Skip to main content

Coherent X-ray Diffraction Imaging of Cyanidioschyzon merolae

  • Chapter
  • First Online:
Cyanidioschyzon merolae

Abstract

Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique for visualizing the structures of noncrystalline particles at a resolution of several tens of nanometers. The targets are particles with dimensions in the sub-micrometer to micrometer range. We carried out CXDI experiments at 66 K to investigate the internal structures of a whole frozen-hydrated cell and a chloroplast of Cyanidioschyzon merolae and a cyanobacteria cell by using coherent X-ray light sources, such as synchrotron and X-ray free-electron laser facilities. Owing to the short wavelength of the X-rays used (0.225 nm), the absorption and multiple scattering of X-rays inside the specimens were negligible. Diffraction patterns from each specimen particle adsorbed onto a thin membrane were collected at resolutions better than 50 μm−1 in reciprocal space. Therefore, structures of specimen particles can be illustrated at a resolution higher than 200 nm in real space. The most probable electron density map was retrieved from each diffraction pattern. The internal structures of the specimens are described here, particularly the structural correlation of the chloroplast of C. merolae and the cyanobacteria cell. Based on the experimental results, we discuss the feasibility of CXDI in the structural analyses of biological cells and cellular organelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bamme BE, Jakana J, Schmid MF, Chiu W (2010) Radiation damage effects at four specimen temperatures from 4 to 100 K. J Struct Biol 169:331–341

    Article  Google Scholar 

  • Chapman HN, Barty A, Marchesini S, Noy A, Hau-Riege SP, Cui C, Howells MR, Rosen R, He H, Spence JCH, Weierstall U, Beetz T, Jacobsen C, Shapiro D (2006a) High-resolution ab initio three-dimensional x-ray diffraction microscopy. J Opt Soc Am A 23:1179–1200

    Google Scholar 

  • Chapman HN, Barty A, Bogan MJ, Boutet S, Frank M, Hau-Riege SP, Marchesini S, Woods BW, Bajt S, Benner WH, London RA, Plönjes E, Kuhlmann M, Treusch R, Düsterer S, Tschentscher T, Schnider JR, Spiller E, Möller T, Bostedt C, Hoener M, Shapiro DA, Hodgson KO, Van Der Spoel D, Burmeister F, Bergh M, Caleman C, Huldt G, Seibert MM, Maia FRNC, Lee RW, Szöke A, Timneanu N, Hajdu J (2006b) Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat Phys 2:839–843

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Georicke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Dubochet J, Chang J-J, Freeman R, Lepault J, McDowell AW (1982) Frozen aqueous suspensions. Ultramicroscopy 10:55–61

    Article  Google Scholar 

  • Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21:2758–2769

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Jensen GJ (2011) Electron tomography of cells. Q Rev Biophys 45:27–56

    Article  PubMed  Google Scholar 

  • Gray MW, Archibald JM (2012) Origins of mitochondria and plastids. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer, Dordrecht, pp 1–30

    Google Scholar 

  • Heuser JE (2011) The origins and evolution of freeze-etch electron microscopy. J Electron Microsc 60:S3–S29

    CAS  Google Scholar 

  • Hirata K, Shinzawa-Itoh K, Yano N, Takemura S, Kato K, Hatanaka M, Muramoto K, Kawahara T, Tsukihara T, Yamashita E, Tono K, Ueno G, Hikima T, Murakami H, Inubushi Y, Yabashi M, Ishikawa T, Yamamoto M, Ogura T, Sugimoto H, Shen J-R, Yoshikawa S, Ago H (2014) Determination of damage-free crystal structure of an X-ray sensitive protein using an XFEL. Nat Methods 11:734–736

    Google Scholar 

  • Howells MR, Beetz T, Chapman HN, Cui C, Holton JM, Jacobsen CJ, Kirz J, Lima E, Marchesini S, Miao H, Sayre D, Shapiro DA, Spence JCH, Starodub D (2009) An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectrosc Relat Phenom 170:4–12

    Google Scholar 

  • Huang X, Nelson J, Kirz J, Lima E, Marchesini S, Miao H, Neiman AM, Shapiro D, Steinbrener J, Stewart A, Turner JJ, Jacobsen C (2009) Soft xray diffraction microscopy of a frozen hydrated yeast cell. Phys Rev Lett 103:198101

    Google Scholar 

  • Imoto Y, Yoshida Y, Yagisawa F, Kuroiwa H, Kuroiwa T (2011) The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J Electron Microsc 60:S117–S136

