Polymer Gels pp 147-229 | Cite as

Polysaccharide-Based Polymer Gels

  • Tamás Fekete
  • Judit BorsaEmail author
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Hydrogels are special polymer systems with unique properties due to their high water content. They hold a relative large importance in several application fields, especially in the medicine and sanitary products. Moreover, their potential utility is intensively studied in several other fields. While most commercially available hydrogels are synthetic polymer-based, there is an increasing interest in the use of various renewable resources. Such materials have several advantageous properties, like biodegradability and good biocompatibility. Polysaccharides are the most important group of the renewable materials due to their abundance and low cost. In the present chapter, we give an account of the potential use of polysaccharide systems for the formation of hydrogels. After a short introduction to the chemical structure of polysaccharides, their dissolution, possible crosslinking methods, and the studies related to the most important representatives are discussed. The modification of gel properties by grafting, copolymerization, and blending is also a very common route. The non-polysaccharide component can range from other renewable resources like polypeptides to synthetic polymers to inorganic additives. Finally, we give a summary of the potential applications of the polysaccharide-based hydrogels.


Polysaccharide Hydrogel Superabsorbent Crosslinking 


  1. Aalaie J, Vasheghani-Farahani E, Rahmatpour A, Semzsarzadeh MA (2013) Gelation rheology and water absorption behavior of semi-interpenetrating polymer networks of polyacrylamide and carboxymethyl cellulose. J Macromol Sci B 52:604–613CrossRefGoogle Scholar
  2. Abad LV, Relleve LS, Aranilla CT, Dela Rose AM (2003) Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Radiat Phys Chem 68:901–908CrossRefGoogle Scholar
  3. Abd Alla SG, Sen M, El-Naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma irradiation. Carbohydr Polym 89:478–485PubMedCrossRefPubMedCentralGoogle Scholar
  4. Abd El-Mohdy HL (2007) Water sorption behavior of CMC/PAM hydrogels prepared by γ-irradiation and release of potassium nitrate as agrochemical. React Funct Polym 67:1094–1102CrossRefGoogle Scholar
  5. Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20:177–188CrossRefGoogle Scholar
  6. Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2011) Control release of some pesticides from starch/(ethylene glycol-co-methacrylic acid) copolymers prepared by γ-irradiation. J Appl Polym Sci 122:1500–1509CrossRefGoogle Scholar
  7. Abd El-Rehim HA (2006) Characterization and possible agricultural application of acrylamide/sodium alginate crosslinked hydrogels prepared by ionizing radiation. J Appl Polym Sci 101:3572–3580CrossRefGoogle Scholar
  8. Abdulmola NA, Hember MWN, Richardson RK, Morris ER (1996) Application of polymer blending laws to starch-gelatin composites. Carbohydr Polym 31:53–63CrossRefGoogle Scholar
  9. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedCrossRefGoogle Scholar
  10. Akar E, Altınışık A, Seki Y (2012) Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90:1634–1641PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ali M, Byrne ME (2009) Controlled release of high molecular weight hyaluronic acid from molecularly imprinted hydrogel contact lenses. Pharm Res 26:714–726PubMedCrossRefPubMedCentralGoogle Scholar
  12. Alupei IC, Popa M, Hamcerencu M, Abadie MJM (2002) Superabsorbant hydrogels based on xanthan and poly(vinyl alcohol): 1. The study of the swelling properties. Eur Polym J 38:2313–2320CrossRefGoogle Scholar
  13. Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102:629–641PubMedCrossRefPubMedCentralGoogle Scholar
  14. Amin MCIM, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermos- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473CrossRefGoogle Scholar
  15. Anbergen U, Oppermann W (1990) Elasticity and swelling behaviour of chemically crosslinked cellulose ethers in aqueous systems. Polymer 31:1854–1858CrossRefGoogle Scholar
  16. Anidhuran TS, Tharun AR, Rejeena SR (2011) Investigation on poly(methacrylic acid)-grafted cellulose/bentonite superabsorbent composite: synthesis, characterization, and adsorption characteristics of bovine serum albumin. Ind Eng Chem Res 50:1866–1874CrossRefGoogle Scholar
  17. Aouada FA, Pan Z, Orts WJ, Mattoso LHC (2009) Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on acrylamide and methylcellulose hydrogels. J Appl Polym Sci 114:2139–2148CrossRefGoogle Scholar
  18. Aravindhan R, Fathima NN, Rao JR, Nair BU (2007) Equilibrium and thermodynamic studies on the removal of basic black dye using calcium alginate beads. Colloid Surf 299:232–238CrossRefGoogle Scholar
  19. Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan-PVP-titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539PubMedCrossRefPubMedCentralGoogle Scholar
  20. Aroguz AZ, Baysal K, Adiguzel Z, Baysal BM (2014) Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering. Appl Biochem Biotechnol 173:433–448PubMedCrossRefGoogle Scholar
  21. Athawale VD, Lele V (2000) Factors influencing absorbent properties of saponified starch-g-(acrylic acid-co-acryamide). J Appl Polym Sci 77:2480–2485CrossRefGoogle Scholar
  22. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222PubMedCrossRefGoogle Scholar
  23. Awadhiya A, Kumar D, Verma V (2016) Crosslinking of agarose bioplastic using citric acid. Carbohydr Polym 151:60–67PubMedCrossRefGoogle Scholar
  24. Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Höfte M (2004) Synthesis and fungicidal activity of new O, N-acyl chitosan derivatives. Biomacromol 5:589–595CrossRefGoogle Scholar
  25. Bajpai AK, Mishra A (2004) Ionizable interpenetrating polymer networks of carboxymethyl cellulose and polyacrylic acid: evaluation of water uptake. J Appl Polym Sci 93:2054–2065CrossRefGoogle Scholar
  26. Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342PubMedCrossRefGoogle Scholar
  27. Banerjee S, Singh S, Bhattacharya SS, Chattopadhyay P (2013) Trivalent ion cross-linked pH-sensitive alginate-methyl cellulose hydrogel beads from aqueous template. Int J Biol Macromol 57:297–307PubMedCrossRefGoogle Scholar
  28. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82CrossRefGoogle Scholar
  29. Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480CrossRefGoogle Scholar
  30. Bardajee GR, Hooshyar Z, Zehtabi F, Pourjavadi A (2012) A superabsorbent hydrogel network based on poly ((2-dimethylaminoethyl) methacrylate) and sodium alginate obtained by γ-radiation: synthesis and characterization. Iran Polym J 21:829–836CrossRefGoogle Scholar
  31. Barkhordari S, Yadollahi M, Namazi H (2014) pH-sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxyide as drug delivery systems. J Polym Res 21:454–462CrossRefGoogle Scholar
  32. Bejenariu A, Popa M, Le Cerf D, Picton L (2008) Stiffness xanthan hydrogels: synthesis, swelling characteristics and controlled release properties. Polym Bull 61:631–641CrossRefGoogle Scholar
  33. Bejenariu A, Popa M, Dulong V, Picton L, Le Cerf D (2009) Trisodium trimetaphosphate crosslinked xanthan networks: synthesis, swelling, loading and releasing behavior. Polym Bull 62:525–538CrossRefGoogle Scholar
  34. Bencherif SA, Srinivasan A, Horkay F, Hollinger JO, Matyjaszewski K, Washburn NR (2008) Influence of the degree of methacrylation on hyaluronic acid hydrogel properties. Biomaterials 29:1739–1749PubMedCrossRefGoogle Scholar
  35. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52PubMedCrossRefGoogle Scholar
  36. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624PubMedCrossRefGoogle Scholar
  37. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev 62:83–99CrossRefGoogle Scholar
  38. Bidgoli H, Zamani A, Taherzadeh MJ (2010) Effect of carboxymethylation conditions on the water-binding capacity of chitosan-based superabsorbents. Carbohydr Res 345:2683–2689PubMedCrossRefGoogle Scholar
  39. Boateng JS, Matthews KH, Stevens HNE, Ecclestion GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923PubMedCrossRefGoogle Scholar
  40. Bogracheva TY, Morris VJ, Ring SG, Hedley CL (1998) The granular structure of C-type pea starch and its role in gelatinization. Biopolymers 45:323–332CrossRefGoogle Scholar
  41. Boisseson MRD, Leonard M, Hubert P, Marchal P, Stequert A, Castel C, Favre E, Dellacherie E (2004) Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: bead formation, structure, and stability. J Colloid Interf Sci 273:131–139CrossRefGoogle Scholar
  42. Boppana R, Kulkarni RV, Mutalik SS, Setty CM, Sa B (2010) Interpenetrating network hydrogel beads of carboxymethylcellulose and egg albumin for controlled release of lipid lowering drug. J Microcapsul 27:337–344CrossRefGoogle Scholar
  43. Bortolin A, Aouada FA, de Moura MR, Ribeiro C, Longo E, Mattoso LHC (2012) Application of polysaccharide hydrogels in adsorption and controlled-extended release of fertilizers processes. J Appl Polym Sci 123:2291–2298CrossRefGoogle Scholar
  44. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439PubMedCrossRefGoogle Scholar
  45. Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng A 15:1645–1653CrossRefGoogle Scholar
  46. Brown JQ, Srivastava R, McShane MJ (2005) Encapsulation of glucose oxidase and an oxygen-quenched fluophore in polyelectrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosens Bioelectron 21:212–216PubMedCrossRefGoogle Scholar
  47. Bryant SJ, Davis-Arehard KA, Luo N, Shoemaker RK, Arthur JA, Anseth KS (2004) Synthesis and characterization of photopolymerized multifunctional hydrogels: water-soluble poly(vinyl alcohol) and chondroitin sulfate macromers for chondrocyte encapsulation. Macromolecules 37:6726–6733CrossRefGoogle Scholar
  48. Bueno VB, Bentini R, Catalini LH, Petri DFS (2013) Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 92:1091–1099PubMedCrossRefGoogle Scholar
  49. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedCrossRefGoogle Scholar
  50. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56CrossRefGoogle Scholar
  51. Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromol 6:386–391CrossRefGoogle Scholar
  52. Cai L, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548PubMedCrossRefGoogle Scholar
  53. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromol 7:183–189CrossRefGoogle Scholar
  54. Cai H, Zhang ZP, Sun PC, He BL, Zhu XX (2005) Synthesis and characterization of thermo- and pH-sensitive hydrogels based on chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat Phys Chem 74:26–30CrossRefGoogle Scholar
  55. Cai T, Yang Z, Li H, Yang H, Li A, Cheng R (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614CrossRefGoogle Scholar
  56. Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A (2013) Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromol 14:1085–1092CrossRefGoogle Scholar
  57. Carlsson A, Karlström G, Lindman B (1990) Thermal gelation of nonionic cellulose ethers and ionic surfactants in water. Colloid Surf 47:147–165CrossRefGoogle Scholar
  58. Cascone MG, Maltinti S, barbani N, Laus M (1999) Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. J Mater Sci Mater M 10:431–435Google Scholar
  59. Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209–210:67–76PubMedCrossRefGoogle Scholar
  60. Céspedes FF, Sánchez MV, García SP, Pérez MF (2007) Modifying sorbents in controlled release formulations to prevent herbicides pollution. Chemosphere 69:785–794CrossRefGoogle Scholar
  61. Chang Y, Xiao L, Tang Q (2002) Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends. J Appl Polym Sci 113:400–407CrossRefGoogle Scholar
  62. Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem PhysGoogle Scholar
  63. Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose–alginate hydrogels. Polymer 50:5467–5473CrossRefGoogle Scholar
  64. Chang C, Duan B, Cai J, Zhang L (2010a) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  65. Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010b) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127CrossRefGoogle Scholar
  66. Chang C, Chen S, Zhang L (2011a) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21:3865–3871CrossRefGoogle Scholar
  67. Chang C, Han K, Zhang L (2011b) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by IPN strategy. Polym Adv Technol 22:1329–1334CrossRefGoogle Scholar
  68. Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L (2013) Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym 91:7–13PubMedCrossRefGoogle Scholar
  69. Chatterjee S, Woo SH (2009) The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J Hazard Mater 164:1012–1018PubMedCrossRefGoogle Scholar
  70. Chatterjee S, Lee DS, Lee MW, Woo SH (2009) Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant. Bioresource Technol 100:3862–3868CrossRefGoogle Scholar
  71. Chauhan GS, Lal H, Mahajan S (2004) Synthesis, characterization, and swelling responses of poly(N-isopropylacrylamide)- and hydroxypropyl cellulose-based environmentally sensitive biphasic hydrogels. J Appl Polym Sci 91:479–488CrossRefGoogle Scholar
  72. Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia L (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J Biomed Mater Res 51:107–116PubMedCrossRefGoogle Scholar
  73. Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6:1026–1039PubMedCrossRefGoogle Scholar
  74. Chen T, Embree HD, Brown EM, Taylor MM, Payne GF (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24:2831–2841PubMedCrossRefGoogle Scholar
  75. Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300PubMedCrossRefGoogle Scholar
  76. Chen RN, Wang GM, Chen CH, Ho HO, Sheu MT (2006) Development of N, O-(carboxymethyl)chitosan/collagen matrixes as a wound dressing. Biomaterials 7:1058–1064Google Scholar
  77. Cheng Y, Lu J, Liu S, Zhao P, Lu G, Chen J (2014) The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films. Carbohydr Polym 107:57–64PubMedCrossRefGoogle Scholar
  78. Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39–47CrossRefGoogle Scholar
  79. Chiaoprakobkij N, Sanchavanakit N, Subbalekha K, Pavasant P, Phisalaphong M (2011) Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr Polym 85:548–553CrossRefGoogle Scholar
  80. Chiu LLY, Radisic M (2011) Controlled release of thymosin β4 using collagen–chitosan composite hydrogels promotes epicardial cell migration and angiogenesis. J Control Release 155:376–385PubMedCrossRefGoogle Scholar
  81. Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-farbicated scaffolds for tissue engineering. Adv Drug Deliver Rev 59:249–262CrossRefGoogle Scholar
  82. Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 17:231–243CrossRefGoogle Scholar
  83. Collins MN, Birkinshaw C (2008) Physical properties of crosslinked hyaluronic acid hydrogels. J Mater Sci Mater Med 19:3335–3343PubMedCrossRefGoogle Scholar
  84. Collins MN, Birkinshaw C (2011) Morphology of crosslinked hyaluronic acid porous hydrogels. J Appl Polym Sci 120:1040–1049CrossRefGoogle Scholar
  85. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering–a review. Carbohydr Polym 92:1262–1279PubMedCrossRefPubMedCentralGoogle Scholar
  86. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  87. Coronado R, Pekerar S, Lorenzo AT, Sabino MA (2011) Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym Bull 67:101–124CrossRefGoogle Scholar
  88. Corradini E, de Moura MR, Mattoso KHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515Google Scholar
  89. Costa-Júnior ES, Barbose-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472–481CrossRefGoogle Scholar
  90. Crescenzi V, Francescangeli A, Talienti A (2002) New gelatin-based hydrogels via enzymatic networking. Biomacromol 3:1384–1391CrossRefGoogle Scholar
  91. Cui L, Jia J, Guo Y, Liz Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38PubMedCrossRefGoogle Scholar
  92. Das A, Wadhwa S, Srivastava AK (2006) Cross-linked guar gum hydrogel discs for colon-specific delivery of ibuprofen: Formulation and in vitro evaluation. Drug Deliver 12:139–142CrossRefGoogle Scholar
  93. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91:638–645PubMedCrossRefGoogle Scholar
  94. Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. SpringerPlus 2:318–326PubMedPubMedCentralCrossRefGoogle Scholar
  95. Dawlee S, Sugandhi A, Balakrishnan B, Labarre D, Jayakrishnan A (2005) Oxidized chondroitin sulfate-cross-linked gelatin matrixes: a new class of hydrogels. Biomacromol 6:2040–2048CrossRefGoogle Scholar
  96. de Cunha CB, Klumpers DD, Li WA, Koshy ST, Weaver JC, Chaudhuri O, Granja PL, Mooney DJ (2014) Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology. Biomaterials 35:8927–8936CrossRefGoogle Scholar
  97. de la Torre PM, Torrado S, Torrado S (2003) Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24:1459–1468PubMedCrossRefGoogle Scholar
  98. Demitri C, Sole RD, Scaler F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460CrossRefGoogle Scholar
  99. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, Griffith M, Ruel M, Suuronen EJ (2010) A collagen–chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng A 16:3099–3109CrossRefGoogle Scholar
  100. Dergunov SA, Nam IK, Mun GA, Nurkeeva ZS, Shaikhutdinov EM (2005) Radiation synthesis and characterization of stimuli-sensitive chitosan-polyvinyl pyrrolidone hydrogels. Radiat Phys Chem 72:619–623CrossRefGoogle Scholar
  101. Desbrières J, Hirrien M, Rinaudo M (1998) A calorimetric study of methylcellulose gelation. Carbohydr Polym 37:145–152CrossRefGoogle Scholar
  102. Dhiman PK, Kaur I, Mahajan RK (2008) Synthesis of a cellulose-grafted polymeric support and its application in the reductions of some carbonyl compounds. J Appl Polym Sci 108:99–111CrossRefGoogle Scholar
  103. Domard A, Rinaudo M (1983) Preparation and characterization of fully deacetylated chitosan. Int J Biol Macromol 5:49–52CrossRefGoogle Scholar
  104. Donati I, Paoletti S (2009) Material properties of alginates. In: Rehm BHA (ed) Alginates: biology and applications. Springer, Berlin, pp 1–54Google Scholar
  105. Dong Z, Wang Q, Du Y (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Membrane Sci 280:37–44CrossRefGoogle Scholar
  106. Doria-Serrano MC, Riva-Palacio G, Ruiz-Trevino FA, Hernández-Esparza M (2002) Poly(N-vinyl pyrrolidone)–calcium alginate (PVP-Ca-alg) composite hydrogels. Physical properties and activated sludge immobilization for wastewater treatment. Ind Eng Chem Res 41:3163–3168CrossRefGoogle Scholar
  107. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels: a review. Chem Eng J 243:572–590CrossRefGoogle Scholar
  108. Draye JP, Delaey B, van de Voorde A, van den Bulcke A, de Reu B, Schacht E (1998) In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687 Google Scholar
  109. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351PubMedCrossRefGoogle Scholar
  110. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264PubMedCrossRefGoogle Scholar
  111. Dumitriu S, Magny P, Montané D, Vidal PF, Chornet E (1994) Polyionic hydrogels obtained by complexation between xanthan and chitosan: their properties as supports for enzyme immobilization. J Bioact Compat Pol 9:184–209CrossRefGoogle Scholar
  112. Dumitriu RP, Mitchell GR, Vasile C (2010) Multi-responsive hydrogels based on N-isopropylacrylamide and sodium alginate. Polym Int 60:222–233CrossRefGoogle Scholar
  113. Dupont AL (2003) Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions. Polymer 44:4117–4126CrossRefGoogle Scholar
  114. Ebrahimi MMS, Schonherr H (2014) Enzyme-sensing chitosan hydrogels. Langmuir 30:7842–7850Google Scholar
  115. Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)–diamines. Macromolecules 32:5561–5566CrossRefGoogle Scholar
  116. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2011) The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (ε-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials 32:8108–8117PubMedCrossRefGoogle Scholar
  117. Ekici S (2011) Intelligent poly(N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. J Mater Sci 46:2843–2850CrossRefGoogle Scholar
  118. El Salmawi KM, Ibrahim SAM (2011) Characterization of superabsorbent carboxymethylcellulose/clay hydrogel prepared by electron beam irradiation. Macromol Res 19:1029–1034CrossRefGoogle Scholar
  119. El-Din HMN, Abd Alla SG, El-Naggar AWM (2010) Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation. Radiat Phys Chem 79:725–730CrossRefGoogle Scholar
  120. El-Din HMN, El-Naggar AWM, Abu-El Fadle FI (2013) Radiation synthesis of pH-sensitive hydrogels from carboxymethylcellulose/poly(ethylene oxide) blends as drug delivery systems. Int J Polym Mater Polym Biomater 62:711–718CrossRefGoogle Scholar
  121. Eldridge JE, Ferry JD (1954) Studies of the cross-linking process in gelatin gels. III. Dependence of melting point on concentration and molecular weight. J Phys Chem 58:992–995CrossRefGoogle Scholar
  122. El-Salmawi KM (2007) Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. J Macromol Sci A 44:619–624CrossRefGoogle Scholar
  123. Esposito F, Del Nobile MA, Mensitieri G, Nicolais L (1996) Water sorption in cellulose-based hydrogels. J Appl Polym Sci 60:2403–2407CrossRefGoogle Scholar
  124. Esposito A, Sannino A, Cozzolino A, Quinriliano SN, Lamberti M, Ambrosio L, Nicolais L (2005) Response of intestinal cells and macrophages to an orally administered-PEG based polymer as a potential treatment for intractable edemas. Biomaterials 26:4101–4110PubMedCrossRefGoogle Scholar
  125. Fadnavis NW, Sheelu G, Kumar BM, Bhalerao MU, Desphande AA (2003) Gelatin blends with alginate: gels for lipase immobilization and purification. Biotechnol Prog 19:557–564PubMedCrossRefGoogle Scholar
  126. Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78:278–283CrossRefGoogle Scholar
  127. Fekete T, Borsa J, Takács E, Wojnárovits L (2014) Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose 21:4157–4165CrossRefGoogle Scholar
  128. Fekete T, Borsa J, Takács E, Wojnárovits L (2016a) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119CrossRefGoogle Scholar
  129. Fekete T, Borsa J, Takács E, Wojnárovits L (2016b) Synthesis of carboxymethylcellulose/acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking. Radiat Phys Chem 124:135–139CrossRefGoogle Scholar
  130. Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5CrossRefGoogle Scholar
  131. Ferreira L, Gil MH, Cabrita AM, Dordick JS (2005) Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels. Biomaterials 26:4707–4016Google Scholar
  132. Fouassier JP, Lalevée J (2012) Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. Wiley-VCH Verlag & Co., KGaA, GermanyCrossRefGoogle Scholar
  133. Franco RA, Nguyen TH, Lee BT (2011) Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. J Mater Sci Mater Med 22:2207–2218PubMedCrossRefGoogle Scholar
  134. Fraser JRE, Laurent TC, Laurent UBG (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33PubMedCrossRefGoogle Scholar
  135. Frey MW, Cuculo JA, Khan SA (1996) Rheology and gelation of cellulose/ammonia/ammonium thiocyanate solutions. J Appl Polym Sci 34:2375–2381CrossRefGoogle Scholar
  136. Fu L, Zhang Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442PubMedCrossRefGoogle Scholar
  137. Gabrieli I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicellulose. J Appl Polym Sci 69:1661–1667CrossRefGoogle Scholar
  138. Gao J, Haidar G, Lu X, Hu Z (2001) Self-association of hydroxypropylcellulose in water. Macromolecules 34:2242–2247CrossRefGoogle Scholar
  139. Gatherhood N, Garcia MT, Scammels PJ (2004) Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175CrossRefGoogle Scholar
  140. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14PubMedCrossRefGoogle Scholar
  141. Gilbert E, Kirker KR, Gray SD, Ward PD, Szakacs JG, Prestwich GD, Orlandi RR (2004) Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114:1406–1409PubMedCrossRefGoogle Scholar
  142. Gils PS, Ray D, Sahoo PK (2009) Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol 45:364–371PubMedCrossRefGoogle Scholar
  143. Gómez-Mascaraque LG, Méndez JA, Fernández-Gutiérrez M, Vázquez B (2014) Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose–chitosan. Acta Biomater 10:798–811PubMedCrossRefGoogle Scholar
  144. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34:54–61CrossRefGoogle Scholar
  145. González A, Castro J, Vera J, Moenne A (2012) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation. Basal metabolism, and cell division. J Plant Growth Regul 32:443–448CrossRefGoogle Scholar
  146. Gorgieva S, Kokol V (2012) Preparation, characterization, and in vitro enzymatic degradation of chitosan-gelatine hydrogel scaffolds as potential biomaterials. J Biomed Mater Res A 100:1655–1667PubMedCrossRefGoogle Scholar
  147. Gotlieb KF, Capelle A (2005) Starch derivatization: fascinating and unique industrial opportunities. Wageningen Academic Publishers, The NetherlandsCrossRefGoogle Scholar
  148. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198CrossRefGoogle Scholar
  149. Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171PubMedCrossRefGoogle Scholar
  150. Gross AS, Chu JW (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341PubMedCrossRefGoogle Scholar
  151. Guerra RSD, Cascone MG, Barbani N, Lazzeri L (1994) Biological characterization of hydrogels of poly(vinyl alcohol) and hyaluronic acid. J Mater Sci-Mater M 5:613–616CrossRefGoogle Scholar
  152. Guibal (2005) Heterogeneous catalysis on chitosan-based materials: a review. Prog Polym Sci, 71–109Google Scholar
  153. Guilherme MR, de Moura M, Radovanovic E, Geuskens G, Rubira AF, Muniz EC (2005) Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly(N-isopropylacrylamide). Polymer 46:2668–2674CrossRefGoogle Scholar
  154. Guo BL, Gao QY (2007) Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 342:2416–2422PubMedCrossRefGoogle Scholar
  155. Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent moisture preservation. Ind Eng Chem Res 44:4206–4211CrossRefGoogle Scholar
  156. Gupta KC, Khandekar K (2003) Temperature-responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide. Biomacromol 4:758–765CrossRefGoogle Scholar
  157. Gurski LA, Jha AK, Zhang C, Jia X, Farach-Carson MC (2009) Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. Biomaterials 30:6076–6085PubMedPubMedCentralCrossRefGoogle Scholar
  158. Hahn SK, Oh EJ, Miyamoto H, Shimobouji T (2006) Sustained release formulation of erythropoietin using hyaluronic acid hydrogels crosslinked by Michael addition. Int J Pharm 322:44–51PubMedCrossRefPubMedCentralGoogle Scholar
  159. Han X, Chen S, Hu X (2009) Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination 240:21–26CrossRefGoogle Scholar
  160. Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22:161–173CrossRefGoogle Scholar
  161. Haque A, Richardson RK, Morris ER (1993) Thermogelation of methylcellulose. Part II: effect of hydroxypropyl substituents. Carbohydr Polym 22:175–186CrossRefGoogle Scholar
  162. Harper BA, Barbut S, Lim LT, Marcone MF (2014) Effect of various gelling cations on the physical properties of “wet” alginate films. J Food Sci 79:562–567Google Scholar
  163. Harris JR, Soliakov A, Lewis RJ (2013) In vitro fibrillogenesis of collagen type I in varying ionic and pH conditions. Micron 49:60–68PubMedCrossRefGoogle Scholar
  164. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulose-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95:421–427PubMedCrossRefPubMedCentralGoogle Scholar
  165. Hassanzadeh P, Kazemzadeh-Narbat M, Rosenweig R, Zhang X, Khademhosseini A, Annabi N, Rolandi M (2016) Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). J Mater Chem 4:2539–2543CrossRefGoogle Scholar
  166. Hayashi A, Oh SC (1983) Gelation of gelatin solution. Agric Biol Chem 47:1711–1716Google Scholar
  167. Hebeish A, Abd El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407–413PubMedCrossRefGoogle Scholar
  168. Hemvichian K, Chanthawong A, Suwanmala P (2014) Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals. Radiat Phys Chem 103:167–171CrossRefGoogle Scholar
  169. Herrero AM, Carmona P, Jiménez-Colmenero F, Ruiz-Capillas C (2014) Polysaccharide gels as oil bulking agents: technological and structural properties. Food Hydrocolloid 36:374–381CrossRefGoogle Scholar
  170. Hirai A, Tsuji M, Horii F (2002) TEM study of band-like cellulose assemblies produced by acetobacter xylinum at 4 °C. Cellulose 9:105–113CrossRefGoogle Scholar
  171. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  172. Hong Y, Mao Z, Wang H, Gao C, Shen J (2006) Covalently crosslinked chitosan hydrogel formed at neutral pH and body temperature. J Biomed Mater Res A 79:913–922PubMedCrossRefGoogle Scholar
  173. Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267CrossRefGoogle Scholar
  174. Hopwood D, Allen CR, McCabe M (1970) The reactions between glutaraldehyde and various proteins. An investigation of their kinetics. Histochem J 2:137–150PubMedCrossRefPubMedCentralGoogle Scholar
  175. Hovgaard L, Brønsted H (1995) Dextran hydrogels for colon-specific drug delivery. J Control Release 36:15–166CrossRefGoogle Scholar
  176. Hu X, Du Y, Tang Y, Wang Q, Feng T, Yang J, Kennedy JF (2007) Solubility and property of chitin in NaOH/urea aqueous solution. Carbohydr Polym 70:451–458CrossRefGoogle Scholar
  177. Hu XH, Tan HP, Li D, Gu MY (2014) Surface functionalization of contact lenses by CS/HA multilayer film to improve its properties and deliver drugs. Mater Technol 29:8–13CrossRefGoogle Scholar
  178. Huang Y, Yu H, Xiao C (2007) pH-sensitive cationic guar gum/poly (acrylic acid) polyelectrolyte hydrogels: swelling and in vitro drug release. Carbohydr Polym 69:774–783CrossRefGoogle Scholar
  179. Hudson SM, Smith C (1998) Polysaccharides: chitin and chitosan: chemistry and technology of their use as structural materials. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 96–118CrossRefGoogle Scholar
  180. Ibáñez JP, Umetsu Y (2002) Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy 64:89–99CrossRefGoogle Scholar
  181. Ibáñez JP, Umetsu Y (2004) Uptake of trivalent chromium from aqueous solutions using protonated dry alginate beads. Hydrometallurgy 72:327–334CrossRefGoogle Scholar
  182. Ibrahim SM, El Salmawi KM, Zahran AH (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008Google Scholar
  183. Ibrahim S, Kang QK, Ramamurthi A (2010) The impact of hyaluronic acid oligomer content on physical, chemical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. J Biomed Mater Res A 94:355–370Google Scholar
  184. Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135CrossRefGoogle Scholar
  185. Ishihara M, Ono K, Sato M, Nakanishi K, Saito Y, Yura H, Matsui T, Hattori H, Fujita M, Kikuchi M, Kurita A (2001) Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen 9:513–521PubMedCrossRefGoogle Scholar
  186. Ishii D, Tatsumi D, Matsumoto T, Murata K, Hayashi H, Yoshitani H (2006) Investigation of the structure of cellulose in LiCl/DMAc solution and its gelation behavior by small-angle X-ray scattering measurements. Macromol Biosci 6:293–300PubMedCrossRefGoogle Scholar
