Advertisement

Double-Membrane-Bounded Organelles: Recent Findings Regarding Division, Inheritance, Structure, and Evolution of the Nucleus, Mitochondria, and Chloroplasts

  • Yamato Yoshida
  • Yuki Sakamoto
  • Katsuya Iwasaki
  • Shinichiro Maruyama
  • Sachihiro MatsunagaEmail author
Chapter

Abstract

The nucleus of Cyanidioschyzon merolae has quite a limited set of components. The core and linker histones, H2A.Z, and a centromeric histone variant CenH3 are preserved, but H2A variants including H2A.X, H2A.M, and H2A.W are absent. Some proteins of the nuclear pore complex and nucleoli are also preserved, but almost all homologs of nuclear lamina and nuclear envelope proteins are lacking. The chloroplast of this species is divided by a ring, which is composed of two inner rings, the FtsZ ring and inner plastid-dividing (PD) ring, and two outer rings, the outer PD ring and dynamin ring. Identification of the PD ring components in C. merolae enabled us to elucidate the molecular mechanism behind the PD machinery. For example, a glycosyltransferase protein, plastid-dividing ring 1, acts in establishing the PD ring by forming ring-shaped polyglucan filaments. The division of mitochondria is performed by the mitochondrion-dividing (MD), FtsZ, and dynamin rings. Mda1 functions as a mediator for stably linking a dynamin. In addition, an FtsZ-associated protein, ZED, is involved in completing the inner rings of the MD machinery. Analyses of the mechanisms of mitochondrial and chloroplast division in C. merolae contribute to our understanding of the endosymbiotic process of double-membrane-bounded organelles.

Keywords

Nucleus Nuclear envelope Nuclear pore Histone Chloroplast Plastid PD ring FtsZ Dynamin Mitochondria MD ring 

Notes

Acknowledgments

This work was supported by a Human Frontier Science Program Long Term Fellowship (No. LT000356/2011-L) to Y.Y. and a grant for XFEL key technology and the X-ray Free Electron Laser Priority Strategy Program from MEXT to Sa.M. (Tokyo University of Science), MEXT/JSPS KAKENHI No. JP26291067 and JP15H05962 to Sa.M. (Tokyo University of Science), and JP15K18562 to Sh.M. (Tohoku University).