    Article  Google Scholar 

  • Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T, Ego H, Fukami K, Fukui T, Furukawa Y, Goto S, Hanaki H, Hara T, Hasegawa T, Hatsui T, Higashiya A, Hirono T, Hosoda N, Ishii M, Inagaki T, Inubushi Y, Itoga T, Joti Y, Kago M, Kameshima T, Kimura H, Kirihara Y, Kiyomichi A, Kobayashi T, Kondo C, Kudo T, Maesaka H, Maréchal XM, Masuda T, Matsubara S, Matsumoto T, Matsushita T, Matsui S, Nagasono M, Nariyama N, Ohashi H, Ohata T, Ohshima T, Ono S, Otake Y, Saji C, Sakurai T, Sato T, Sawada K, Seike T, Shirasawa K, Sugimoto T, Suzuki S, Takahashi S, Takebe H, Takeshita K, Tamasaku K, Tanaka H, Tanaka R, Tanaka T, Togashi T, Togawa K, Tokuhisa A, Tomizawa H, Tono K, Wu S, Yabashi M, Yamaga M, Yamashita A, Yanagida K, Zhang C, Shintake T, Kitamura H, Kumagai N (2012) A compact X-ray free-electron laser emitting in the sub-ångström region. Nat Photonics 6:540–544

    Google Scholar 

  • Jiang H, Song C, Chen C-C, Xu R, Raines KS, Fahimian BP, C-H L, Lee T-K, Nakashima A, Urano J, Ishikawa T, Tamanoi F, Miao J (2010) Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc Natl Acad Sci U S A 107:11234–11239

    Google Scholar 

  • Kameshima T, Ono S, Kudo T, Ozaki K, Kirihara Y, Kobayashi K, Inubushi Y, Yabashi M, Horigome T, Holland A, Holland K, Burt D, Murao H, Hatsui T (2014) Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev Sci Instrum 85:033110

    Google Scholar 

  • Kimura T, Joti Y, Shibuya A, Song C, Kim S, Tono K, Yabashi M, Tamakoshi M, Moriya T, Oshima T, Ishikawa T, Bessho Y, Nishino Y (2014) Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat Commun 5:3052

    Google Scholar 

  • Kobayashi A, Sekiguchi Y, Takayama Y, Oroguchi T, Nakasako M (2014) Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging. Opt Express 22:27892–27909

    Article  PubMed  Google Scholar 

  • Kobayashi A, Sekiguchi Y, Takayama Y, Oroguchi T, Shirahama K, Torizuka Y, Manoda M, Nakasako M, Yamamoto M (2016a) TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA. Rev Sci Instrum 87:053109

    Article  PubMed  Google Scholar 

  • Kobayashi A, Sekiguchi Y, Oroguchi T, Okajima K, Fukuda A, Oide M, Yamamoto M, Nakasako M (2016b) Specimen preparation for cryogenic coherent X-ray diffraction imaging of biological cells and organelles using X-ray free-electron laser at SACLA. JSynchrotron Radiat 23:975–989

    Article  CAS  Google Scholar 

  • Kodama W, Nakasako M (2011) Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy. Phys Rev E 84:021902

    Article  Google Scholar 

  • Kouranov A, Schnell DJ (1996) Protein translocation at the envelope and thylakoid membranes of chloroplasts. J Biol Chem 271:31009–31012

    Article  CAS  PubMed  Google Scholar 

  • Lima E, Wiegart L, Pernot P, Howells M, Timmins J, Zontone F, Madsen A (2009) Cryogenic x-ray diffraction microscopy for biological samples. Phys Rev Lett 103:198102

    Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultra-small unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Google Scholar 

  • McDermott G, Le Gros MA, Knoechel CG, Uchida M, Larabell CA (2009) Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol 19:587–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Sayre D, Chapman HN (1998) Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J Opt Soc Am A 15:1662–1669

    Article  Google Scholar 

  • Miao J, Charalambous P, Kirz J, Sayre D (1999) Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400:342–344

    Article  CAS  Google Scholar 

  • Miao J, Hodgson KO, Ishikawa T, Larabell CA, LeGros MA, Nishino Y (2003a) Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction. Proc Natl Acad Sci U S A 100:110–112

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Ishikawa T, Anderson EH, Hodgson KO (2003b) Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys Rev B 67:174104

    Article  Google Scholar 

  • Miao J, Ishikawa T, Shen Q, Earnest T (2008) Extending X-ray crystallography to allow the imaging of nanocrystalline materials, cells, and single protein complexes. Annu Rev Phys Chem 59:387–410

