoEmail author
  • Takashi Moriyama


Photosynthesis is the essential biological process that ultimately drives all forms of life. The photosynthetic apparatus of red algae is distinct from that of green algae and plants (green plants) in that phycobilisomes transmit light energy to Photosystem II. There are two types of red algal phycobilisomes, one having phycoerythrins and the other having only phycocyanins, which are similar to those in cyanobacteria. Phycobilisomes also act as a nitrogen reserve. The structure of Photosystem I is essentially similar in red algae and green plants (with some differences in small subunits), whereas the extrinsic proteins of Photosystem II protecting the oxygen-evolving center differ in the two types of photosynthetic organisms. Another major difference is that more components of the two photosystems are encoded by the chloroplast genome in red algae than in green plants, in which most are encoded by the nuclear genome. Cyanidioschyzon merolae serves as a model system for the study of red algal photosynthesis.


Chloroplast genome Comparative genomics Photosystem I Photosystem II Phycobilisome 


  1. Adachi H, Umena Y, Enami I et al (2009) Towards structural elucidation of eukaryotic photosystem II: purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga. Biochim Biophys Acta 1787:121–128CrossRefPubMedGoogle Scholar
  2. Ago H, Adachi H, Umena Y et al (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amunts A, Toporik H, Borovikova A, Nelson N (2010) Structure determination and improved model of plant photosystem I. J Biol Chem 285:3478–3486CrossRefPubMedGoogle Scholar
  4. Archibald J (2014) One plus one equals one. Symbiosis and the evolution of complex life. Oxford University Press, OxfordGoogle Scholar
  5. Bhattacharya D, Price DC, Chan CX et al (2013) Genome of the red alga Porphyridium purpureum. Nat Commun 4:1941CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bumba L, Havelková-Doušová H, Hušák M, Vácha F (2004) Structural characterization of photosystem II complex from red alga Porphyridium cruentum retaining extrinsic subunits of the oxygen-evolving complex. Eur J Biochem 271:2967–2975CrossRefPubMedGoogle Scholar
  7. Busch A, Nield J, Hippler M (2010) The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Plant J 62:886–897CrossRefPubMedGoogle Scholar
  8. Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cramer WA, Zhang H, Yan J et al (2006) Transmembrane traffic in the cytochrome b 6 f complex. Annu Rev Biochem 75:769–790CrossRefPubMedGoogle Scholar
  10. Enami I, Okumura A, Nagao R et al (2008) Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98:349–363CrossRefPubMedGoogle Scholar
  11. Fromme P, Jordan P, Krauss N (2001) Structure of photosystem I. Biochim Biophys Acta 1507:5–31CrossRefPubMedGoogle Scholar
  12. Fujii G, Imamura S, Hanaoka M, Tanaka K (2013) Nuclear-encoded chloroplast RNA polymerase sigma factor SIG2 activates chloroplast-encoded phycobilisome genes in a red alga, Cyanidioschyzon merolae. FEBS Lett 587:3354–3359CrossRefPubMedGoogle Scholar
  13. Fujii G, Imamura S, Era A et al (2015) The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae. FEMS Microbiol Lett 362:fnv063CrossRefPubMedGoogle Scholar
  14. Gardian Z, Bumba L, Schrofel A et al (2007) Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767:725–731CrossRefPubMedGoogle Scholar
  15. Graciet E, Lebreton S, Gontero B (2004) Emergence of new regulatory mechanisms in the Benson-Calvin pathway via protein-protein interactions: a glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase complex. J Exp Bot 55:1245–1254CrossRefPubMedGoogle Scholar
  16. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321CrossRefPubMedGoogle Scholar
  17. Guskov A, Kern J, Gabdulkhakov A et al (2009) Cyanobacterial photosystem II at 2.0-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342CrossRefPubMedGoogle Scholar
  18. Howe CJ, Schlarb-Ridley BG, Wastl J et al (2006) The novel cytochrome c 6 of chloroplasts: a case of evolutionary bricolage? J Exp Bot 57:13–22CrossRefPubMedGoogle Scholar
  19. Ifuku K (2015) Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotechnol Biochem 79:1223–1231CrossRefPubMedGoogle Scholar
  20. Kaňa R, Kotabová E, Lukeš M et al (2014) Phycobilisome motility and its role in the regulation of light harvesting in red algae. Plant Physiol 165:1618–1631CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lamesch P, Berardini TZ, Li D et al (2011) The arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40:D1202–D1210CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu L-N, Chen X-L, Zhang Y-Z, Zhou B-C (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142CrossRefPubMedGoogle Scholar