References

  1. Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7(9):642–653. https://doi.org/10.1038/nrmicro2198
  2. Al-Haboubi T, Shumaker DK, Köser J et al (2011) Distinct association of the nuclear pore protein Nup153 with A- and B-type lamins. Nucleus 2(5):500–509. https://doi.org/10.4161/nucl.2.5.17913
  3. Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921. https://doi.org/10.1016/j.cub.2015.07.055 CrossRefPubMedGoogle Scholar
  4. Arimura S, Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc Natl Acad Sci U S A 99(8):5727–5731. https://doi.org/10.1073/pnas.082663299
  5. Baum DA, Baum B (2014) An inside-out origin for the eukaryotic cell. BMC Biol 12:1. https://doi.org/10.1186/s12915-014-0076-2 CrossRefGoogle Scholar
  6. Beech PL et al (2000) Mitochondrial FtsZ in a chromophyte alga. Science 287(5456):1276–1279CrossRefPubMedGoogle Scholar
  7. Berk JM, Tifft KE, Wilson KL (2013) The nuclear envelope LEM-domain protein emerin. Nucleus 4(4):298–314. https://doi.org/10.4161/nucl.25751
  8. Bi EF, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354(6349):161–164. https://doi.org/10.1038/354161a0
  9. Bleazard W et al (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1(5):298–304. https://doi.org/10.1038/13014
  10. Burma S, Chen BP, Murphy M et al (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467. https://doi.org/10.1074/jbc.C100466200
  11. Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann N Y Acad Sci 503:55–71CrossRefPubMedGoogle Scholar
  12. Chen MS et al (1991) Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351(6327):583–586. https://doi.org/10.1038/351583a0
  13. Copenhaver GP, Pikaard CS (1996) RFLP and physical mapping with an rDNA-specific endonuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4. Plant J 9:259–272. https://doi.org/10.1046/j.1365-313X.1996.09020259.x
  14. De Souza CPC, Osmani SA (2007) Mitosis, not just open or closed. Eukaryot Cell 6:1521–1527. https://doi.org/10.1128/EC.00178-07 CrossRefPubMedPubMedCentralGoogle Scholar
  15. DuBois KN et al (2012) NUP-1 is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 10(3):e1001287. https://doi.org/10.1371/journal.pbio.1001287
  16. Elgass K, Pakay J, Ryan MT, Palmer CS (2013) Recent advances into the understanding of mitochondrial fission. Biochim Biophys Acta, Mol Cell Res 1833(1):150–161. https://doi.org/10.1016/j.bbamcr.2012.05.002
  17. Faelber K et al (2011) Crystal structure of nucleotide-free dynamin. Nature 477(7366):556–560. https://doi.org/10.1038/nature10369
  18. Fekkes P, Shepard KA, Yaffe MP (2000) Gag3p, an outer membrane protein required for fission of mitochondrial tubules. J Cell Biol 151(2):333–340Google Scholar
  19. Ford MGJ, Jenni S, Nunnari J (2011) The crystal structure of dynamin. Nature 477(7366):561–566. https://doi.org/10.1038/nature10441
  20. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505(7483):335–343. https://doi.org/10.1038/nature12985
  21. Fujiwara T et al (2009) Periodic gene expression patterns during the highly synchronized cell nucleus and organelle division cycles in the unicellular red alga Cyanidioschyzon merolae. DNA Res 16(1):59–72. https://doi.org/10.1093/dnares/dsn032
  22. Fujiwara T, Tanaka K, Kuroiwa T, Hirano T (2013) Spatiotemporal dynamics of condensins I and II: evolutionary insights from the primitive redalga Cyanidioschyzon merolae. Mol Biol Cell 24(16):2515–2527. https://doi.org/10.1091/mbc.E13-04-0208
  23. Galy V et al (2008) A role for gp210 in mitotic nuclear-envelope breakdown. J Cell Sci 121:317–328. https://doi.org/10.1242/jcs.022525
  24. Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19(6):2402–2412. https://doi.org/10.1091/mbc.E07-12-1287
  25. Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW (2003) ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplastdivision machinery. Proc Natl Acad Sci U S A 100(7):4328–4333. https://doi.org/10.1073/pnas.0530206100
  26. Gillham NW, Boynton JE, Hauser CR (1994) Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet 28:71–93. https://doi.org/10.1146/annurev.ge.28.120194.000443
  27. Gilson PR, Beech PL (2001) Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152(1):3–10CrossRefPubMedGoogle Scholar
