Advertisement

Single-Membrane-Bound Organelles: Division and Inheritance

  • Fumi YagisawaEmail author
  • Yuuta Imoto
  • Takayuki Fujiwara
  • Shinya Miyagishima
Chapter

Abstract

C. merolae cells contain four types of single-membrane-bound organelles—the ER, Golgi bodies, vacuoles/lysosomes, and peroxisomes—the dynamics of which have been studied during the cell cycle by fluorescence microscopy and electron microscopy. The ER retains some integrity throughout the cell cycle and is apportioned to daughter cells by spindle elongation. Golgi bodies proliferate prior to M phase and lie close to the spindle poles, with which they are inherited. Vacuoles proliferate and migrate toward mitochondria before M phase, and by binding to the mitochondria, they become inherited by daughter cells. This binding requires a coiled-coil protein, vacuole inheritance gene 1 (VIG1). Peroxisomes associate with the division planes of mitochondria before mitochondrial division, after which they divide—a process that is dependent on dynamin and peroxisome-dividing (POD) machinery—and are inherited with the divided mitochondria. The inheritance of vacuoles and peroxisomes relies on the spindle, because it is required for mitochondrial inheritance. Because the spindle segregates chromosomes, the inheritance of all single-membrane-bound organelles is coupled to chromosomal inheritance via the spindle. This coupling allows cells to retain organelles and remain functional after cell division.

Keywords

Endoplasmic reticulum (ER) Golgi body Vacuole Peroxisome Spindle poles Proliferation Inheritance 

Notes

Acknowledgments

We thank Dr. Yamato Yoshida for a discussion on the manuscript. Our study was partly supported by MEXT KAKENHI (16 K14770 to F.Y.) and Grants-in-Aid for JSPS fellows (1044 to F.Y.).

