Polymer Gels pp 309-341 | Cite as

Radiation Dosimetry—A Different Perspective of Polymer Gel

  • Deena Titus
  • E. James Jebaseelan Samuel
  • Selvaraj Mohana RoopanEmail author
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Medical physics has gained much interest in the past few decades with the introduction of polymer gels which act both as a phantom and a dosimeter. These polymer gels act as the substrate for the dose to act upon, after which the distribution can be read three-dimensionally. Mainly consisting of a gelling agent, monomer, crosslinker, and an antioxidant, these dosimeters on exposure to ionizing radiation polymerize as a function of the absorbed dose. This dose can be readout using modalities like MRI, X-ray CT, optical CT scanner, etc. Various combinations of polymer gels are presented including ones made with modifications to the present ingredients or addition of nanoparticles. The additions of nanoparticles enhance the dose for improved therapeutic efficiency. Being tissue equivalent and having good spatial resolution make it a new class of dosimeter which can replace the conventional dosimeters. The fundamental science behind the technique, gel preparation, and areas of future potential developments to improve the validation for lower dose than current fractional radiotherapy dose is also discussed.


Polymer gel Dosimeter Dose Three-dimensional Ionizing radiation Tissue equivalent Radiotherapy 


  1. Adamovics J, Maryanski M (2003) New 3D radiochromic solid polymer dosimeter from leuco dyes and a transparent polymeric matrix. Med Phys 30:1349Google Scholar
  2. Alexander P, Charlesby A, Ross M (1954) The degradation of solid polymethylmethacrylate by ionizing radiations. P Roy Soc Lond A Mat 223:392–404CrossRefGoogle Scholar
  3. Alqathami M, Blencowe A, Yeo UJ, Doran SJ, Qiao G, Geso M (2012) Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. Int J Radiat Oncol 84:e549–e555CrossRefGoogle Scholar
  4. Alqathami M, Blencowe A, Yeo UJ, Franich R, Doran S, Qiao G, Geso M (2013) Enhancement of radiation effects by bismuth oxide nanoparticles for kilovoltage x-ray beams: a dosimetric study using a novel multi-compartment 3D radiochromic dosimeter. J Phys: Conf Ser 444:012025Google Scholar
  5. Andrews HL, Murphy RE, LeBrun EJ (1957) Gel dosimeter for depth dose measurements. Rev Sci Instrum 28:329–332CrossRefGoogle Scholar
  6. Atae G, Mahdavi SR, Mohammadi NA, Taheri OM, Khadem AM (2015) Effect of mega voltage energy on dose enhancement in phantom study by using gold nanoparticle polymer gel dosimeter. Inter J Biomed Sci Engg 3:1–4Google Scholar
  7. Audet C, Duzenli C, Kwa W, Tsang V, Mackay A (1996) An example of MRI polymer dosimetry applied to 3D conformal radiotherapy. Med Phys 23:803Google Scholar
  8. Avery S, Kraus J, Lin L, Kassaee A, Maryanski M (2015) MO-F-CAMPUS-T02: dosimetric accuracy of the crystalball: new reusable radiochromic polymer gel dosimeter for patient QA in proton therapy. Med Phys 42:3581CrossRefGoogle Scholar
  9. Babaei M, Ganjalikhani M (2014) The potential effectiveness of nanoparticles as radiosensitizers for radiotherapy. Bioimpacts 4:15–20PubMedPubMedCentralGoogle Scholar
  10. Babic S, Battista J, Jordan K (2009) Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel. Phys Med Biol 54:6791–6808PubMedCrossRefPubMedCentralGoogle Scholar
  11. Back SA (1998) Implementation of MRI gel dosimetry in radiation therapy. Ph.D. thesis, Department of radiation physics, Malmo Lund University, SwedenGoogle Scholar
  12. Baldock C (2006) Historical overview of the development of gel dosimetry. J Phys: Conf Ser 56:14–22Google Scholar
  13. Baldock C, Burford RP, Billingham NC, Cohen D, Keevin SF (1996) Polymer gel composition in MRI dosimetry. Med Phys 23:1070Google Scholar