  28. Glynn JM, Froehlich JE, Osteryoung KW (2008) Arabidopsis ARC6 coordinates the division machineries of the inner and outer chloroplast membranes through interaction with PDV2 in the intermembrane space. Plant Cell 20(9):2460–2470. https://doi.org/10.1105/tpc.108.061440
  29. Glynn JM et al (2009) PARC6, a novel chloroplast division factor, influences FtsZ assembly and is required for recruitment of PDV1 during chloroplast division in Arabidopsis. Plant J 59(5):700–711. https://doi.org/10.1111/j.1365-313X.2009.03905.x
  30. Griffin EE, Graumann J, Chan DC (2005) The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170(2):237–248. https://doi.org/10.1083/jcb.200503148
  31. Gueiros-Filho FJ, Losick R (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16(19):2544–2556. https://doi.org/10.1101/gad.1014102
  32. Hashimoto H (1986) Double ring structure around the constricting neck of dividing plastids of Avena sativa. Protoplasma 135(2–3):166–172CrossRefGoogle Scholar
  33. Hayashi T, Rizzuto R, Hajnoczky G, T-P S (2009) MAM: more than just a housekeeper. Trends Cell Biol 19:81–88. https://doi.org/10.1016/j.tcb.2008.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hoppins S (2014) The regulation of mitochondrial dynamics. Curr Opin Cell Biol 29:46–52. https://doi.org/10.1016/j.ceb.2014.03.005
  35. Imoto Y et al (2013) Single-membrane-bounded peroxisome division revealed by isolation of dynamin-based machinery. Proc Natl Acad Sci U S A 110(23):9583–9588. https://doi.org/10.1073/pnas.1303483110
  36. Ingerman E et al (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170(7):1021–1027. https://doi.org/10.1083/jcb.200506078
  37. Kalashnikova AA, Rogge RA, Hansen JC (2016) Linker histone H1 and protein-protein interactions. Biochim Biophys Acta 1859(3):455–461. https://doi.org/10.1016/j.bbagrm.2015.10.004
  38. Kato S, Imoto Y, Ohnuma M et al (2011) Aurora kinase of a red alga Cyanidioschyzon merolae is related to both mitochondrial division and mitotic spindle formation. Cytologia 76:465–472. https://doi.org/10.1508/cytologia.76.455
  39. Kawashima T et al (2015) Diversification of histone H2A variants during plant evolution. Trends Plant Sci 20(7):419–425. https://doi.org/10.1016/j.tplants.2015.04.005
  40. Koenig JH, Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9(11):3844–3860PubMedGoogle Scholar
  41. Krüger A (2012) Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular organism. Mol Biol Cell 23(2):360–370. https://doi.org/10.1091/mbc.E11-07-0595
  42. Kuroiwa T (1998) The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investigating the dividing apparatus of mitochondria and plastids. BioEssays 20(4):344–354. https://doi.org/10.1002/(SICI)1521-1878(199804)20:4<344::AIDBIES11>3.0.CO;2-2Google Scholar
  43. Kuroiwa T, Ohta T, Kuroiwa H, Shigeyuki K (1994) Molecular and cellular mechanisms of mitochondrial nuclear division and mitochondriokinesis. Microsc Res Tech 27(3):220–232. https://doi.org/10.1002/jemt.1070270304
  44. Kuroiwa T et al (1995) Mitochondria-dividing ring: ultrastructural basis for the mechanism of mitochondrial division in Cyanidioschyzon merolae. Protoplasma 186:12–23CrossRefGoogle Scholar
  45. Kuroiwa T et al (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181:1–41CrossRefPubMedGoogle Scholar
  46. Kuroiwa H, Mori T, Takahara M et al (2002) Chloroplast division machinery as revealed by immunofluorescence and electron microscopy. Planta 215(2):185–190. https://doi.org/10.1007/s00425-002-0734-4
  47. Kuroiwa T et al (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochim Biophys Acta 1763(5–6):510–521. https://doi.org/10.1016/j.bbamcr.2006.03.007
  48. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934. https://doi.org/10.1038/nature09486
  49. Lee J, Kim DH, Hwang I (2014) Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00173
  50. Liu R, Chan DC (2015) The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol Biol Cell:1–27. https://doi.org/10.1091/mbc.E15-08-0591
  51. Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24(5):659–667. https://doi.org/10.1091/mbc.E12-10-0721
  52. Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391(6663):203–206. https://doi.org/10.1038/34472
  53. Maple J et al (2004) GIANT CHLOROPLAST 1 is essential for correct plastid division in Arabidopsis. Curr Biol 14(9):776–781. https://doi.org/10.1016/j.cub.2004.04.031