References

  1. Aoki K, Hayashi H, Furuya K, Sato M, Takagi T, Osumi M, Kimura A, Niki H (2011) Breakage of the nuclear envelope by an extending mitotic nucleus occurs during anaphase in Schizosaccharomyces japonicus. Genes Cells 16:911–926Google Scholar
  2. Bevis BJ, Hammond AT, Reinke CA, Glick BS (2002) De novo formation of transitional ER sites and Golgi structures in Pichia Pastoris. Nat Cell Biol 4:750–756Google Scholar
  3. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campsteijn C, Vietri M, Stenmark H (2016) Novel ESCRT functions in cell biology: spiraling out of control? Curr Opin Cell Biol 41:1–8CrossRefPubMedGoogle Scholar
  5. de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8(5):395–403Google Scholar
  6. De Souza CP, Osmani AH, Hashmi SB, Osmani SA (2004) Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 14:1973–1984Google Scholar
  7. Du Y, Ferro-Novick S, Novick P (2004) Dynamics and inheritance of the endoplasmic reticulum. J Cell Sci 117:2871–2878CrossRefPubMedGoogle Scholar
  8. Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M (2014) A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 30:95–102CrossRefPubMedGoogle Scholar
  9. Estrada P, Kim J, Coleman J, Walker L, Dunn B, Takizawa P, Novick P, Ferro-Novick S (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces Cerevisiae. J Cell Biol 163:1255–1266Google Scholar
  10. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fujiwara T, Misumi O, Tashiro K, Yoshida Y, Nishida K, Yagisawa F, Imamura S, Yoshida M, Mori T, Tanaka K, Kuroiwa H, Kuroiwa T (2009) Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 16:59–72Google Scholar
  12. Fujiwara T, Kuroiwa H, Yagisawa F, Ohnuma M, Yoshida Y, Yoshida M, Nishida K, Misumi O, Watanabe S, Tanaka K, Kuroiwa T (2010) The coiled-coil protein VIG1 is essential for tethering vacuoles to mitochondria during vacuole inheritance of Cyanidioschyzon merolae. Plant Cell 22:772–781Google Scholar
  13. Fujiwara T, Tanaka K, Kuroiwa T, Hirano T (2013) Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive red alga Cyanidioschyzon merolae. Mol Biol Cell 24(16):2515–2527Google Scholar
  14. Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412CrossRefPubMedPubMedCentralGoogle Scholar
  15. He CY, Pypaert M, Warren G (2005) Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310:1196–1198Google Scholar
  16. Honscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W, van der Laan M, Cabrera M, Reggiori F, Ungermann C (2014) Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell 30:86–94CrossRefPubMedGoogle Scholar
  17. Imoto Y, Fujiwara T, Yoshida Y, Kuroiwa H, Maruyama S, Kuroiwa T (2010) Division of cell nuclei, mitochondria, plastids, and microbodies mediated by mitotic spindle poles in the primitive red alga Cyanidioschyzon merolae. Protoplasma 241:63–74Google Scholar
  18. Imoto Y, Kuroiwa H, Ohnuma M, Kawano S, Kuroiwa T (2012) Identification of peroxisome-dividing ring in Cyanidioschyzon merolae based on organelle partner hypothesis. Cytologia 77:515–522Google Scholar
  19. Imoto Y, Kuroiwa H, Yoshida Y, Ohnuma M, Fujiwara T, Yoshida M, Nishida K, Yagisawa F, Hirooka S, Miyagishima SY, Misumi O, Kawano S, Kuroiwa T (2013) Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci U S A 110:9583–9588CrossRefPubMedPubMedCentralGoogle Scholar
  20. Imoto Y, Abe Y, Okumoto K, Honsho M, Kuroiwa H, Kuroiwa T, Fujiki Y (2017) Defining dynamin-based ring organizing center on the peroxisome-dividing machinery isolated from Cyanidioschyzon merolae. J Cell Sci 130:853–867Google Scholar
  21. Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605CrossRefPubMedGoogle Scholar
  22. Lippincott-Schwartz J, Zaal KJ (2000) Cell cycle maintenance and biogenesis of the Golgi complex. Histochem Cell Biol 114:93–103PubMedGoogle Scholar
  23. Mano S, Nakamori C, Kondo M, Hayashi M, Nishimura M (2004) An Arabidopsis dynamin-related protein, DRP3A, controls both peroxisomal and mitochondrial division. Plant J 38:487–498CrossRefPubMedGoogle Scholar
  24. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26CrossRefPubMedGoogle Scholar
  25. Miyagishima S-y, Itoh R, Kuroiwa H, Nishimura M, Kuroiwa T, Toda K (1999) Microbody proliferation and segregation cycle in the single-microbody alga Cyanidioschyzon merolae. Planta 208(3):326–336Google Scholar
  26. Motley AM, Hettema EH (2007) Yeast peroxisomes multiply by growth and division. J Cell Biol 178:399–410CrossRefPubMedPubMedCentralGoogle Scholar
  27. Motley AM, Ward GP, Hettema EH (2008) Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J Cell Sci 121:1633–1640CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151:367–380Google Scholar
  29. Munro S (2002) More than one way to replicate the Golgi apparatus. Nat Cell Biol 4:E223–E224CrossRefPubMedGoogle Scholar
  30. Nishida K, Takahara M, Miyagishima SY, Kuroiwa H, Matsuzaki M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci U S A 100:2146–2151CrossRefPubMedPubMedCentralGoogle Scholar
  31. Nishida K, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T (2005) Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae. Mol Biol Cell 16:2493–2502Google Scholar
  32. Noguchi T (1978) Transformation of the Golgi apparatus in the cell cycle especially at the resting and earliest developmental stages of a green alga, Micrasterias americana. Protoplasma 95:73–88Google Scholar
  33. Noguchi T, Kakami F (1999) Transformation of trans-Golgi network during the cell cycle in a green alga, Botryococcus braunii. J Plant Res 112:175–186Google Scholar
  34. Okuwaki T, Takahashi H, Itoh R, Toda K, Kawazu T, Kuroiwa H, Kuroiwa T (1996) Ultrastructures of the Golgi body and cell surface in Cyanidioschyzon merolae. Cytologia 61:69–74Google Scholar
  35. Pelletier L, Stern CA, Pypaert M, Sheff D, Ngo HM, Roper N, He CY, Hu K, Toomre D, Coppens I, Roos DS, Joiner KA, Warren G (2002) Golgi biogenesis in Toxoplasma gondii. Nature 418:548–552Google Scholar
  36. Persico A, Cervigni RI, Barretta ML, Colanzi A (2009) Mitotic inheritance of the Golgi complex. FEBS Lett 583:3857–3862CrossRefPubMedGoogle Scholar
  37. Phillips MJ, Voeltz GK (2015) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:1–14Google Scholar
  38. Rios RM, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15:60–66CrossRefPubMedGoogle Scholar
  39. Segui-Simarro JM, Staehelin LA (2006) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223:223–236Google Scholar
  40. Staehelin LA, Kang BH (2008) Nanoscale architecture of endoplasmic reticulum export sites and of Golgi membranes as determined by electron tomography. Plant Physiol 147:1454–1468CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sugiura A, McLelland GL, Fon EA, McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–2156CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sundborger AC, Fang S, Heymann JA, Ray P, Chappie JS, Hinshaw JE (2014) A dynamin mutant defines a superconstricted prefission state. Cell Rep 8:734–742CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tieu Q, Nunnari J (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol 151:353–366CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ueda K (1997) The synchronous division of dictyosomes at the premitotic stage. Ann Bot 80(1):29–33Google Scholar
  45. Warren G, Wickner W (1996) Organelle inheritance. Cell 84(3):395–400Google Scholar
  46. Wei JH, Seemann J (2009) Spindle-dependent partitioning of the Golgi ribbon. Commun Integr Biol 2:406–407CrossRefPubMedPubMedCentralGoogle Scholar
  47. Yagisawa F, Nishida K, Kuroiwa H, Nagata T, Kuroiwa T (2007) Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga Cyanidioschyzon merolae. Planta 226:1017–1029Google Scholar
  48. Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893Google Scholar
  49. Yagisawa F, Fujiwara T, Kuroiwa H, Nishida K, Imoto Y, Kuroiwa T (2012) Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma 249:1129–1135Google Scholar
  50. Yagisawa F, Fujiwara T, Ohnuma M, Kuroiwa H, Nishida K, Imoto Y, Yoshida Y, Kuroiwa T (2013) Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. Protoplasma 250:943–948Google Scholar
  51. Yagisawa F, Kuroiwa H, Fujiwara T, Kuroiwa T (2016) Intracellular structure of the unicellular red alga Cyanidioschyzon merolae in response to phosphate depletion and resupplementation. Cytologia 81:341–347Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Fumi Yagisawa
    • 1
    Email author
  • Yuuta Imoto
    • 2
  • Takayuki Fujiwara
    • 3
    • 4
    • 5
  • Shinya Miyagishima
    • 3
  1. 1.Center for Research Advancement and CollaborationUniversity of the RyukyusOkinawaJapan
  2. 2.Division of Organelle Homeostasis, Medical Institute of BioregulationKyushu UniversityHigashiku FukuokaJapan
  3. 3.Department of Cell GeneticsNational Institute of GeneticsMishimaJapan
  4. 4.Department of GeneticsGraduate University for Advanced Studies (SOKENDAI)MishimaJapan
  5. 5.Core Research for Evolutional Science and Technology ProgramJapan Science and Technology AgencySaitamaJapan

Personalised recommendations