  14. Baldock C, Burford RP, Billingham NC, Wagner GS, Patval S, Badawi R, Keevil SF (1998a) Experimental procedure for the manufacture and calibration of Polyacrylamide gel (PAG) for magnetic resonance imaging (MRI) radiation dosimetry. Phys Med Biol 43:695–702PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baldock C, Rintoul L, Keevil SF, Pope JM, George GA (1998b) Fourier transform raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry. Phys Med Biol 43:3617–3627PubMedCrossRefPubMedCentralGoogle Scholar
  16. Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63PubMedPubMedCentralCrossRefGoogle Scholar
  17. Basfar AA, Moftah B, Rabaeh KA, Almousa AA (2015) Novel composition of polymer gel dosimeters based on N-(Hydroxymethyl) acrylamide for radiation therapy. Radiat Phys Chem 112:117–120CrossRefGoogle Scholar
  18. Bero MA, Gilboy WB, Glover PM, El-masri HM (2000) Tissue-equivalent gel for non-invasive spatial radiation dose measurements. Nucl Instrum Meth B 166–167:820–825CrossRefGoogle Scholar
  19. Boni AL (1961) A polyacrylamide gamma dosimeter. Radiat Res 14:374–380CrossRefGoogle Scholar
  20. Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloid Surface B 72:128–134CrossRefGoogle Scholar
  21. Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chang YJ, Hsieh LL, Liu MH, Liu JS, Hsieh BT (2013) The study of N-isopropylacrylamide gel dosimeter doped iodinated contrast agents. J Phys: Conf Ser 444:012109Google Scholar
  23. Cheow WS, Xu R, Hadinoto K (2013) Towards sustainability: new approaches to nano-drug preparation. Curr Pharm Des 19:6229–6245PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cho Y, Lee D, Lee Y, Park J, Kim K, Jung H, Ji Y, Chang U, Kwon S (2014) Dosimetric evaluation of polymer gel dosimeter using saccharide in clinical radiation therapy system. Int J Radiat Oncol 90:S936CrossRefGoogle Scholar
  26. Cooper DR, Bekah D, Nadeau JL (2014) Gold nanoparticles and their alternatives for radiation therapy enhancement. Front Chem 2:86PubMedPubMedCentralCrossRefGoogle Scholar
  27. Day MJ, Stein G (1950) Chemical effects of ionizing radiation in some gels. Nat 166:146–147CrossRefGoogle Scholar
  28. De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463PubMedCrossRefPubMedCentralGoogle Scholar
  29. Deyhimihaghighi N, Mohd Noor N, Soltani N, Jorfi R, Erfani Haghir M, Adenan MZ, Saion E, Khandaker MU (2014) Contrast enhancement of magnetic resonance imaging (MRI) of polymer gel dosimeter by adding Platinum nano-particles. J Phys: Conf Ser 546:012013Google Scholar
  30. Dong C, Zhang X, Cai H (2014) Green synthesis of monodisperse silver nanoparticles using hydroxyl propyl methyl cellulose. J Alloy Compd 583:267–271CrossRefGoogle Scholar
  31. Doran SJ, Koerkamp KK, Bero MA, Jenneson P, Morton EJ, Gilboy WB (2001) A CCD-based optical-CT scanner for high-resolution 3D-imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results. Phys Med Biol 46:3191–3213PubMedCrossRefPubMedCentralGoogle Scholar
  32. DOSGEL (1999) In: Schreiner LJ, Audet C (eds) Proceeding 1st international workshop on radiation therapy gel dosimetry. Canadian organization of medical physicists, Lexington, KYGoogle Scholar
  33. DOSGEL (2001) In: Baldock C, De Deene Y (eds) Proceeding 1st international conference on radiation therapy gel dosimetry. Queensland University of Technology, Brisbane, AustraliaGoogle Scholar
  34. DOSGEL (2004) In: Deene Y De, Baldock C (eds) Proceeding 3rd international conference on radiation therapy gel dosimetry. Ghent University, Ghent, BelgiumGoogle Scholar
  35. DOSGEL (2006) In: Lepage M, Jirasek A, Schreiner LJ (eds) Proceeding 4th international conference on radiation therapy gel dosimetry. Universit´e de Sherbrooke, Sherbrooke, CanadaGoogle Scholar