  54. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Phil Trans R Soc B 370:20140330. https://doi.org/10.1098/rstb.2014.0330 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Maruyama S et al (2004) The minimal eukaryotic ribosomal DNA units in the primitive red alga Cyanidioschyzon merolae. DNA Res 11(2):83–91CrossRefPubMedGoogle Scholar
  56. Maruyama S, Kuroiwa H, Miyagishima S-Y et al (2007) Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. Plant J 49:1122–1129. https://doi.org/10.1111/j.1365-313X.2006.03024.x CrossRefPubMedGoogle Scholar
  57. Masuda K et al (1997) Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. Exp Cell Res 232:173–181. https://doi.org/10.1006/excr.1997.3531
  58. Matsuanga S, Katagiri Y, Nagashima Y et al (2013) New insights into the dynamics of plant cell nuclei and chromosomes. Int Rev Cell Mol Biol 305:253–301. https://doi.org/10.1016/B978-0-12-407695-2.00006-8 CrossRefGoogle Scholar
  59. Matsuzaki M et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657. https://doi.org/10.1038/nature02398
  60. McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319(6053):463–468. https://doi.org/10.1038/319463a0
  61. Mears JA et al (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18(1):20–26. https://doi.org/10.1038/nsmb.1949
  62. Meinke P, Schirmer EC (2015) LINC'ing form and function at the nuclear envelope. FEBS Lett 589:2514–2521. https://doi.org/10.1016/j.febslet.2015.06.011
  63. Misumi O et al (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137(2):567–585. https://doi.org/10.1104/pp.104.053991
  64. Mita T, Kanbe T, Tanaka K, Kuroiwa T (1986) A ring structure around the dividing plane of the Cyanidium caldarium chloroplast. Protoplasma 130(2–3):211–213Google Scholar
  65. Miyagishima S-Y, Kabeya Y (2010) Chloroplast division: squeezing the photosynthetic captive. Curr Opin Microbiol 13(6):738–746. https://doi.org/10.1016/j.mib.2010.10.004
  66. Miyagishima S-Y et al (1998) Identification of a triple ring structure involved in plastid division in the primitive red alga Cyanidioschyzon merolae. J Electron Microsc 47(3):269–272. https://doi.org/10.1093/oxfordjournals.jmicro.a023589
  67. Miyagishima S, Itoh R, Toda K et al (1999) Real-time analyses of chloroplast and mitochondrial division and differences in the behavior of their dividing rings during contraction. Planta 207(3):343–353. https://doi.org/10.1007/s004250050491
  68. Miyagishima S, Takahara M, Kuroiwa T (2001a) Novel filaments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13(3):707–721CrossRefPubMedPubMedCentralGoogle Scholar
  69. Miyagishima SY et al (2001b) Plastid division is driven by a complex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13(10):2257–2268. https://doi.org/10.1105/tpc.010185
  70. Miyagishima S et al (2003) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell Online 15(3):655–665CrossRefGoogle Scholar
  71. Miyagishima S et al (2004) Two types of FtsZ proteins in mitochondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J Mol Evol 58(3):291–303. https://doi.org/10.1007/s00239-003-2551-1
  72. Miyagishima S, Kuwayama H, Urushihara H, Nakanishi H (2008) Evolutionary linkage between eukaryotic cytokinesis and chloroplast division by dynamin proteins. Proc Natl Acad Sci U S A 105(39):15202–15207. https://doi.org/10.1073/pnas.0802412105
  73. Miyagishima S-Y, Kabeya Y, Sugita C et al (2014) DipM is required for peptidoglycan hydrolysis during chloroplast division. BMC Plant Biol 14:57. https://doi.org/10.1186/1471-2229-14-57. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mori T, Kuroiwa H, Takahara M et al (2001) Visualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves. Plant Cell Physiol 42:555–559CrossRefPubMedGoogle Scholar
  75. Mozdy AD, McCaffery JM, Shaw JM (2000) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J Cell Biol 151(2):367–379. https://doi.org/10.1083/jcb.151.2.367
  76. Muñoz-Gómez SA, Slamovits CH, Dacks JB et al (2015) Ancient homology of the mitochondrial contact site and cristae organizing system points to an endosymbiotic origin of mitochondrial cristae. Curr Biol 25:1489–1495. https://doi.org/10.1016/j.cub.2015.04.006 CrossRefPubMedGoogle Scholar
  77. Niemann A, Ruegg M, La Padula V et al (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-tooth disease. J Cell Biol 170(7):1067–1078. https://doi.org/10.1083/jcb.200507087