    Article  CAS  PubMed  Google Scholar 

  • Miao J, Sandberg RL, Song C (2012) Coherent X-ray diffraction imaging. IEEE J Sel Top Quant Electron 18:399–410

    Article  CAS  Google Scholar 

  • Miyagishima S, Itoh R, Aita S, Kuroiwa H, Kuroiwa T (1999) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209:371–375

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki A (2013) Fluorescence imaging in the last two decades. Microscopy 62:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasako M, Takayama Y, Oroguchi T, Sekiguchi Y, Kobayashi A, Shirahama K et al (2013) KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging. Rev Sci Instrum 84:093705

    Article  PubMed  Google Scholar 

  • Nishino Y, Takahashi Y, Imamoto N, Ishikawa T, Maeshima K (2009) Three-dimensional visualization of a human chromosome using coherent x-ray diffraction. Phys Rev Lett 102:018101

    Article  PubMed  Google Scholar 

  • Oroguchi T, Nakasako M (2013) Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging. Phys Rev E 87:022712

    Article  Google Scholar 

  • Oroguchi T, Sekiguchi Y, Kobayashi A, Masaki Y, Fukuda A, Hashimoto S, Nakasako M, Ichikawa Y, Kurumizaka H, Shimizu M, Inui Y, Matsunaga S, Kato T, Namba K, Yamaguchi K, Kuwata K, Kameda H, Fukui N, Kawata Y, Kameshima T, Takayama Y, Yonekura K, Yamamoto M (2015) Cryogenic coherent X-ray diffraction imaging for biological non-crystalline particles using the KOTOBUKI-1 diffraction apparatus at SACLA. J Phys B 48:184003

    Google Scholar 

  • Ravelli RBG, Garman EF (2006) Radiation damage in macromolecular cryocrystallography. Curr Opin Struct Biol 16:624–629

    Article  CAS  PubMed  Google Scholar 

  • Rodenburg JM, Hurst AC, Cullis AG, Dobson BR, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I (2007) Hard X-ray lensless imaging of extended objects. Phys Rev Lett 98:034801

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez J, Xu R, Chen C-C, Zou Y, Miao J (2013) Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J Appl Crystallogr 46:312–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibert MM, Ekeberg T, Maia FRNC, Svenda M, Andreasson J, Jönsson O, Odić D, Iwan B, Rocker A, Westphal D, Hantke M, DePonte DP, Barty A, Schulz J, Gumprecht L, Coppola N, Aquila A, Liang M, White TA, Martin A, Caleman C, Stern S, Abergel C, Seltzer V, Claverie J-M, Bostedt C, Bozek JD, Boutet S, Miahnahri AA, Messerschmidt M, Krzywinski J, Williams G, Hodgson KO, Bogan MJ, Hampton CY, Sierra RG, Starodub D, Andersson I, Bajt S, Barthelmess M, Spence JCH, Fromme P, Weierstall U, Kirian R, Hunter M, Doak RB, Marchesini S, Hau-Riege SP, Frank M, Shoeman RL, Lomb L, Epp SW, Hartmann R, Rolles D, Rudenko A, Schmidt C, Foucar L, Kimmel N, Holl P, Rudek B, Erk B, Hömke A, Reich C, Pietschner D, Weidenspointner G, Strüder L, Hauser G, Gorke H, Ullrich J, Schlichting I, Herrmann S, Schaller G, Schopper F, Soltau H, Kühnel K-U, Andritschke R, Schröter C-D, Krasniqi F, Bott M, Schorb S, Rupp D, Adolph M, Gorkhover T, Hirsemann H, Potdevin G, Graafsma H, Nilsson B, Chapman HN, Hajdu J (2011) Nature 470:78–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Yamamoto M, Oroguchi T, Takayama Y, Suzuki S, Nakasako M (2014a) IDATEN and G-SITENNO: GUI assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA. J Synchrotron Rad 21:1378–1383

    Article  Google Scholar 

  • Sekiguchi Y, Oroguchi T, Takayama Y, Nakasako M (2014b) Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA. J Synchrotron Radiat 21:600–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Oroguchi T, Nakasako M (2016) Classification and assessment of retrieved electron density maps in coherent X-ray diffraction imaging using multivariate statistics. J Synchrotron Radiat 23:312–323

    Google Scholar 

  • Sengupta P, Van Engelenburg S, Lippincott-Schwartz J (2012) Visualizing cell structure and function with point-localization superresolution imaging. Dev Cell 23:1092–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Jiang H, Mancuso A, Amirbekian B, Peng L, Sun R, Shah SS, Zhou ZH, Ishikawa T, Miao J (2008) Quantitative imaging of single, unstained viruses with coherent X rays. Phys Rev Lett 101:158101