  23. Liu L-N, Aartsma TJ, Thomas J-C et al (2008) Watching the native supramolecular architecture of photosynthetic membrane in red algae. Topography of phycobilisomes and their crowding, diverse distribution patterns. J Biol Chem 283:34946–34953CrossRefPubMedPubMedCentralGoogle Scholar
  24. Loganathan N, Tsai YCC, Mueller-Cajar O (2016) Characterization of the heterooligomeric red-type rubisco activase from red algae. Proc Natl Acad Sci U S A 113:14019–14024CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maberly SC, Courcelle C, Groben R, Gontero B (2010) Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J Exp Bot 61:735–745CrossRefPubMedGoogle Scholar
  26. Marquardt J, Lutz B, Wans S et al (2001) The gene family coding for light-harvesting polypeptides of photosystem I of the red alga Galdieria sulphuraria. Photosynth Res 68:121–130CrossRefPubMedGoogle Scholar
  27. Matsuzaki M, Misumi O, Shin-I T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657CrossRefPubMedGoogle Scholar
  28. Minoda A, Weber APM, Tanaka K, Miyagishima S (2010) Nucleus-independent control of the Rubisco operon by the plastid-encoded transcription factor Ycf30 in the red alga Cyanidioschyzon merolae. Plant Physiol 154:1532–1540CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nakamura Y, Sasaki N, Kobayashi M et al (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8:e57122CrossRefPubMedPubMedCentralGoogle Scholar
  30. Nozaki H, Takano H, Misumi O et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oesterhelt C, Schmälzlin E, Schmitt JM, Lokstein H (2007a) Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Plant J 51:500–511CrossRefPubMedGoogle Scholar
  32. Oesterhelt C, Klocke S, Holtgrefe S et al (2007b) Redox regulation of chloroplast enzymes in Galdieria sulphuraria in view of eukaryotic evolution. Plant Cell Physiol 48:1359–1373CrossRefPubMedGoogle Scholar
  33. Ohta H, Suzuki T, Ueno M et al (2003) Extrinsic proteins of photosystem II. An intermediate member of the PsbQ protein family in red algal PS II. Eur J Biochem 270:4156–4163CrossRefPubMedGoogle Scholar
  34. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMedGoogle Scholar
  35. Reichert A, Dennes A, Vetter S, Scheibe R (2003) Chloroplast fructose 1,6-bisphosphatase with changed redox modulation: comparison of the Galdieria enzyme with cysteine mutants from spinach. Biochim Biophys Acta 1645:212–217CrossRefPubMedGoogle Scholar
  36. Sato N (2009) Gclust: trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics 25:599–605CrossRefPubMedGoogle Scholar
  37. Sato N (2010) Phylogenomic and structural modeling analyses of the PsbP superfamily reveal multiple small segment additions in the evolution of photosystem II-associated PsbP protein in green plants. Mol Phylogenet Evol 56:176–186CrossRefPubMedGoogle Scholar
  38. Schönknecht G, Chen W-H, Ternes CM et al (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210CrossRefPubMedGoogle Scholar
  39. Su N-N, Xie B-B, Zhang X-Y et al (2010) The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth Res 106:73–87CrossRefPubMedGoogle Scholar
  40. Sugawara H, Yamamoto H, Shibata N et al (1999) Crystal structure of carboxylase reaction-oriented ribulose 1,5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. J Biol Chem 274:15655–15661CrossRefPubMedGoogle Scholar
  41. Tan S, Ducret A, Aebersold R, Gantt E (1997) Red algal LHC I genes have similarities with both Chl a/b- and a/c-binding proteins: a 21 kDa polypeptide encoded by LhcaR2 is one of the six LHC I polypeptides. Photosynth Res 53:129–140CrossRefGoogle Scholar
  42. Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci U S A 103:7246–7251CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thangaraj B, Jolley CC, Sarrou I et al (2011) Efficient light harvesting in a dark, hot, acidic environment: the structure and function of PSI-LHCI from Galdieria sulphuraria. Biophys J 100:135–143CrossRefPubMedPubMedCentralGoogle Scholar
  44. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 473:55–60CrossRefPubMedGoogle Scholar
  45. Vanselow C, Weber APM, Krause K, Fromme P (2009) Genetic analysis of the photosystem I subunits from the red alga, Galdieria sulphuraria. Biochim Biophys Acta 1787:46–59CrossRefPubMedGoogle Scholar
  46. Watanabe M, Ikeuchi M (2013) Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth Res 116:265–276CrossRefPubMedGoogle Scholar
  47. Zhao L-S, Su H-N, Li K et al (2016) Supramolecular architecture of photosynthetic membrane in red algae in response to nitrogen starvation. Biochim Biophys Acta 1857:1751–1758CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoMeguro-kuJapan

Personalised recommendations