  78. Nishida K et al (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci U S A 100(4):2146–2151. https://doi.org/10.1073/pnas.0436886100
  79. Nishida K, Yagisawa F, Kuroiwa H et al (2005) Cell cycle-regulated, microtubule-independent organelle division in Cyanidioschyzon merolae. Mol Biol Cell 16(May):2493–2502. https://doi.org/10.1091/mbc.E05-01-0068 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Nishida K, Yagisawa F, Kuroiwa H et al (2007) WD40 protein Mda1 is purified with Dnm1 and forms a dividing ring for mitochondria before Dnm1 in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 104(11):4736–4741. https://doi.org/10.1073/pnas.0609364104
  81. Nogales E, Wolf SG, Downing KH et al (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 393:199–203. https://doi.org/10.1038/34465
  82. Okamura E, Sakamoto T, Sasaki T, Matsunaga S (2017) A plant ancestral polo-like kinase sheds light on the mystery of the evolutionary disappearance of polo-like kinases in the plant kingdom. Cytologia 82(3):261–266. https://doi.org/10.1508/cytologia.82.261
  83. Olins AL, Rhodes G, Welch DB et al (2010) Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 1(1):53–70. https://doi.org/10.4161/nucl.1.1.10515
  84. Oliva MA, Cordell SC, Löwe J (2004) Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11(12):1243–1250. https://doi.org/10.1038/nsmb855
  85. Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320(5877):792–794. https://doi.org/10.1126/science.1154520
  86. Osteryoung KW, Vierling E (1995) Conserved cell and organelle division. Nature 376(6540):473–474. https://doi.org/10.1038/376473b0
  87. Palmer CS et al (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12(6):565–573. https://doi.org/10.1038/embor.2011.54
  88. Paull TT et al (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895CrossRefPubMedGoogle Scholar
  89. Praefcke GJK, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5(2):133–147. https://doi.org/10.1038/nrm1313
  90. Roy M, Reddy PH, Iijima M, Sesaki H (2015) Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 33:111–118. https://doi.org/10.1016/j.ceb.2015.02.001
  91. Sakamoto Y, Takagi S (2013) LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant Cell Physiol 54(4):622–633. https://doi.org/10.1093/pcp/pct031
  92. Schmitz AJ, Glynn JM, Olson BJSC et al (2009) Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. Mol Plant 2(6):1211–1222. https://doi.org/10.1093/mp/ssp077
  93. Shibata S, Matsuoka Y, Yoneda Y (2002) Nucleocytoplasmic transport of proteins and poly(A) RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 7:421–434CrossRefPubMedGoogle Scholar
  94. Shimada H et al (2004) ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol 45(8):960–967. https://doi.org/10.1093/pcp/pch130
  95. Shpetner HS, Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59(3):421–432CrossRefPubMedGoogle Scholar
  96. Smirnova E, Shurland D-L, Ryazantsev SN et al (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143(2):351–358CrossRefPubMedPubMedCentralGoogle Scholar
  97. Smythe C, Jenkins HE, Hutchison CJ (2000) Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J 19:3918–3931. https://doi.org/10.1093/emboj/19.15.3918
  98. Spang A, Saw JH, Jorgensen SL et al (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179. https://doi.org/10.1038/nature14447
  99. Stiff T, O'Driscoll M, Rief N et al (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396CrossRefPubMedGoogle Scholar
  100. Sumiya N, Hirata A, Kawano S (2008) Multiple FtsZ ring formation and reduplicated chloroplast DNA in Nannochloris bacillaris (Chlorophyta, Trebouxiophyceae) under phosphate-enriched culture. J Phycol 44(6):1476–1489. https://doi.org/10.1111/j.1529-8817.2008.00589.x
  101. Takahara M et al (2000) A putative mitochondrial ftsZ gene is present in the unicellular primitive red alga Cyanidioschyzon merolae. Mol Gen Genet 264(4):452–460CrossRefPubMedGoogle Scholar
  102. Tamura K, Hara-Nishimura I (2013) The molecular architecture of the plant nuclear pore complex. J Exp Bot 64(4):823–832. https://doi.org/10.1093/jxb/ers258
  103. Tamura K, Fukao Y, Iwamoto M et al (2010) Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22:4084–4097. https://doi.org/10.1105/tpc.110.079947