  36. DOSGEL (2008). In: Maris TG, Pappas E (eds) Proceeding 5th international conference on radiation therapy gel dosimetry. University of Crete, GreeceGoogle Scholar
  37. El- Alaily TM, El- Nimr MK, Saafan SA, Kamel MM, Meaz TM, Assar ST (2015) Construction and calibration of a low cost and fully automated vibrating sample magnetometer. J Magn Magn Mater 386:25–30CrossRefGoogle Scholar
  38. Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol B 155:34–38PubMedCrossRefPubMedCentralGoogle Scholar
  39. Elango G, Kumaran SM, Kumar SS, Muthuraja S, Roopan SM (2015) Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta A 145:176–180CrossRefGoogle Scholar
  40. Farajollahi AR, Bonnett DE, Aukett RJ, Radcliffe AJ (1997) The advantages and limitations of polymer gel dosimetry in brachytherapy. J Int Fed Med Biol Eng 35:1012Google Scholar
  41. Fernandes JP, Pastorello BF, de Araujo DB, Baffa O (2008) Formaldehyde increases MAGIC gel dosimeter melting point and sensitivity. Phys Med Biol 53:N53–N58PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fong PM, Keil DC, Does MD, Gore JC (2001) Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys Med Biol 46:3105–3113PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fricke H, Morse S (1927) The chemical action of Roentgen rays on dilute ferrous sulphate solutions as a measure of radiation dose. Am J Roentgenol Radium Ther Nucl Med 18:430–432Google Scholar
  44. Gafar SM, El-Ahdal MA (2015) Radiochromic fuchsine-gel and its possible use for low dosimetry applications. Adv Polym Tech. Scholar
  45. Gafar SM, El-Kelany MA, El-Ahdal MA, El-Shawadfy SR (2014) Toluidine Blue O-gelatin gel dosimeter for radiation processing. Open J Polym Chem 4:56–61CrossRefGoogle Scholar
  46. Gambarini G, Arrigoni S, Bonardi M, Cantone MC, deBartolo D, Desiati S, Facchielli L, Sichirollo AE (1994) A system for 3-D absorbed dose measurements with tissue-equivalence for thermal neutrons. Nucl Instrum Meth A 353:406–410CrossRefGoogle Scholar
  47. Gochberg DF, Kennan RP, Maryanski MJ, Gore JC (1998) The role of specific side groups and pH in magnetization transfer in polymers. J Magn Reson 131:191–198PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gore JC, Kang YS, Schulz RJ (1984) Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol 29:1189–1197PubMedCrossRefPubMedCentralGoogle Scholar
  49. Gore JC, Ranade M, Maryanski MJ, Schulz RJ (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: I. Development of an optical scanner. Phys Med Biol 41:2695–2704PubMedCrossRefPubMedCentralGoogle Scholar
  50. Govi N, Gueye P, Avery S (2013) Application of MAGAT polymer gel dosimetry in breast balloon. J Phys: Conf Ser 444:012103Google Scholar
  51. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new x-ray contrast agent. Br J Radiol 79:248–253PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hassani H, Nedaie HA, Zahmatkesh MH, Shirani K (2014) A dosimetric study of small photon fields using polymer gel and Gafchromic EBT films. Med Dosim 39:102–107PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hayashi S, Fujiwara F, Usui S, Tominaga T (2012) Effect of inorganic salt on the dose sensitivity of polymer gel dosimeter. Radiat Phys Chem 81:884–888CrossRefGoogle Scholar
  55. Helan V, Prince JJ, Al-Dhabi NA, Arasu MV, Ayeshamariam A (2016) Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Res Phys 6:712–718Google Scholar
  56. Hilts M, Duzenli C (2004) Image filtering for improved dose resolution in CT polymer gel dosimetry. Med Phys 31:39–49PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hilts M, Audet C, Duzenli C, Jirasek A (2000) Polymer gel dosimetry using x-ray computed tomography: a feasibility study. Phys Med Biol 45:2559–2571PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hiroki A, Sato Y, Nagasawa N, Ohta A, Seito H, Yamabayashi H, Yamamoto T, Taguchi M, Tamada M, Kojima T (2001) Preparation of polymer gel dosimeters based on less toxic monomers and gellan gum. J Phys: Conf Ser 58:7131–7141Google Scholar
  59. Hiroki A, Yamashita S, Sato Y, Nagasawa N, Taguchi M (2013) New polymer gel dosimeters consisting of less toxic monomers with radiation-crosslinked gel matrix. J Phys: Conf Ser 444:012028Google Scholar
  60. Hoecker FE, Watkins IW (1958) Radiation polymerization dosimetry. Int J Appl Radiat Is 3:31–35CrossRefGoogle Scholar
  61. Hsieh B, Chiang C, Hung P, Kao C, Liang J (2011) Preliminary investigation of a new type of propylene based gel dosimeter (DEMBIG). J Radioanal Nucl Ch 288:799–803CrossRefGoogle Scholar
  62. Ibbott GS, Bova FJ, Maryanski MJ, Zhang Y, Holcomb S, Avison RG, Meeks SL (1996) Use of BANG polymer gel dosimeter to evaluate repeat-fixation stereotactic radiation therapy. Med Phys 23:1070Google Scholar
  63. Ibbott GS, Maryanski MJ, Eastman P, Holcomb SD, Zhang Y, Avison R, Sanders M, Gore JC (1997) Three dimensional visualization and measurement of conformal dose distributions using magnetic resonance imaging of BANG gel dosimeters. Int J Radiat Oncol Biol Phys 38:1097–1103PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jain S, Hirst DG, O’Sullivan JM (2012) Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jelveh S, Chithrani DB (2011) Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancers 3:1081–1110PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jeremic B, Aguerri AR, Filipovic N (2013) Radiosensitization by gold nanoparticles. Clin Transl Oncol 15:593–601PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jirasek A, Hilts M, McAuley KB (2010) Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry. Phys Med Biol 55:5269–5281PubMedCrossRefPubMedCentralGoogle Scholar
  68. Jordan K (2009) Optical CT scanning of cross-linked radiochromic gel without cylinder wall. J Phys: Conf Ser 164:012029Google Scholar
  69. Jordan K, Avvakumov N (2009) Radiochromic leuco dye micelle hydrogels: I initial investigation. Phys Med Biol 54:141–153CrossRefGoogle Scholar
  70. Kakade NR, Sharma SD (2015) Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. J Can Res Ther 11:94–97CrossRefGoogle Scholar
  71. Kalaiselvi A, Roopan SM, Madhumitha G, Ramalingam C, Elango G (2015) Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation. Spectrochim Acta A 135:116–119CrossRefGoogle Scholar
  72. Kalin IP, Mequanint K (2013) The effect of mixed dopants on the stability of Fricke gel dosimeters. J Phys: Conf Ser 444:012105Google Scholar
  73. Kamiar A, Ghotaslou R, Valizadeh H (2013) Preparation, physicochemical characterization and performance evaluation of gold nanoparticles in radiotherapy. Adv Pharn Bull 3:425–428Google Scholar
  74. Kawamura H, Shinoda K, Miyamoto K, Sakae T, Monma M, Matsumura A (2013) Investigation of polymer gel dosimetry for small circular irradiated fields. Nihon Hoshasen Gijutsu Gakkai zasshi 69:933–943PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kennan RP, Richardson KA, Zhong J, Maryanski MJ, Gore JC (1996) The effects of cross-link density and chemical exchange on magnetization transfer in Polyacrylamide gels. J Magn Reson 110:267–277CrossRefGoogle Scholar
  76. Khadem AM, Mahdavi M, Mahdavi SRM, Ataei G (2013) Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy. Int J Radiat Res 11:55–61Google Scholar
  77. Khan FM (2003) The physics of radiation therapy. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  78. Khoei S, Mahdavi SR, Fakhimikabir H, Shakeri-Zadeh A, Hashemian A (2014) The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line du145 at megavoltage radiation energies. Int J Radiat Biol 90:1–6CrossRefGoogle Scholar
  79. Khosravi H, Hashemi B, Mahdavi SR, Hejazi P (2015) Effect of gold nanoparticles on prostate dose distribution under ir-192 internal and 18 mv external radiotherapy procedures using gel dosimetry and monte carlo method. J Biomed Phys Eng 5:3–14PubMedPubMedCentralGoogle Scholar
  80. Kobayashi K, Usami N, Porcel E, Lacombe S, LeSech C (2010) Enhancement of radiation effect by heavy elements. Mutat Res 704:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  81. Krstajic N, Doran S (2006) Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry. Phys Med Biol 51:2055–2075PubMedCrossRefPubMedCentralGoogle Scholar
  82. Krstajic N, Doran S (2007) Fast laser scanning optical-CT apparatus for 3D radiation dosimetry. Phys Med Biol 52:N257–N263PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kumar DS, Samuel EJJ (2012) Polymer gel dosimetry for radiation therapy. In: Gopishankar N (ed) Modern practices in radiation therapy. Intech, Germany, pp 309–326Google Scholar
  84. Kumar M, Varshney L, Francis S (2005) Radiolytic formation of Ag clusters in aqueous polyvinyl alcohol solution and hydrogel matrix. J Radiat Phys Chem 73:21–27CrossRefGoogle Scholar
  85. Kumar DA, Palanichamy V, Roopan SM (2014) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta A 127:168–171CrossRefGoogle Scholar
  86. Kumar DA, Palanichamy V, Roopan SM (2015) One step production of AgCl nanoparticles and its antioxidant and photo catalytic activity. Mater Lett 144:62–64CrossRefGoogle Scholar
  87. Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2:330–342Google Scholar
  88. Lai T, Park HG, Choi SH (2007) γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations. Mater Chem Phys 105:325–330CrossRefGoogle Scholar
  89. Le Duc G, Miladi I, Alric C, Mowat P, Bräuer-Krisch E, Bouchet A, Khalil E, Billotey C, Janier M, Lux F, Epicier T, Perriat P, Roux S, Tillement O (2011) Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 5:9566–9574PubMedCrossRefPubMedCentralGoogle Scholar
  90. Le Duc G, Roux S, Paruta-Tuarez A, Dufort S, Brauer E, Marais A, Truillet C, Sancey L, Perriat P, Lux F, Tillement O (2014) Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol 5:4PubMedPubMedCentralCrossRefGoogle Scholar
  91. Leung MKK, Chow JCL, Chithrani BD, Lee MJG, Oms B, Jaffray DA (2011) Irradiation of gold nanoparticles by x-rays: monte carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Med Phys 38:624–631PubMedCrossRefPubMedCentralGoogle Scholar
  92. Low DA, Dempsey JF, Venkatesan R, Mutic S, Markman J, Haacke EM, Purdy JA (1999) Evaluation of polymer gels and MRI as a 3D dosimeter for intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 26:15Google Scholar
  93. Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, Borghi E, Levy L (2012) Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol 8:1167–1181PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mahdavi M, Khadem AM, Mahdavi SRM, Ataei G (2013) Effect of gold nanoparticle on percentage depth dose enhancement on megavoltage energy in MAGICA polymer gel dosimeter. J Biomed Phys Eng 3:37–44PubMedPubMedCentralGoogle Scholar
  95. Marill J, Anesary NM, Zhang P, Vivet S, Borghi E, Levy L, Pottier A (2014) Hafnium oxide nanoparticles: toward an in vitro predictive biological effect? Radiat Oncol 9:150PubMedPubMedCentralCrossRefGoogle Scholar
  96. Marques T, Schwarcke M, Garrido C, Zucolotto V, Baffa O, Nicolucci P (2010) Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. J Phys: Conf Ser 250:012084Google Scholar
  97. Maryanski MJ, Gore JC, Schulz RJ (1992) 3-D radiation dosimetry by MRI: solvent proton relaxation enhancement by radiation-controlled polymerisation and cross-linking in gels. Proc Intl Soc Mag Reson Med (New York)Google Scholar
  98. Maryanski MJ, Gore JC, Kennan RP, Schulz RJ (1993) NMR relaxation enhancement in gels polymerized and cross-linked by ionizing radiation: a new approach to 3D dosimetry by MRI. Magn Reson Imaging 11:253–258PubMedCrossRefPubMedCentralGoogle Scholar
  99. Maryanski MJ, Gore JC, Schulz R (1994a) Three-dimensional detection, dosimetry and imaging of an energy field by formation of a polymer in a gel. US Patent 5,321,357Google Scholar
  100. Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994b) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455PubMedCrossRefPubMedCentralGoogle Scholar
  101. Maryanski MJ, Zastavker YZ, Gore JC (1996) Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: 2. Optical properties of the BANG polymer gel. Phys Med Biol 41:2705–2717PubMedCrossRefPubMedCentralGoogle Scholar
  102. Maryanski MJ, Audet C, Gore JC (1997) Effects of crosslinking and temperature on the dose response of a BANG polymer gel dosimeter. Phys Med Biol 42:303–311PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mather ML, Charles PH, Baldock C (2003) Measurement of ultrasonic attenuation coefficient in polymer gel dosimeters. Phys Med Biol 48:N269–N275PubMedCrossRefPubMedCentralGoogle Scholar
  104. Mattea F, Chacón D, Vedelago J, Valente M, Miriam CS (2015) Polymer gel dosimeter based on itaconic acid. Appl Radiat Isotopes 105:98–104CrossRefGoogle Scholar
  105. McJury M, Oldham M, Leach MO, Webb S (1999a) Dynamics of polymerization in polyacrylamide gel (PAG) dosimeters: (i) aging and long-term stability. Phys Med Biol 44:1863–1873PubMedCrossRefPubMedCentralGoogle Scholar
  106. McJury M, Tapper PD, Cosgrove VP, Murphy PS, Griffin S, Leach M, Webb S, Oldham M (1999b) Experimental 3D dosimetry around a high dose-rate clinical 192Ir source using a polyacrylamide gel (PAG) dosimeter. Phys Med Biol 44:2431–2444PubMedCrossRefPubMedCentralGoogle Scholar
  107. McJury M, Oldham M, Cosgrove VP, Murphy PS, Doran S, Leach MO, Webb S (2000) Radiation dosimetry using polymer gels: methods and applications. Br J Radiol 73:919–929PubMedCrossRefPubMedCentralGoogle Scholar
  108. McMahon SJ, Mendenhall MH, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651PubMedCrossRefPubMedCentralGoogle Scholar
  109. Meesat R, Jay-Gerin JP, Khalil A, Lepage M (2009) Evaluation of the dose enhancement of iodinated compounds by polyacrylamide gel dosimetry. Phys Med Biol 54:5909–5917PubMedCrossRefPubMedCentralGoogle Scholar
  110. Miladi I, Le Duc G, Kryza D, Berniard A, Mowat P, Roux S, Taleb J, Bonazza P, Perriat P, Lux F, Tillement O, Billotey C, Janier M (2013) Biodistribution of ultrasmall gadolinium-based nanoparticles as theranostic agent: application to brain. J Biomater Appl 28:385–394PubMedCrossRefPubMedCentralGoogle Scholar
  111. Nagahata T, Yamaguchi H, Monzen H, Nishimura Y (2014) The use of polymer gel dosimetry to measure dose distribution around metallic implants. Nihon Hoshasen Gijutsu Gakkai Zasshi 70:1160–1165PubMedCrossRefPubMedCentralGoogle Scholar
  112. Oldham M, McJury M, Baustert I, Webb S, Leach MO (1998) Improving calibration accuracy in gel dosimetry. Phy Med Biol 43:2709–2720CrossRefGoogle Scholar
  113. Oldham M, Siewerdsen JH, Shetty A, Jaffray DA (2001) High resolution gel-dosimetry by optical-CT and MR scanning. Med Phys 28:1436–1445PubMedCrossRefPubMedCentralGoogle Scholar
  114. Olsson LE, Westrin BA, Fransson A, Nordell B (1992) Diffusion of ferric ions in agarose dosimeter gels. Phys Med Biol 37:2243–2252CrossRefGoogle Scholar
  115. Ono K, Fujimoto S, Hayashi S, Miyazawa M, Akagi Y, Hirokawa Y (2015) Dosimetric evaluation of ArcCHECK and 3DVH system using customized polymer gel dosimeter. Med Phys 42:3406CrossRefGoogle Scholar
  116. Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1:228–234Google Scholar
  117. Pilarova (Vavru) K, Kozubikovaá P, Solc J, Spevacek V (2014) Characteristics of polyacrylamide gel with THPC and turnbull blue gel dosimeters evaluated using optical tomography. Radiat Phys Chem 104:283–286Google Scholar
  118. Porcel E, Liehn S, Remita H, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Lacombe S (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnol 21:085103CrossRefGoogle Scholar
  119. Porcel E, Kobayashi K, Usami N, Remita H, Le Sech C, Lacombe S (2011) Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays. J Phys: Conf Ser 261:012004Google Scholar
  120. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol 5:136–142CrossRefGoogle Scholar
  122. Rahman WN, Wonga CJ, Yagi N, Davidson R, Geso M (2010) Dosimetry and its enhancement using gold nanoparticles in synchrotron based microbeam and stereotactic radiosurgery. AIP Conf Proc 1266:107CrossRefGoogle Scholar
  123. Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloid Surf B 92:209–212CrossRefGoogle Scholar
  124. Roopan SM, Surendra TV, Elango G, Kumar SHS (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300PubMedCrossRefPubMedCentralGoogle Scholar
  125. Sakhalkar HS, Oldham M (2008) Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation. Med Phys 35:101–111PubMedPubMedCentralCrossRefGoogle Scholar
  126. Samuel EJJ, Sathiyaraj P, Titus D, Kumar DS (2015) Antioxidant effect of green tea on polymer gel dosimeter. J Phys: Conf Ser 573:012065Google Scholar
  127. Schreiner LJ (2004) Review of Fricke gel dosimeters. J Phys: Conf Ser 3:9–21Google Scholar
  128. Sellakumar P, Samuel EJJ, Supe SS (2007) Water equivalence of polymer gel dosimeters. Radiat Phys Chem 76:1108–1115CrossRefGoogle Scholar
  129. Senden RJ, De Jean P, McAuley KB, Schreiner LJ (2006) Polymer gel dosimetry with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 51:3301–3314PubMedCrossRefPubMedCentralGoogle Scholar
  130. Senkesen O, Tezcanli E, Buyuksarac B, Ozbay I (2014) Comparison of 3D dose distributions for HDR 192Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system. Med Dosim 39:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  131. Solc J, Spevacek V (2009) New radiochromic gel for 3D dosimetry based on Turnbull blue: basic properties. Phys Med Biol 54:5095–5101PubMedCrossRefPubMedCentralGoogle Scholar
  132. Soliman YS (2014) Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat Phys Chem 102:60–67CrossRefGoogle Scholar
  133. Su XY, Liu PD, Wu H, Gu N (2014) Enhancement of radiosensitization by metal-based nanoparticles in cancer radiationtherapy. Cancer Biol Med 11:86–91PubMedPubMedCentralGoogle Scholar
  134. Subramanian B, Ravindran PB, Baldock C (2006) Optimization of the imaging protocol of an X-ray CT scanner for evaluation of normoxic polymer gel dosimeters. J Med Phys 31:72–77PubMedPubMedCentralCrossRefGoogle Scholar
  135. Surendra TV, Roopan SM, Arasu MV, Al-Dhabi NA, Rayalu GM (2016) RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J Photochem Photobiol, B 162:550–557CrossRefGoogle Scholar
  136. Taupin F, Flaender M, Delorme R, Brochard T, Mayol J, Arnaud J, Perriat P, Sancey L, Lux F, Barth RF, Carrière M, Ravanat J, Elleaume H (2015) Gadolinium nanoparticles and contrast agent as radiation sensitizers. Phys Med Biol 60:4449–4464PubMedCrossRefPubMedCentralGoogle Scholar
  137. Temgire MK, Joshi SS (2004) Optical and structural studies of silver nanoparticles. J Radiat Phys Chem 71:1039–1044CrossRefGoogle Scholar
  138. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  139. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  140. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromolec 72:834–847CrossRefGoogle Scholar
  141. Trapp JV, Leach MO, Webb S (2005) Preliminary dose response study of a gel dosimeter using 2-Hydroxyethyl Methacrylate (HEMA). Australas Phys Eng Sci Med 28:172–174PubMedCrossRefPubMedCentralGoogle Scholar
  142. Vachier MC, Rutledge DN (1996) Influence of temperature, pH, water content, gel strength and their interactions on NMR relaxation of gelatins IÐ analysis of the calculated relaxation times. J Magn Reson Analysis 2:311–320Google Scholar
  143. Van den Heuvel F, Locquet JP, Nuyts S (2010) Beam energy considerations for gold nano-particle enhanced radiation treatment. Phys Med Biol 55:4509–4520PubMedCrossRefPubMedCentralGoogle Scholar
  144. Van Doorn T, Bhat M, Rutten TP, Tran T, Costanzo A (2005) A fast, high spatial resolution optical tomographic scanner for measurement of absorption in gel dosimetry. Australas Phys Eng Sci Med 28:76–85CrossRefGoogle Scholar
  145. Vegera AV, Zimon AD (2006) Synthesis and physicochemical properties of silver nanoparticles stabilized by acid gelatin. Rus J Appl Chem 79:1403–1406CrossRefGoogle Scholar
  146. Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C (2005a) Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 50:3875–3888PubMedCrossRefPubMedCentralGoogle Scholar
  147. Venning AJ, Nitschke KN, Keall PJ, Baldock C (2005b) Radiological properties of normoxic polymer gel dosimeters. Med Phys 32:1047–1053PubMedCrossRefPubMedCentralGoogle Scholar
  148. Vergote K, De Deene Y, Claus F, De Gersem W, Van Duyse B, Paelinck L, Achten E, De Neve W, De Wagter C (2003) Application of monomer/polymer gel dosimetry to study the effects of tissue inhomogeneities on intensity-modulated radiation therapy (IMRT) dose distributions. Radiother Oncol 67:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  149. Vergote K, De Deene Y, Bussche EV, De Wagter C (2004) On the relation between the spatial dose integrity and the temporal instability of polymer gel dosimeters. Phys Med Biol 49:4507–4522PubMedCrossRefPubMedCentralGoogle Scholar
  150. Watanabe Y, Nakaguchi Y (2013) 3D evaluation of 3DVH program using BANG3 polymer gel dosimeter. Med Phys 40:082101PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wuu C-S, Schiff P, Maryanski MJ, Liu T, Borzillary S, Weinberger J (2003) Dosimetry study of Re-188 liquid balloon for intravascular brachytherapy using polymer gel dosimeters and laser-beam optical-CT scanner. Med Phys 30:132–137PubMedCrossRefPubMedCentralGoogle Scholar
  152. Yao T, Denkova AG, Warman JM (2014) Polymer-gel formation and reformation on irradiation of tertiary-butyl acrylate. Radiat Phys Chem 97:147–152CrossRefGoogle Scholar
  153. Yun Z, Pingqiang W, Bo L, Li Maoshun, Wuxiong F, Rui C (2010) An improvement for polymer gel dosimeter of type PAGAT. Nucl Electron Detect Technol 30:935–939Google Scholar
  154. Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419PubMedCrossRefPubMedCentralGoogle Scholar
  155. Zhu X, Reese TG, Crowley EM, El Fakhri G (2010) Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry. Med Phys 37:183–188PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Deena Titus
    • 1
  • E. James Jebaseelan Samuel
    • 1
  • Selvaraj Mohana Roopan
    • 2
    Email author
  1. 1.Medical Gel Dosimetry Lab, Department of Physics, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia
  2. 2.Department of Chemistry, School of Advanced Sciences, Chemistry of Heterocycles & Natural Product Research LaboratoryVellore Institute of TechnologyVelloreIndia

Personalised recommendations