Skip to main content
Book cover

Polymer Gels pp 279–307Cite as

Design of Multifunctional Nanogels with Intelligent Behavior

  • Chapter
  • First Online:

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

The design of polymeric nanogels with novel properties (dimensional structure, mechanics, high water content, and biocompatibility) continues to attract the attention of both scientific researchers and biomedical industries seeking new materials for application in areas such as tissue engineering, cell immobilization, separation of biomolecules or cells, biomedical implants, for use as diagnostic agents and in theranostics. The impressive progress in material and pharmaceutical sciences has given rise to the design of a broad range of nanogels of diverse size, architecture, and surface properties. The nanoscopic scale of these nanocarriers permits systemic (intravenous) or local (mucosal) administration and facilitates their diffusion within the cell. Moreover, surface functionalization methodologies can impart to the nanocarriers the ability to control pharmacokinetic and bio-distribution. Interest in intelligent nanogels has grown in recent years owing to their capacity to regulate behavior in response to external physical, chemical and biological stimuli. The different methods of nanogel synthesis and the adequate structure/property ratio for intelligent behavior and novel applications will be described and discussed in this chapter, presenting the most significant progress achieved in recent years in the field of nanocarriers in biomedical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu Samah NH, Heard CM (2013) Enhanced in vitro transdermal delivery of caffeine using a temperature- and pH-sensitive nanogel, poly(NIPAM-co-AAc). Int J Pharm 453(2):630–640

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi K, Deguchi S, Moriguchi N, Yamaguchi S, Sunamoto J (1993) Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules 26:3062–3068

    Article  CAS  Google Scholar 

  • An D et al (2015) Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties. Carbohydr Polym 134:385–389

    Article  CAS  PubMed  Google Scholar 

  • Asadian-birjand M et al (2016) Transferrin decorated thermoresponsive nanogels as magnetic trap devices for circulating tumor cells. Macromol Rapid Commun 37:439–445

    Article  CAS  PubMed  Google Scholar 

  • Asokan A, Cho MJ (2002) Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. J Pharm Sci 91(4):903–913

    Article  CAS  PubMed  Google Scholar 

  • Ayano E et al (2012) Poly(N-isopropylacrylamide)-PLA and PLA blend nanoparticles for temperature-controllable drug release and intracellular uptake. Colloids Surf, B 99:67–73

    Article  CAS  Google Scholar 

  • Bae KH, Mok H, Park TG (2008) Biomaterials synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Am J Hematol 29:3376–3383

    CAS  Google Scholar 

  • Baek SM et al (2015) Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale 7:14191–14216

    Google Scholar 

  • Bhardwaj P et al (2009) Poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic Acid) Nanogels made by inverse microemulsion polymerization. J Macromol Sci Part A 46(11):1083–1094

    Article  CAS  Google Scholar 

  • Bickerton S, Jiwpanich S, Thayumanavan S (2012) Interconnected roles of scaffold hydrophobicity, drug loading, and encapsulation stability in polymeric nanocarriers. Mol Pharm 9(12):3569–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilalis P et al (2016) Preparation of hybrid triple-stimuli responsive nanogels based on poly(L-histidine). J Polym Sci, Part A: Polym Chem 54(9):1278–1288

    Article  CAS  Google Scholar 

  • Boularas M et al (2015) Design of smart oligo(ethylene glycol)-based biocompatible hybrid microgels loaded with magnetic nanoparticles. Macromol Rapid Commun 36(1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Brazel CS (2009) Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 26(3):644–656

    Article  CAS  PubMed  Google Scholar 

  • Calderón M et al (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92(9):1242–1251

    Article  CAS  PubMed  Google Scholar 

  • Chacko RT et al (2012) Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev 64(9):836–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chem P, Brian P, Currently V (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852

    Article  Google Scholar 

  • Chen T et al (2011) Preparation and characterization of thermosensitive organic–inorganic hybrid microgels with functional Fe3O4 nanoparticles as crosslinker. Polymer 52(1):172–179

    Article  CAS  Google Scholar 

  • Chen W et al (2013) In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Biomacromol 14(4):1214–1222

    Article  CAS  Google Scholar 

  • Cheng R et al (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657

    Article  CAS  PubMed  Google Scholar 

  • Chiang W et al (2013) Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir 29:6434–6443

    Article  CAS  PubMed  Google Scholar 

  • Choi KY et al (2012) Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4(2):330–342

    Article  CAS  PubMed  Google Scholar 

  • Cortez-Lemus NA, Licea-Claverie A (2015) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci

    Google Scholar 

  • Cuggino JC et al (2016) Responsive nanogels for application as smart carriers in endocytic pH-triggered drug delivery systems. Eur Polym J 78:14–24

    Article  CAS  Google Scholar 

  • Cuggino JC et al (2011) Thermosensitive nanogels based on dendritic polyglycerol and N-isopropylacrylamide for biomedical applications. Soft Matter 7(23):11259

    Article  CAS  Google Scholar 

  • Dailing EA et al (2015) Soft matter photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks. Soft Matter

    Google Scholar 

  • Dürr S et al (2013) Magnetic nanoparticles for cancer therapy. Nanotechnol Rev 2(4):395–409

    Article  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884

    Article  CAS  PubMed  Google Scholar 

  • Fuchs AV, Gemmell AC, Thurecht KJ (2015) Utilising polymers to understand diseases: advanced molecular imaging agents. Polym Chem 6:868–880

    Article  CAS  Google Scholar 

  • Ganta S et al (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 126(3):187–204

    Article  CAS  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Can Res 56:1194–1198

    CAS  Google Scholar 

  • Giulbudagian M et al (2014) Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 5:6909–6913

    Article  CAS  Google Scholar 

  • Gyarmati B, Nmethy R, Szilgyi A (2013) Reversible disulphide formation in polymer networks: a versatile functional group from synthesis to applications. Eur Polym J 49(6):1268–1286

    Article  CAS  Google Scholar 

  • Hatakeyama H, Akita H, Harashima H (2011) A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma. Adv Drug Deliv Rev 63(3):152–160

    Article  CAS  PubMed  Google Scholar 

  • Heffernan MJ, Murthy N (2009) Disulfide-crosslinked polyion micelles for delivery of protein therapeutics. Ann Biomed Eng 37(10):1993–2002

    Article  PubMed  Google Scholar 

  • Hoffman AS et al (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52(4):577–586

    Article  CAS  PubMed  Google Scholar 

  • Hong JS et al (2008) Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir 24(8):4092–4096

    Article  CAS  PubMed  Google Scholar 

  • Hu J et al (2012) Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37(12):1720–1763

    Article  CAS  Google Scholar 

  • Hu Z, Cai T, Chi C (2010) Thermoresponsive oligo(ethylene glycol)-methacrylate-based polymers and microgels. Soft Matter 6:2115–2123

    Article  CAS  Google Scholar 

  • Iijima M, Nagasaki Y (2006) Synthesis of poly[N-isopropylacrylamide-g-poly(ethylene glycol)] with a reactive group at the poly(ethylene glycol) end and its thermosensitive self-assembling character. J Polym Sci, Part A: Polym Chem 44(4):1457–1469

    Article  CAS  Google Scholar 

  • Jafari M, Kaffashi B (2016) Pure and applied chemistry synthesis and characterization of a novel solvent- free dextran-HEMA-PNIPAM thermosensitive nanogel. Pure Appl Chem 53(2):68–74

    CAS  Google Scholar 

  • Jeong B, Kim SW, Bae YH (2002) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54(1):37–51

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y et al (2014) Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 35(18):4969–4985

    Article  CAS  PubMed  Google Scholar 

  • Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48(30):5418–5429

    Article  CAS  Google Scholar 

  • Kamaly N et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41(7):2971–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi M et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. R Soc Chem 45:1457–1501

    Google Scholar 

  • Khandare J et al (2012) Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. Chem Soc Rev 41(7):2824–2848

    Article  CAS  PubMed  Google Scholar 

  • Kuo C-Y et al (2015) Thermo- and pH-induced self-assembly of P(AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J Polym Sci, Part A: Polym Chem 54:1109–1118

    Google Scholar 

  • Lau ACW, Wu C (1999) Thermally sensitive and biocompatible poly(N-vinylcaprolactam): synthesis and characterization of high molar mass linear chains. Macromolecules 32:581–584

    Article  CAS  Google Scholar 

  • Lee C-F, Lin C-C, Chiu W-Y (2008) Thermosensitive and control release behavior of poly(N-isopropylacrylamide-co-acrylic acid) latex particles. J Polym Sci, Part A: Polym Chem 6:5734–5741

    Article  CAS  Google Scholar 

  • Li Z et al (2014) Sonochemical fabrication of dual-targeted redox-responsive smart microcarriers. ACS Appl Mater Interfaces 6(24):22166–22173

    Article  CAS  PubMed  Google Scholar 

  • Liggins RT, Burt HM (2002) Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev 54(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Liu G, An Z (2014) Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polym Chem 5(5):1559

    Article  CAS  Google Scholar 

  • Liu G, Qiu Q, An Z (2012) Development of thermosensitive copolymers of poly(2-methoxyethyl acrylate-co-poly(ethylene glycol) methyl ether acrylate) and their nanogels synthesized by RAFT dispersion polymerization in water. Polym Chem 3:504

    Article  CAS  Google Scholar 

  • Liu J et al (2015) Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 3:6117–6147

    Article  CAS  Google Scholar 

  • Lu S et al (2013) Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. J Colloid Interface Sci 412:46–55

    Article  CAS  PubMed  Google Scholar 

  • Lutz J-F (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv Mater 23(19):2237–2243

    Article  CAS  Google Scholar 

  • Madhusudana Rao K et al (2013) Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. Colloids Surf, B 102:891–897

    Article  CAS  Google Scholar 

  • Maya S et al (2013) Smart stimuli sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–7218

    Article  CAS  PubMed  Google Scholar 

  • McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78(3):585–594

    Article  CAS  PubMed  Google Scholar 

  • McPhee W, Tam KC, Pelton R (1993) Poly(N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interface Sci 156:24–30

    Article  CAS  Google Scholar 

  • Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30(12):2180–2198

    Article  CAS  Google Scholar 

  • Merino S et al (2015) Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9(5):4686–4697

    Article  CAS  PubMed  Google Scholar 

  • Molina M et al (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44(17):6161–6186

    Article  CAS  PubMed  Google Scholar 

  • Montoro SR, de Fátima Medeiros S, Alves GM (2014) Nanostructured hydrogels. Elsevier Inc.

    Google Scholar 

  • Morimoto N et al (2013) Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14(1):56–63

    Article  CAS  PubMed  Google Scholar 

  • Motornov M et al (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35(1–2):174–211

    Article  CAS  Google Scholar 

  • Müllen K, Ober CK (2013) Polymers for advanced functional materials. In: Matyiazewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 1–502

    Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    Article  CAS  Google Scholar 

  • Nash MA et al (2012) Multiplexed enrichment and detection of malarial biomarkers using a stimuli-responsive iron oxide and gold nanoparticle reagent system. ACS Nano 6(8):6776–6785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayak S, Andrew Lyon L (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed 44(47):7686–7708

    Article  CAS  Google Scholar 

  • Oh JK et al (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci (Oxford) 33(4):448–477

    Article  CAS  Google Scholar 

  • Oh JK, Lee DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci (Oxford) 34(12):1261–1282

    Article  CAS  Google Scholar 

  • Online VA (2015) Multifunctional hybrid nanogels for theranostic applications. Soft Matter 11:8205–8216

    Article  Google Scholar 

  • Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20(3):247–256

    Article  CAS  Google Scholar 

  • Peng E, Wang F, Xue JM (2015) Nanostructured magnetic nanocomposites as MRI. J Mater Chem B: Mater Biol Med 00:1–36

    Google Scholar 

  • Peng J et al (2013) Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials 34(34):8726–8740

    Article  CAS  PubMed  Google Scholar 

  • Quesada-Perez M, Ahualli S, Martin-Molina A (2014) Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations. J Chem Phys 141(12)

    Google Scholar 

  • Raemdonck K, Demeester J, De Smedt S (2009) Advanced nanogel engineering for drug delivery. Soft Matter 5:707–715

    Google Scholar 

  • Rahimian K, Wen Y, Oh JK (2015) Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer 72:387–394

    Article  CAS  Google Scholar 

  • Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856

    Article  CAS  Google Scholar 

  • Rayo E, Guerrero Q (2014) Administración De Fármacos, pp 17–38

    Google Scholar 

  • Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25(1):55–71

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH et al (2012) Tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy. Adv Drug Deliv Rev 64(13):1447–1458

    Article  CAS  PubMed  Google Scholar 

  • Rzaev ZMO, Dinçer S, Pişkin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci (Oxford) 32(5):534–595

    Article  CAS  Google Scholar 

  • Sahiner N et al (2006) Microgel, nanogel and hydrogel-hydrogel semi-IPN composites for biomedical applications: synthesis and characterization. Colloid Polym Sci 284(10):1121–1129

    Article  CAS  Google Scholar 

  • Saito G, Swanson JA, Lee K-D (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55(2):199–215

    Article  CAS  PubMed  Google Scholar 

  • Salehi R, Rasouli S, Hamishehkar H (2015) Smart thermo/pH responsive magnetic nanogels for the simultaneous delivery of doxorubicin and methotrexate. Int J Pharm 487:274–284

    Article  CAS  PubMed  Google Scholar 

  • Sarika PR, James NR (2015) Preparation and characterisation of gelatin-gum arabic aldehyde nanogels via inverse miniemulsion technique. Int J Biol Macromol 76:181–187

    Article  CAS  PubMed  Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249

    Article  CAS  Google Scholar 

  • Shi L et al (2008) Poly (N-vinylformamide) nanogels capable of pH-sensitive protein release. Society 41:6546–6554

    Google Scholar 

  • Sierra-Martin B, Fernandez-Barbero A (2015) Multifunctional hybrid nanogels for theranostic applications. Soft Matter 11(42):8205–8216

    Article  CAS  PubMed  Google Scholar 

  • Singh N et al (2007) Au nanoparticle templated synthesis of pNIPAm nanogels. Chem Mater 19(4):719–726

    Article  CAS  Google Scholar 

  • Sivaram AJ et al (2015) Nanogels for delivery, imaging and therapy. Wiley Interdisc Rev: Nanomed Nanobiotechnol

    Google Scholar 

  • Teyssier J et al (2015) Photonic crystals cause active colour change in chameleons. Nature 1–7

    Google Scholar 

  • Thomas CS, Xu L, Olsen BD (2012) Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers. Biomacromol 13(9):2781–2792

    Article  CAS  Google Scholar 

  • Thoniyot P et al (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2)

    Google Scholar 

  • Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39(6):1074–1095

    Article  CAS  Google Scholar 

  • Verma J, Lal S, Van Noorden CJF (2014) Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma. Int J Nanomed 9:2863–2877

    Google Scholar 

  • Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65(5):663–676

    Article  CAS  PubMed  Google Scholar 

  • Vihola H et al (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26(16):3055–3064

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S, Batrakova E, Kabanov A (1999) Poly(ethylene glycol)-polyethyleneimine NanoGel(TM) particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf, B 16:291–304

    Article  CAS  Google Scholar 

  • Wang Y et al (2014) Investigation of dual-sensitive nanogels based on chitosan and N-isopropylacrylamide and its intelligent drug delivery of 10-hydroxycamptothecine. Drug Deliv 7544:1–11

    Google Scholar 

  • Wang Y et al (2013) Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. Biomacromolecules 14(9):3034–3046

    Article  CAS  PubMed  Google Scholar 

  • Witting M et al (2015) Thermosensitive dendritic polyglycerol-based nanogels for cutaneous delivery of biomacromolecules. Nanomed Nanotechnol Biol Med 11(5):1179–1187

    Article  CAS  Google Scholar 

  • Wu L, Glebe U, Böker A (2015) Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 6(29):5143–5184

    Article  CAS  Google Scholar 

  • Wu W et al (2010a) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381

    Article  CAS  PubMed  Google Scholar 

  • Wu W et al (2010b) Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials 31(29):7555–7566

    Article  CAS  PubMed  Google Scholar 

  • Xu LQ et al (2009) Simultaneous “click chemistry” and atom transfer radical emulsion polymerization and prepared well-defined cross-linked nanoparticles. Macromolecules 42(17):6385–6392

    Article  CAS  Google Scholar 

  • Yallapu MM, Jaggi M, Chauhan SC (2011) Design and engineering of nanogels for cancer treatment. Drug Discovery Today 16(9–10):457–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh C (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43(17):6254–6287

    Article  PubMed  Google Scholar 

  • Zhan F et al (2011) Acid-activatable prodrug nanogels for efficient intracellular doxorubicin release. Biomacromolecules 12(10):3612–3620

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2015) Micro- and nanogels with labile crosslinks-from synthesis to biomedical applications. Chem Soc Rev 44(7):1948–1973

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z et al (2014) Near infrared laser induced targeted cancer therapy using thermo-responsive polymer encapsulated gold nanorods. J Am Chem Soc 136:7317–7326

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rimondino, G., Biglione, C., Martinelli, M., Alvarez Igarzábal, C., Strumia, M. (2018). Design of Multifunctional Nanogels with Intelligent Behavior. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6086-1_7

Download citation

Publish with us

Policies and ethics