  104. TerBush AD, Osteryoung KW (2012) Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling. J Cell Biol 199(4):623–637. https://doi.org/10.1083/jcb.201205114
  105. TerBush AD, Yoshida Y, Osteryoung KW (2013) FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 25(4):461–470. https://doi.org/10.1016/j.ceb.2013.04.006
  106. Tieu Q, Nunnari J (2000) Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J Cell Biol 151(2):353–365CrossRefPubMedPubMedCentralGoogle Scholar
  107. van der Bliek AM, Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351(6325):411–414. https://doi.org/10.1038/351411a0
  108. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6):1–16. https://doi.org/10.1101/cshperspect.a011072
  109. Vitha S, McAndrew RS, Osteryoung KW (2001) FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153:111–120CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wang H, Wang M, Wang H et al (2005) Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cellsexposed to ionizing radiation and treated with kinase inhibitors. J Cell Physiol 202:492–502. https://doi.org/10.1002/jcp.20141
  111. XM X et al (2007) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19:1537–1548. https://doi.org/10.1105/tpc.106.049239
  112. Yaffe MP (1999) The machinery of mitochondrial inheritance and behavior. Science 283(5407):1493–1497CrossRefPubMedGoogle Scholar
  113. Yagisawa F et al (2012) Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma 249(4):1129–1135. https://doi.org/10.1007/s00709-011-0359-1
  114. Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420CrossRefPubMedPubMedCentralGoogle Scholar
  115. Yoshida Y, Mogi Y (2016) Reconstitution of the chloroplast FtsZ ring using the heterologous yeast system Pichia pastoris. Cytologia (Tokyo) 81(3):249–250. https://doi.org/10.1508/cytologia.81.249
  116. Yoshida Y et al (2006) Isolated chloroplast division machinery can actively constrict after stretching. Science 313(5792):1435–1438. https://doi.org/10.1126/science.1129689
  117. Yoshida Y, Nishida K, Kawano S, Kuroiwa T (2008) Novel dynamics of FtsZ ring before plastid abscission. Cytologia 73:197–201Google Scholar
  118. Yoshida Y et al (2009) The bacterial ZapA-like protein ZED is required for mitochondrial division. Curr Biol 19(17):1491–1497. https://doi.org/10.1016/j.cub.2009.07.035
  119. Yoshida Y et al (2010) Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329(5994):949–953. https://doi.org/10.1126/science.1190791
  120. Yoshida Y, Miyagishima S-Y, Kuroiwa H, Kuroiwa T (2012) The plastid-dividing machinery: formation, constriction and fission. Curr Opin Plant Biol 15(6):714–721. https://doi.org/10.1016/j.pbi.2012.07.002
  121. Yoshida Y, Fujiwara T, Imoto Y et al (2013) The kinesin-like protein TOP promotes aurora localisation and induces mitochondrial, chloroplast and nuclear division. J Cell Sci 126:2392–2400. https://doi.org/10.1242/jcs.116798 CrossRefPubMedGoogle Scholar
  122. Yoshida Y, Mogi Y, TerBush AD, Osteryoung KW (2016) Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization. Nat Plants 2(7):16095. https://doi.org/10.1038/nplants.2016.95
  123. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH et al (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358. https://doi.org/10.1038/nature21031 CrossRefPubMedGoogle Scholar
  124. Zhang M, Chen C, Froehlich JE et al (2015) Roles of Arabidopsis PARC6 in coordination of the chloroplast division complex and negative regulation of FtsZ assembly. Plant Physiol 170(517):01460.2015. https://doi.org/10.1104/pp.15.01460
  125. Zhou X, Groves NR, Meier I (2015) Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus 6(2):144–153. https://doi.org/10.1080/19491034.2014.1003512

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yamato Yoshida
    • 1
  • Yuki Sakamoto
    • 2
  • Katsuya Iwasaki
    • 3
  • Shinichiro Maruyama
    • 4
  • Sachihiro Matsunaga
    • 3
    Email author
  1. 1.Laboratory for Single Cell Gene DynamicsQuantitative Biology CenterSuitaJapan
  2. 2.Imaging Frontier Center, Organization for Research AdvancementTokyo University of ScienceNodaJapan
  3. 3.Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNodaJapan
  4. 4.Department of Environmental Life Sciences, Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations