Polymer Gels pp 231-278 | Cite as

Polysaccharide Containing Gels for Pharmaceutical Applications

  • Catalina Natalia Cheaburu-YilmazEmail author
  • Sakine Tuncay Tanriverdi
  • Ozgen Ozer
  • Cornelia Vasile
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Bio-derived polymers are falling into the needs of pharmaceutical formulations for topical applications due to their gelling ability. Generally, in topical delivery, as an alternative way for local and systemic application of active substances, formulations in gelling form are preferred as they have multiple advantages, e.g., minimize systemic side effects, avoid gastrointestinal irritation, prevent the metabolism of the active substance in liver, etc. The present chapter reviews bio-based polymers with special reference to polysaccharides-based hydrogels with respect to their pharmaceutical applications.


Polymeric gels Hydrogels Biopolymers Polysaccharides Pharmaceutical formulations Topical delivery Gel systems 



This work was partially supported by “The Scientific and Technological Research Council of Turkey (TUBITAK), cofunded by Marie Curie Actions under FP7,” project number 115C078; Romanian National Authority for Scientific Research, ANCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0906/274/2011 and grant BIONANOMED no 164/2012.


  1. Agban Y, Lian J, Prabakar S, Seyfoddin A, Rupenthal ID (2016) Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. Intern J Pharm 501:96–101CrossRefGoogle Scholar
  2. Ahmad M, Asifmahmood SMR (2016) Hydrogel microparticles as an emerging tool in pharmaceutical field: a review. Adv Polym Technol 21:535Google Scholar
  3. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedCrossRefGoogle Scholar
  4. Aktar B, Erdal MS, Sagirli O, Gungor Ozsoy Y (2014) Optimization of biopolymer based transdermal films of metoclopramide as an alternative delivery approach. Polymers 6:1350–1365CrossRefGoogle Scholar
  5. Al-Kassas R, Wen J, En-Miao A, Amy C, Kim MJ, Sze S, Liu M, Yu J (2016) Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohyd Polym. Scholar
  6. Alur HH, Johnston TP, Mitra AK (2001) Encyclopedia of pharmaceutical technology. In: Superbrick J, Boylan JC (eds) Peptides and proteins: buccal absorption. Marcel Dekker Inc., New York pp, pp 193–218Google Scholar
  7. Andrews GP, Laverty TP, Jones DS (2009) Mucoadhesive polymeric platforms for controlled drug delivery. Eur J Pharm Biopharm 71:505–518PubMedCrossRefGoogle Scholar
  8. Aroguz AZ, Baysal K, Baysal BM (2010) Preparation and characterization of hydrogels of several polysaccarides for biomaterials applications hydrogels. Chap. 7 in biomaterials applications contemporary science of polymeric materials. ACS Symp Ser 1061:93–110CrossRefGoogle Scholar
  9. Ay Senyigit Z, Karavana SY, Erac B, Gursel O, Hosgor Limoncu M, Baloglu E (2014) Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm 64:139–156CrossRefGoogle Scholar
  10. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Progr in Biomater 2:8–16CrossRefGoogle Scholar
  11. Barnes HA (1997) Thixotropy a review. J Non-Newtonian Fluid Mech 70:1–33CrossRefGoogle Scholar
  12. Bekturov EV, Bimendina LA (1981) Interpolymer complexes. Adv Polym Sci 41:99–147CrossRefGoogle Scholar
  13. Bernkop-Schnurch A, Hornof M (2003) Intravaginal drug delivery: design, challenges and solutions. Am J Drug Deliv 1:241–254CrossRefGoogle Scholar
  14. Bokias G, Mylonas Y, Staikos G, Bumbu GG, Vasile C (2001) Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules 34:4958–4964CrossRefGoogle Scholar
  15. Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L (2015) Hyaluronic acid based hydrogels for regenerative medicine applications. BioMed Res Int 2015 871218:12Google Scholar
  16. Braccini I, Perez S (2001) Molecular basis of Ca2+-induced gelation in alginates and Pectins: the egg-box model revisited. Biomacromol 2:1089–1096CrossRefGoogle Scholar
  17. Butnaru E, Cheaburu CN, Yilmaz O, Pricope GM, Vasile C (2015) Poly(vinyl alcohol)/chitosan/ montmorillonite nanocomposites for food packaging applications: influence of montmorillonite content. High Perform Polym (0954008315617231)Google Scholar
  18. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Controlled Release 190:254–273CrossRefGoogle Scholar
  19. Calles JA, Lopez-García A, Valles EM, Palma SD, Diebol Y (2016a) Preliminary characterization of dexamethasone-loaded cross-linked hyaluronic acid films for topical ocular therapy. Intern J Pharm 509:237–243CrossRefGoogle Scholar
  20. Calles JA, Ressia JA, Llabot JM, Valles EM, Palma SD (2016b) Hyaluronan-itaconic acid–glutaraldehyde films for biomedical applications: preliminary studies. Sci Pharm 84:61–72PubMedCrossRefGoogle Scholar
  21. Carmona-Moran CA, Zavgorodny O, Penman AD, Kharlampiev E, Bridges SL Jr, Hergenrother RW, Singh JA, Wick TM (2016) Development of gellan gum containing formulations for transdermal drug delivery: component evaluation and controlled drug release using temperature responsive nanogels. Intern J Pharm 509:465–476CrossRefGoogle Scholar
  22. Cerchiara T, Abruzzo A, Parolina C, Vitali B, Bigucci F, Gallucci MC, Nicolettac FP, Luppi B (2016) Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 143:124–130PubMedCrossRefGoogle Scholar
  23. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  24. Chaterji S, Kwon IK, Park K (2007) Smart polymeric gels: redefining the limits of biomedical devices. Progr Polym Sci. 32:1083–1122CrossRefGoogle Scholar
  25. Cheaburu CN, Bumbu GG (2009) Degradable interpolymeric complexes, Chap. 10. In: Vasile C, Zaikov G, Brill (eds) Environmentally degradable materials based on multicomponent polymeric systems, 654 pagesGoogle Scholar
  26. Cheaburu CN, Vasile C (2008) Responsive freeze-drying interpolymeric associations of alginic acid and poly (N-Isopropyl Acrylamide). II. Transition and temperature dependence on pH and composition. Cell Chem Technol 42:207–212Google Scholar
  27. Cheaburu-Yilmaz CN, Yilmaz O, Vasile C (2015a) Eco-friendly chitosan-based nanocomposites: chap. In eco-friendly Polymer Nanocomposites. In: Thakur VK, Thakur, MK (eds) Chem Appl Adv Struct Mater 74:341–386Google Scholar
  28. Cheaburu-Yilmaz CN, Dumitriu RP, Nistor MT, Lupusoru C, Popa MI, Profire L, Silvestre C, Vasile C (2015b) Biocompatible and biodegradable chitosan/clay nanocomposites as new carriers for theophylline controlled release. Br J Pharm Res 6:228–254CrossRefGoogle Scholar
  29. Cheaburu-Yilmaz CN, Bibire N, Yilmaz O, Pamfil D, Lupusoru C, Lupuşoru RV, Vasile C (2017) Freeze-thaw PVA/hyaluronic acid hydrogels for controlled delivery of methotrexate for psoriasis therapy (in press)Google Scholar
  30. Chen Q, Chen H, Zhu L, Zheng J (2015) Fundamentals of double network hydrogels. J Mater Chem B 3:3654–3676CrossRefGoogle Scholar
  31. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of Chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cojocariu A, Porfire L, Cheaburu C, Vasile C (2012) Chitosan/montmorillonite composites as matrices for prolonged delivery of some novel nitric oxide donor compounds based on theophylline and paracetamol. Cell Chem Technol 46:35–43Google Scholar
  33. Das Neves J, Bahia MF (2006) Gels as vaginal drug delivery systems. Intern J Pharm 318:1–14CrossRefGoogle Scholar
  34. Davis SS (1971) Viscoelastic properties of pharmaceutical semisolids IV: destructive oscillatory testing. J Pharm Sci 60:1356–1360PubMedCrossRefPubMedCentralGoogle Scholar
  35. De la Mata A, Nieto-Miguel T, Lopez-Paniagua M, Galindo S, Aguilar MR, García-Fernandez L, Gonzalo S, Vazquez B, Roman JS, Corrales RM (2013) Chitosan-gelatin biopolymers as carrier substrata for limbal epithelial stem cells. J Mater Sci Mater Med 24:2819–2829PubMedCrossRefPubMedCentralGoogle Scholar
  36. De Pinho Neves AL, Cardoso Milioli C, Muller L, Gracher Riella H, Kuhnena NC, Stulzer HK (2014) Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids and surfaces a: physicochem. Eng Aspects 445:34–39CrossRefGoogle Scholar
  37. Dumitriu RP, Mitchell GR, Vasile C (2011) Rheological and thermal behaviour of poly (N-isopropylacrylamide)/alginate smart polymeric networks. Polym Intern 60:1398–1407CrossRefGoogle Scholar
  38. Dumitriu RP, Oprea AM, Cheaburu CN, Nistor MT, Novac O, Ghiciuc CM, Profire L, Vasile C (2014) Biocompatible and biodegradable alginate/poly (N-isopropylacrylamide) hydrogels for sustained theophylline release. J Appl Polym Sci 131:40733CrossRefGoogle Scholar
  39. Dumitriu RP, Profire L, Nita LE, Dragostin OM, Ghetu N, Peptu D, Vasile C (2015) Sulfadiazine-chitosan conjugates and their polyelectrolyte complexes with hyaluronate destined in the management of burn wounds. Materials 8:317–338PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dumitriu S (2004) Polysaccharides: structural diversity and functional versatility, 2nd Edn. CRC Press, Science, p 1224Google Scholar
  41. Dutta S, Samanta P, Dhara D (2016) Temperature, pH and redox responsive cellulose based hydrogels for protein delivery. Intern J Biol Macromol 87:92–100CrossRefGoogle Scholar
  42. Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim YJ, Hoffman JM, U to K, Aoyagi T (2014) Smart hydrogels Chap. 2 in smart biomaterials. Springerm, p 118Google Scholar
  43. Eldin MSM, Kamoun EA, Sofan MA, Elbayomi SM (2015) L-Arginine grafted alginate hydrogel beads: a novel pH-sensitive system for specific protein delivery. Arab J Chem 8:355–365CrossRefGoogle Scholar
  44. Fan L, Yang H, Yang J, Peng M, Hu J (2016) Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohyd Polym 146:427–434CrossRefGoogle Scholar
  45. Fathalla ZMA, Khaled KA, Hussein AK Alany RG, Vangala A (2016) Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 42:514–524Google Scholar
  46. Ferry JD (1961) Viscoelastic properties of polymers. Wiley, New York, p 391Google Scholar
  47. Fini A, Bergamante V, Ceschel GC (2011) Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 3:665–679PubMedPubMedCentralCrossRefGoogle Scholar
  48. Freundlich H, Rawitzer W (1927) Influence of metals on thixotropic sols and gels. Kolloid-Z 41:102–104CrossRefGoogle Scholar
  49. Fu S, Thacker A, Sperger DM, Boni RL, Buckner IS, Velankar S, Munson EJ, Block LH (2011) Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties. AAPS Pharmscitech 12:453–460PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453PubMedCrossRefGoogle Scholar
  51. Gamboa A, Araujo V, Caro N, Gotteland M, Abugoch L, Tapia C (2015) Spray freeze-drying as an alternative to the ionic gelation method to produce chitosan and alginate nano-particles targeted to the colon. J Pharm Sci 104:4373–4385PubMedCrossRefGoogle Scholar
  52. Gandhi RB, Robinson JR (1994) Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev 13:43–74CrossRefGoogle Scholar
  53. Gidwani B, Vyas A (2015) A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Intern 198268:15.
  54. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198CrossRefGoogle Scholar
  55. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MT, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polym J 72:365–385CrossRefGoogle Scholar
  56. Gulrez KHS, Phillips GO, Al-Assaf S (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech Ed Carpi A (ISBN: 978-953-307-268-5)Google Scholar
  57. Guo J, Kaletunc G (2016) Dissolution kinetics of pH responsive alginate-pectin hydrogel particles. Food Res Intern. Scholar
  58. Guo W, Orbach R, Mironi-Harpaz I, Seliktar D, Willner I (2013) Fluorescent DNA hydrogels composed of nucleic acid-stabilized silver nanoclusters. Small 9:3748–3752PubMedCrossRefGoogle Scholar
  59. Gupta H, Sharma A (2009) Ion activated bioadhesive in situ gel of clindamycin for vaginal application. Int J Drug Deliv 10:32–40CrossRefGoogle Scholar
  60. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579PubMedCrossRefPubMedCentralGoogle Scholar
  61. He CL, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 127:189–207PubMedCrossRefGoogle Scholar
  62. Hennink WE, Nostrum CFV (2002) Novel crosslinking methods to design hydrogels. Adv Drug Delivery Rev 54:13–36CrossRefGoogle Scholar
  63. Higham AK, Bonino CA, Raghavan SR, Khan SA (2014) Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism. Soft Matter 10:4990–5002PubMedCrossRefGoogle Scholar
  64. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  65. Hu X, Gong X (2016) A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J Colloid Interf Sci 470:62–70CrossRefGoogle Scholar
  66. Huang CL, Chen YB, Lo YL, Lin YH (2016) Development of chitosan/βglycerophosphate/glycerol hydrogel as a thermosensitive coupling agent. Carbohyd Polym 147:409–414CrossRefGoogle Scholar
  67. Huang Y, Szleifer I, Peppas NA (2002) A molecular theory of polymer gels. Macromolecules 35:1373–1380CrossRefGoogle Scholar
  68. Hurler J, Engesland A, Kermany BP, Skalko-Basnet N (2012) Improved texture analysis for hydrogel characterization: gel cohesiveness, adhesiveness, and hardness. J Appl Polym Sci 125:180–188CrossRefGoogle Scholar
  69. Hussain A, Ahsan F (2005) The vagina as a route for systemic drug delivery. J Control Release 103:301–313PubMedCrossRefGoogle Scholar
  70. Ibrahim MM, Hafez SA, Mahdy MM (2013) Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem hydrochloride. Asian J Pharm Sci 8:48–57CrossRefGoogle Scholar
  71. Illum L (2012) Nasal drug delivery—recent developments and future prospects. J Control Release 161:254–263PubMedCrossRefGoogle Scholar
  72. Indulekha S, Arunkumar P, Bahadur D, Srivastava R (2016) Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mat Sci Eng C 62:113–122CrossRefGoogle Scholar
  73. Ishida M, Nambu N, Nagai T (1983) Highly viscous gel ointment containing Carbopol for application to the oral mucosa. Chem Pharm Bull 31:4561–4564PubMedCrossRefGoogle Scholar
  74. Jabeen S, Maswal M, Chat OA, Rather GM, Dar AA (2016) Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels. Colloids Surf B: Biointerfaces 139:211–218PubMedCrossRefGoogle Scholar
  75. Javvaji V, Baradwaj AG, Payne GF, Raghavan SR (2011) Light-activated ionic gelation of common biopolymers. Langmuir 27:12591–12596PubMedCrossRefGoogle Scholar
  76. Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol–gel reversible hydrogels. Adv Drug Delivery Rev 64:154–162CrossRefGoogle Scholar
  77. Johnson JA Turro N, Koberstein JT, Mark JE (2010) Some hydrogels having novel molecular structures. Prog Polym Sci 35:332–337Google Scholar
  78. Jones DS, Woolfson AD, Brown AF (1997) Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Intern J Pharm 151:223–233CrossRefGoogle Scholar
  79. Kakuta T, Takashima Y, Harada A (2013) Highly elastic supramolecular hydrogels using host-guest inclusion complexes with cyclodextrins. Macromolecules 46:4575–4579CrossRefGoogle Scholar
  80. Kalam MA (2016) Development of chitosan nanoparticles coated with hyaluronic acidfor topical ocular delivery of dexamethasone. Intern J Biol Macromol 89:127–136CrossRefGoogle Scholar
  81. Karavasili C, Fatouros DG (2016) Smart materials: in situ gel-forming systems for nasal delivery. Drug Discovery Today 21:157–166PubMedCrossRefGoogle Scholar
  82. Khairnar GA, Sayyad FJ (2010) Development of buccal drug delivery system based on mucoadhesive polymers. Int J PharmTech Res 2:719–735Google Scholar
  83. Klouda L (2015) Thermoresponsive hydrogels in biomedical applications a seven-year update. Eur J Pharm Biopharm 97:338–349PubMedCrossRefGoogle Scholar
  84. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications—a review. Eur J Pharm Biopharm 68:34–45Google Scholar
  85. Kong BJ, Kim A, Park SN (2016) Properties and in vitro drug release of hyaluronic acid-hydroxyethylcellulose hydrogels for transdermal delivery of isoliquiritigenin. Carbohydr Polym 147:473–481PubMedCrossRefGoogle Scholar
  86. Kono H, Teshirogi T (2015) Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery. Internl J Biol Macromol 72:299–308CrossRefGoogle Scholar
  87. Kontogiorgos V, Smith AM, Morris GA (2015) The parallel lives of polysaccharides in food and pharmaceutical formulations. Curr Opin Food Sci 4:13–18CrossRefGoogle Scholar
  88. Korsmeyer RW, Lustig SR, Peppas NA (1968) Solute and penetrant diffusion in swellable polymers. I. Mathematical modeling. J Polym Sci Part B: Polym Phys 24:395–408CrossRefGoogle Scholar
  89. Lai JY (2013) Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery. J Mater Sci Mater Med 24:2201–2210PubMedCrossRefGoogle Scholar
  90. Lai JY, Ma DHK, Lai MH, Li YT, Chang RJ, Chen LM (2013) Characterization of cross-linked porous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS ONE 8:540–558CrossRefGoogle Scholar
  91. Langasco R, Spada G, Tuncay Tanriverdi S, Rassu G, Giunchedi P, Ozer O, Gavini E (2016) Bio-based topical system for enhanced salicylic acid delivery: preparation and performance of gels. J Pharm Pharmacol 68:999–1009PubMedCrossRefGoogle Scholar
  92. Larraneta E, Lutton REM, Woolfson AD, Donnelly RF (2016) Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R 104:1–32CrossRefGoogle Scholar
  93. Leea CH, Moturia V, Lee Y (2009) Thixotropic property in pharmaceutical formulation. J Control Release 136:88–98CrossRefGoogle Scholar
  94. Leong JY, Lam WH, Ho KW, Voo WP, Lee MFX, Lim HP, Lim SL, Tey BT, Poncelet D, Chan ES (2016) Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology 24:44–60CrossRefGoogle Scholar
  95. Li J, Liu D, Tana G, Zhao Z, Yang X, Pan W (2016) A comparative study on the efficiency of chitosan-N-acetylcysteine, chitosan oligosaccharides or carboxymethyl chitosan surface modified nanostructured lipid carrier for ophthalmic delivery of curcumin. Carbohydr Polym 146:435–444PubMedCrossRefGoogle Scholar
  96. Lim MPA, Lee WL, Widjaja E, Loo SCJ (2013) One-step fabrication of core–shell structured alginate–PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs. Biomater Sci 1:486–493CrossRefGoogle Scholar
  97. Lim YM, Gwon HJ, Park JS, Nho YC Shim JW, Kwon IK, Kim SE, Baik SH (2011) Synthesis and properties of hyaluronic acid containing copolymers crosslinked by γ-ray irradiation. Macromol Res 19:436–441Google Scholar
  98. Liow SS, Dou Q, Kai D, Karim AA, Zhang K, Xu F, Loh XJ (2016) Thermogels. In Situ gelling biomaterial. ACS Biomater Sci Eng 2:295–316CrossRefGoogle Scholar
  99. Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self-healing polysaccharide hydrogel based on dynamic covalent enamine bonds. Macromol Mater Eng 301:725–732CrossRefGoogle Scholar
  100. Liu KL, Zhang Z, Li J (2011) Supramolecular hydrogels based on cyclodextrin–polymer polypseudorotaxanes: materials design and hydrogel properties. Soft Matter 7:11290–11297CrossRefGoogle Scholar
  101. Liu ZQ, Wei Z, Zhu XL, Huang GY, Xu F, Yang JH, Osada Y, Zrínyig M, Yong JHL, Chena M (2015) Dextran-based hydrogel formed by thiol-michael addition reaction for 3D cell encapsulation. Colloids Surf, B 128:140–148CrossRefGoogle Scholar
  102. Liuzzi R, Carciati A, Guido S, Caserta S (2016) Transport efficiency in transdermal drug delivery: What is the role of fluid microstructure? Colloids Surf, B 139:294–305CrossRefGoogle Scholar
  103. Lucero MJ, Ferris C, Sánchez-Gutiérrez CA, Jiménez-Castellanosa MR, de-Paz MV (2016) Novel aqueous chitosan-based dispersions as efficient drug delivery systems for topical use. Rheological, textural and release studies. Carbohydr Polym 151:692–699Google Scholar
  104. Mabrouk M, Chejara DR, Mulla JAS, Badhe RV, Choonara YE, Kumar P, du Toit LC, Pillay V (2015) Design of a novel crosslinked HEC-PAA porous hydrogel composite for dissolution rate and solubility enhancement of efavirenz. Intern J Pharm 490:429–437CrossRefGoogle Scholar
  105. Machín R, Isasi JR, Velaz I (2012) β-cyclodextrin hydrogels as potential drug delivery systems. Carbohyd Polym 87:2024–2030CrossRefGoogle Scholar
  106. Mahdavinia GR, Mousanezhad S, Hosseinzadeh H, Darvishi F, Sabzi M (2016) Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption. Carbohydr Polym 147:379–391PubMedCrossRefPubMedCentralGoogle Scholar
  107. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mastropietro DJ, Nimroozi R, Omidian H (2013) Rheology in pharmaceutical formulations-a perspective. J Dev Drugs 2:108–116Google Scholar
  109. Mayol L, De Stefano D, De Falco F, Carnuccio R, Maiuri MC, De Rosa G (2014) Effect of hyaluronic acid on the thermogelation and biocompatibility of its blends with methyl cellulose. Carbohyd Polym 112:480–485CrossRefGoogle Scholar
  110. Mercado SA, Slater NKH (2016) The functional and structural effects of an amphipathic pH responsive biopolymer: a comprehensive study in osteosarcoma cells. Eur Polymer J 74:158–167CrossRefGoogle Scholar
  111. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers, 2nd revised edn. Vincentz Network, HannoverGoogle Scholar
  112. Mikos AG, Peppas NA (1986) Comparison of experimental technique for measurement of the bioadhesive forces of polymeric materials with soft tissues. Proc Int Symp Control Release Bioact Mater 13:97–100Google Scholar
  113. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859CrossRefGoogle Scholar
  114. Miyata T, Rubin AL, Stenzel KH, Dunn MW (1979) US Patent 4, 164, 559Google Scholar
  115. Molina R, Jovancic P, Vilchez S, Tzanov T, Solans C (2014) In situ chitosan gelation initiated by atmospheric plasma treatment. Carbohydr Polym 103:472–479PubMedCrossRefGoogle Scholar
  116. Morris ER, Rees DA, Thom D, Boyd J (1978) Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydr Res 66:145–154CrossRefGoogle Scholar
  117. Murthy S, Shivakumar H (2010) Topical and transdermal drug delivery. Handbook of Non-Invasive Drug Delivery Systems, pp 1–36Google Scholar
  118. Na YH (2013) Double network hydrogels with extremely high toughness and their applications. Korea-Aust Rheol J 25:185–196CrossRefGoogle Scholar
  119. Nie J, Lu W, Ma J, Yang L, Wang Z, Qin A, Hu Q (2015) Orientation in multi-layer chitosan hydrogel: morphology. Mech Des Principle Sci Rep 5:7635CrossRefGoogle Scholar
  120. Nishida Y, Ohtsuki S, Araie Y, Umeki Y, Endo M, Emura T, Hidaka K, Sugiyama H, Takahashi Y, Takakura Y, Nishikawa M (2016) Self-assembling DNA hydrogel-based delivery of immunoinhibitory nucleic acids to immune cells. Nanomedicine: nanotechnology. Biol Med 12:123–130Google Scholar
  121. Pãduraru OM, Vasile C, Pațachia S, Grigoras C, Oprea AM (2010) Membranes based on poly(vinyl alcohol)/beta-cyclodextrin blends. Polimery 55:473–478Google Scholar
  122. Pamfil D, Butnaru E, Vasile C (2016, Aug) Poly (vinyl alcohol)/chitosan cryogels as pH responsive ciprofloxacin carriers. J Polym Res 23(8).
  123. Pamfil D, Vasile C (2017) Nanogels of natural polymers Chap. 4 in handbook on “Polymer Gels”. Section “polymer gels: science and fundamentals” (in press)Google Scholar
  124. Papkov SP (1974) Gel-like state of polymers. Khimiya, MoscowGoogle Scholar
  125. Park H, Robinson JR (1985) Physicochemical properties of water insoluble polymers important to mucin/epithelial adhesion. J Control Rel 2:257–275CrossRefGoogle Scholar
  126. Park K, Robinson JR (1984) Bioadhesive polymers as platforms for oral-controlled drug delivery: method to study bioadhesion. Int J Pharm 198:107–127CrossRefGoogle Scholar
  127. Patel P, Patel P (2015) Formulation and evaluation of clindamycin HCl in situ gel for vaginal application. Intern J Pharm Investig 5:50–56CrossRefGoogle Scholar
  128. Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur VK (2015) Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review. Int J Biol Macromol 79:449–458PubMedCrossRefGoogle Scholar
  129. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432CrossRefGoogle Scholar
  130. Patel PV, Koyani V (2014) Smart polymers: innovative drug delivery system. World J Pharm Pharm Sci 3:508–527Google Scholar
  131. Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Ther Deliv 1:109–131PubMedPubMedCentralCrossRefGoogle Scholar
  132. Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291:2031–2047CrossRefGoogle Scholar
  133. Peppas NA, Buri PA (1985) Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release 2:257–275CrossRefGoogle Scholar
  134. Perioli L, Ambrogi V, Venezia L, Pagano C, Ricci M, Rossi C (2008) Chitosan and a modified chitosan as agents to improve performances of mucoadhesive vaginal gels. Colloids Surf, B 66:141–145CrossRefGoogle Scholar
  135. Plazinski W (2011) Molecular basis of calcium binding by polyguluronate chains. Revising the egg-box model. J Comput Chem 32:2988–2995PubMedCrossRefGoogle Scholar
  136. Prabaharan M, Mano JF (2006) Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromol Biosci 8:991–1008CrossRefGoogle Scholar
  137. Prasertsung I, Damrongsakkul S, Terashima C, Saito N, Takai O (2012) Preparation of low molecular weight chitosan using solution plasma system. Carbohydr Polym 87:2745–2749CrossRefGoogle Scholar
  138. Rasente RY, Imperiale JC, Lázaro-Martínez JM, Gualco L, Oberkersch R, Sosnik A, Calabrese GC (2016) Dermatan sulfate/chitosan polyelectrolyte complex with potential application in the treatment and diagnosis of vascular disease. Carbohydr Polym 144:362–370PubMedCrossRefGoogle Scholar
  139. Rencber S, Karavana SY, Ay Şenyigit Z, Erac B, Hosgor Limoncu M, Baloglu E (2016) Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: formulation, preparation, and in vitro/in vivo evaluation. Pharm Develop Tech. Scholar
  140. Rodkate N, Rutnakornpituk M (2016) Multi-responsive magnetic microsphere of poly (N-isopropylacrylamide)/carboxymethylchitosan hydrogel for drug controlled release. Carbohydr Polym 151:251–259PubMedCrossRefGoogle Scholar
  141. Rogovina LZ, Vasilev VG, Braudo EE (2008) Definition of the Concept of Polymer Gel. Polymer Sci Ser C 50:85–92CrossRefGoogle Scholar
  142. Rose JB, Pacelli S, El Haj AJ, Dua HS, Hopkinson A, White LJ, Rose FRAJ (2014) Gelatin-based materials in ocular tissue engineering. Materials 7:3106–3135PubMedPubMedCentralCrossRefGoogle Scholar
  143. Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instr Meth Phys Res B 151:56–64CrossRefGoogle Scholar
  144. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, OxfordGoogle Scholar
  145. Russo E, Selmin F, Baldassari S, Gennari CGM, Caviglioli G, Cilurzo F, Minghetti P, Parodi B (2016) A focus on mucoadhesive polymers and their application in buccal dosage forms. J Drug Delivery Sci Techn 32:113–125CrossRefGoogle Scholar
  146. Russo PS (1987) A perspective on reversible gels and related systems. In: Russo PS (eds) Chapter 1 in reversible polymeric gels and related systems 350:1–21Google Scholar
  147. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011) Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromol 12:2653–2659CrossRefGoogle Scholar
  148. Saettone MF, Cheton P, Torracca MT, Burgalassi S, Giannaccini B (1989) Evaluation of muco-adhesive properties and in vivo activity of ophthalmic vehicles based on hyaluronic acid. Int J Pharm 51:203–212CrossRefGoogle Scholar
  149. Sagiri SS, Behera B, Rafanan RR, Bhattacharya C, Pal K, Banerjee I, Rousseau D (2014) Organogels as matrices for controlled drug delivery: a review on the current state. Soft Mater 12:47–72CrossRefGoogle Scholar
  150. Salamat-Miller N, Chittchang M, Johnston TP (2005) The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Delivery Rev 57:1666–1691CrossRefGoogle Scholar
  151. Salmaso S, Semenzato A, Bersani S, Matricardi P, Rossi F, Caliceti P (2007) Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm 345:42–50PubMedCrossRefGoogle Scholar
  152. Sanchez MP, Martín-Illana A, Ruiz-Caro R, Bermejo P, Abad MJ, Carro R, Bedoya LM, Tamayo A, Rubio J, Fernández-Ferreiro A, Otero-Espinar F, Veiga MD (2015) Chitosan and kappa-carrageenan vaginal acyclovir formulations for prevention of genital herpes. In vitro and ex vivo evaluation. Mar Drugs 13:5976–5992CrossRefGoogle Scholar
  153. Sander C, Madsen DK, Hyrup B, Nielsen HM, Rantanen J, Jacobsen J (2013) Characterization of spray dried bioadhesive metformin microparticles for oromucosal administration. Eur J Pharm Biopharm 85:682–688PubMedCrossRefGoogle Scholar
  154. Secchi E, Roversi T, Buzzaccaro S, Piazza L, Piazza R (2013) Biopolymer gels with “physical” cross-links: gelation kinetics, aging, heterogeneous dynamics, and macroscopic mechanical properties. Soft Matter 9:3931–3944CrossRefGoogle Scholar
  155. Senel S, Ikinci G, Kas S, Yousefi-Rad A, Sargon MF, Hinca AA (2000) Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm 193:197–203PubMedCrossRefGoogle Scholar
  156. Shaikh R, Singh TRR, Garland MJ, Woolfson AD, Donnelly RF (2011) Mucoadhesive drug delivery systems. J Pharm Bioallied Sci 3:89–100PubMedPubMedCentralCrossRefGoogle Scholar
  157. Shi L, Yang L, Chen J, Pei Y, Chen M, Hui B, Li J (2004) Preparation and character-ization of pH-sensitive hydrogel of chitosan/poly (acrylic acid) co-polymer. J Biomater Sci Polym Ed 15:465–474PubMedCrossRefPubMedCentralGoogle Scholar
  158. Silva NHCS, Rodrigues AF, Almeida IF, Costa PC, Rosado C, Neta CP, Silvestre AJD, Freire CSR (2014) Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohydr Polym 106:264–269PubMedCrossRefGoogle Scholar
  159. Prabha SB (2013) Preparation and evaluation of pluronic lecithin organogel containing ricinoleic acid for transdermal drug delivery. Theses and dissertations. Paper 32Google Scholar
  160. Singh NK, Lee DS (2014) In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release 193:214–227PubMedCrossRefPubMedCentralGoogle Scholar
  161. Singh R, Singh D (2012) Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci: Mater Med 23:2649–2658Google Scholar
  162. Singhal R, Gupta K (2016) A review: tailor-made hydrogel structures (classifications and synthesis parameters). Polymer-Plastics Technol Eng 55:54–70CrossRefGoogle Scholar
  163. Sionkowska A, Kaczmarek B, Lewandowska K, Grabska S, Pokrywczynska M, Kloskowski T, Drewa T (2016) 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid. Intern J Biol Macromols 89:442–448CrossRefGoogle Scholar
  164. Smart JD (2005) The basics and underlying mechanisms of mucoadhesion. Adv Drug Delivery Rev 57:1556–1568CrossRefGoogle Scholar
  165. Smart JD, Kellaway IW, Worthington HEC (1984) An in vitro investigation of mucosa adhesive materials for use in controlled drug delivery. J Pharm Pharmacol 36:295–299PubMedCrossRefGoogle Scholar
  166. Solomonidou D, Cremer K, Krumme M, Kreuter J (2001) Effect of carbomer concentration and degree of neutralization on the mucoadhesive properties of polymer films. J Biomat Sci 12:1191–1205CrossRefGoogle Scholar
  167. Strobel SA, Scher HB, Nitin N, Jeoh T (2016) In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocolloids 58:141–149CrossRefGoogle Scholar
  168. Tanaka T (1985) in encyclopedia of polymer science and engineering. In: Klingsberg A, Piccinini P (eds), vol 7. Wiley, New York, p 514Google Scholar
  169. Tanrıverdi ST, Ozer O (2013) Novel topical formulations of terbinafine-HCl for treatment of onychomycosis. Eur J Pharm Sci 48:628–636PubMedCrossRefGoogle Scholar
  170. Tanrıverdi ST, Cheaburu-Yilmaz CN, Carbone S, Özer Ö (2016) Preparation and in vitro evaluation of melatonin loaded HA/PVA gel formulations. Pharm Develop Technol. Scholar
  171. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Cleaner Prod 82:1–15CrossRefGoogle Scholar
  172. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847Google Scholar
  173. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4:1–17CrossRefGoogle Scholar
  174. Tomsic M, Prossnigg F, Glatter O (2008) A thermoreversible double gel: characterization of a methylcellulose and κ-carrageenan mixed system in water by SAXS, DSC and rheology. J Colloid Interface Sci 322:41–50PubMedCrossRefGoogle Scholar
  175. Trovatti E, Freire CSR, Pinto PC, Almeida IF, Costa P, Silvestre AJD, Neto CP, Rosado C (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Intern J Pharm 435:83–87CrossRefGoogle Scholar
  176. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786PubMedCrossRefGoogle Scholar
  177. Tulain UR, Ahmad M, Rashid A, Malik MZ, Iqbal FM (2016, Mar) Fabrication of pH-responsive hydrogel and its in vitro and in vivo evaluation. Adv Polym Technol.
  178. Ueda CT, Shah VP, Derdzinski K, Ewing G, Flynn G, Maibach H, Marques M, Rytting H, Shaw S, Thakker K, Yacobi (2009) A topical and transdermal drug products. Pharmacopeial Forum 35(3):750–764Google Scholar
  179. Ullah F, Othman MBH, Javed F, Ahmad Z, Md Akil H (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng, C 57:414–433CrossRefGoogle Scholar
  180. Vasanthra R, Sehgl PK, Rao KP (1988) Collagen ophthalmic inserts for pilocarpine drug delivery system. Int J Pharm 47:95–102CrossRefGoogle Scholar
  181. Vasile C, Dumitriu RP, Cheaburu C, Oprea AM (2009) Architecture and composition influence on the properties of some smart polymeric materials designed as matrices in drug delivery systems. A Comp Study. Appl Sur Sci 256:65–71CrossRefGoogle Scholar
  182. Venus M, Waterman J, McNab I (2011) Basic physiology of the skin. Surgery (Oxford) 29:471–474Google Scholar
  183. Vinholis AHC, de Figueiredo LC, Marcantonio E Jr, Marcantonio RAC, Salvador SLS, Goissis G (2001) Subgingival utilization of a 1% chlorhexidine collagen gel for the treatment of periodontal pockets. A clinical and microbiological study. Braz Dent J 12:209–213PubMedGoogle Scholar
  184. Vintiloiu A, Leroux JC (2008) Organogels and their use in drug delivery—a review. J Control Release 125:179–192PubMedCrossRefGoogle Scholar
  185. Voicu, SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Miculescu M, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774Google Scholar
  186. Vulpe R, Popa M, Picton L, Balan V, Dulong V, Butnaru M, Verestiuc L (2016) Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering. Int J Biol Macromol 84:174–181PubMedCrossRefPubMedCentralGoogle Scholar
  187. Wang W, Zhang P, Shan W, Gao J, Liang W (2013) A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. J Biomater Sci Polym Ed 24:1649–1659PubMedCrossRefPubMedCentralGoogle Scholar
  188. Wong CF, Yuen KH, Kok KP (1999) An in vitro method for buccal adhesion studies: importance of instrument variables. Int J Pharm 180:47–57PubMedCrossRefGoogle Scholar
  189. Xu J, Li X, Sun F, Cao P (2010) PVA hydrogels containing beta-cyclodextrin for enhanced loading and sustained release of ocular therapeutics. J Biomater Sci Polym Ed 21:1023–1038PubMedCrossRefPubMedCentralGoogle Scholar
  190. Xu W, Qian J, Zhang Y, Suo A, Cui N, Wang J, Yao Y, Wang H (2016) A double-network poly (Ne-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Acta Biomater 33:131–141PubMedCrossRefGoogle Scholar
  191. Yamamoto S, Hirata A, Ishikawa S, Ohta K, Nakamura K, Okinami S (2013) Feasibility of using gelatin-microbial transglutaminase complex to repair experimental retinal detachment in rabbit eyes. Graefe’s Arch Clin Exp Ophthalmol 251:1109–1114CrossRefGoogle Scholar
  192. Yoshiaki Y, Padol HA, Draget AM, Ingar K, Torger SB (2016) Local structure of Ca2+ induced hydrogels of alginate−oligoguluronate blends determined by small-angle-X-ray scattering. Carbohydr Polym. Scholar
  193. Zhou C, Wu Q (2011) A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Coll Surf B Biointer 84:155–162CrossRefGoogle Scholar
  194. Zhou Y, Gao HL, Shen LL, Pan Z, Mao LB, Wu T, He JC, Zou DH, Zhang ZY, Yu SH (2016) Chitosan microspheres with an extracellular matrix-mimicking nanofibrous structure as cell carrier building blocks for bottom-up cartilage tissue engineering. Nanoscale 8:309–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Catalina Natalia Cheaburu-Yilmaz
    • 1
    • 2
    Email author
  • Sakine Tuncay Tanriverdi
    • 2
  • Ozgen Ozer
    • 2
  • Cornelia Vasile
    • 1
  1. 1.Department of Physical Chemistry of Polymers“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  2. 2.Department of Pharmaceutical Technology, Faculty of PharmacyEge UniversityIzmirTurkey

Personalised recommendations