    Google Scholar 

  • Su H-N, Xie B-B, Zhang X-Y, Zhou B-C, Zhang Y-Z (2010) The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth Res 106:73–87

    Article  CAS  PubMed  Google Scholar 

  • Takayama Y, Nakasako M (2012) Humidity-controlled preparation of frozen-hydrated biological samples for cryogenic coherent x-ray diffraction microscopy. Rev Sci Instrum 83:054301

    Article  PubMed  Google Scholar 

  • Takayama Y, Inui Y, Sekiguchi Y, Kobayashi A, Oroguchi T, Yamamoto M, Matsunaga S, Nakasako M (2015) Cryogenic coherent X-ray imaging for chloroplast from Schyzon. Plant Cell Physiol 56:1272–1286

    Article  CAS  PubMed  Google Scholar 

  • Tamasaku K, Tanaka Y, Yabashi Y, Yamazaki H, Kawamura N, Suzuki M, Ishikawa T (2001) SPring-8 RIKEN beamline III for coherent X-ray optics. Nucl Instrum Meth A 467-468:686–689

    Article  CAS  Google Scholar 

  • Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tono K, Togashi T, Inubushi Y, Sato T, Katayama T, Ogawa K, Ohashi H, Kimura H, Takahashi S, Takeshita K, Tomizawa H, Goto S, Ishikawa T, Yabashi M (2013) Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J Phys 15:083035

    Google Scholar 

  • van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270

    Article  CAS  PubMed  Google Scholar 

  • Yagisawa F, Nishida K, Kuroiwa H, Nagata T, Kuroiwa T (2007) Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga Cyanidioschyzon merolae. Planta 226:1017–1029

    Google Scholar 

  • Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T (2009) Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893

    Google Scholar 

  • Yoshida Y, Kuroiwa H, Misumi O, Yoshida M, Ohnuma M, Fujiwara T, Yagisawa F, Hirooka S, Imoto Y, Matsushita K, Kawano S, Kuroiwa T (2010) Chloroplasts divide by contraction of a bundle of nanofilaments consisting of polyglucan. Science 329:949–953

    Google Scholar 

  • Yumoto H, Mimura H, Koyama T, Kimura T, Matsuyama S, Tono K, Togashi T, Inubushi Y, Sato T, Tanaka T, Kimura T, Yokoyama H, Kim J, Sano Y, Hachisu Y, Yabashi M, Ohashi H, Ohmori H, Ishikawa T, Yamauchi K (2013) Focusing of X-ray free-electron laser pulses with reflective optics. Nat Photonics 7:43–47

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Kensuke Tono, Dr. Takashi Kameshima, Dr. Yasumasa Joti, and the members of the engineering team of SACLA for their great help in XFEL-XCDI experiments. This study was supported by a grant for XFEL key technology and the X-ray Free-Electron Laser Priority Strategy Program from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) to M.N., M.Y., and S.M.; Grant-in-Aid for Scientific Research on Innovative Areas from MEXT [Nos. jp15076210, jp23120525, jp25120725 to M.N., and Nos. jp24113723, jp26104535 to T.O. jp25120726 to S.M., and jp25114514 to S.M.], Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS) [Nos. 17654048 and jp16H02218 to M.N.], Grant-in-Aid for Scientific Research (B) from JSPS [jp11558086 to M.N. and jp26291067 to S.M.]; Grant-in-Aid for Young Scientists (B) from JSPS [jp26800227 To T.O.], Grant-in-Aid for Challenging Exploratory Research from JSPS [jp17654048 and jp24654140 To M.N.], Grant-in-Aid for Research Activity Start-up from JSPS [jp25891033 to Y.T.], and Grant-in-Aid for JSPS Fellows (No. jp15J01707 to Y. S., No. jp15J01831 to A.K.); RIKEN Special Postdoctoral Researchers Program to Y.T. We collected diffraction data in cryogenic XFEL-CXDI experiments performed at SACLA (Nos. 2013A8043, 2013B8049, 2014A8033, 2014B8052, 2015A8051, and 2016A8048). The phase-retrieval calculations and multivariate analyses were performed using the mini-K supercomputer system at the SACLA facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakasako .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sekiguchi, Y. et al. (2017). Coherent X-ray Diffraction Imaging of Cyanidioschyzon merolae . In: Kuroiwa, T., et al. Cyanidioschyzon merolae. Springer, Singapore. https://doi.org/10.1007/978-981-10-6101-1_10

Download citation

Publish with us

Policies and ethics