  187. Ișıklan N (2006) Controlled release of insecticide carbaryl form sodium alginate, sodium alginate/gelation, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Appl Polym Sci 99:1310–1319CrossRefGoogle Scholar
  188. Ișıklan N (2007) Controlled release study of carbaryl insecticide from calcium alginate and nickel alginate hydrogel beads. J Appl Polym Sci 105:718–725CrossRefGoogle Scholar
  189. Ișıklan N, İnal M, Yiğitoğlu M (2008) Synthesis and characterization of poly(N-vinyl-2-pyrrolidone) grafted sodium alginate hydrogel beads for the controlled release of indomethacin. J Appl Polym Sci 110:481–493CrossRefGoogle Scholar
  190. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRefGoogle Scholar
  191. Izawa H, Kaneko Y, Kadokawa J (2009) Unique gel of xanthan gum with ionic liquid and its conversion into high performance hydrogel. J Mater Chem 19:6969–6972CrossRefGoogle Scholar
  192. Jameela SR, Lakshmi S, James NR, Jayakrishnan A (2002) Preparation and evaluation of photocrosslinkable chitosan as a drug delivery matrix. J Appl Polym Sci 86:1873–1877CrossRefGoogle Scholar
  193. Jamnongkan T, Kaewpirom S (2010) Potassium release kinetics and water retention of controlled-release fertilizers based on chitosan hydrogels. J Polym Environ 18:413–421CrossRefGoogle Scholar
  194. Jaya S, Durance TD, Wang R (2009) Porous composite scaffold fabricated using novel microwave energy under vacuum technique. J Compos Mater 43:1451–1460CrossRefGoogle Scholar
  195. Jensen M, Hansen PB, Murdan S, Frokjaer S, Florence AT (2002) Loading into and electro-stimulated release of peptides and proteins from chondroitin4-sulphate hydrogels. Eur J Pharm Sci 15:139–148PubMedCrossRefGoogle Scholar
  196. Jeon O, Song SJ, Lee KJ, Park MH, Lee SH, Hahn SK, Kim S, Kim BS (2007) Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr Polym 70:251–257CrossRefGoogle Scholar
  197. Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734PubMedCrossRefGoogle Scholar
  198. Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E (2011) Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release 154:258–266PubMedPubMedCentralCrossRefGoogle Scholar
  199. Jin L, Bai R (2002) Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 18:9765–9770CrossRefGoogle Scholar
  200. Jin R, Teixeira LSM, Krouwels A, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J (2010) Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6:1968–1977PubMedCrossRefGoogle Scholar
  201. Johnson DC (1985) Solvents for cellulose. In: Nevell TP, Zeronian SH (eds) Cellulose chemistry and its applications. Ellis Horwood Ltd., Chichester, pp 181–201Google Scholar
  202. Johnson FA, Craig CQ, Mercer AD (1997) Characterization of the block structure and molecules weight of sodium alginates. J Pharm Pharmacol 49:639–643PubMedCrossRefGoogle Scholar
  203. Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer 42:6851–6857CrossRefGoogle Scholar
  204. Ju HK, Kim SY, Kim SJ, Lee YM (2002) pH/temperature-responsive semi-IPN hydrogels composed of alginate and poly(N-isopropylacrylamide). J Appl Polym Sci 83:1128–1139CrossRefGoogle Scholar
  205. Jun L, Jun L, Min Y, Hongfei H (2001) Solvent effect on grafting polymerization of NIPAAm onto cotton cellulose via γ-preirradiation method. Radiat Phys Chem 60:625–628CrossRefGoogle Scholar
  206. Kadokawa J, Murakami M, Kaneko Y (2008) A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr Polym 343:769–772CrossRefGoogle Scholar
  207. Kaewpirom S, Boonsang S (2006) Electrical response characterisation of poly(ethylene glycol) macromer (PEGM)/chitosan hydrogels in NaCl solution. Eur Polym J 42:1609–1616CrossRefGoogle Scholar
  208. Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Ind Eng Chem Res 50:7833–7840CrossRefGoogle Scholar
  209. Khurma JR, Rohindra DR, Nand AV (2005) Swelling and thermal characteristics of genipin crosslinked chitosan and poly(vinyl pyrrolidone) hydrogels. Polym Bull 54:195–204CrossRefGoogle Scholar
  210. Kiatkamjornwong S, Chomsaksakul W, Sonsuk M (2000) Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat Phys Chem 59:413–427CrossRefGoogle Scholar
  211. Kim SH, Chu CC (2000) Synthesis and characterization of dextran–methacrylate hydrogels and structural study by SEM. J Biomed Mater Res 49:517–527PubMedCrossRefGoogle Scholar
  212. Kim SH, Won CY, Chu CC (1999) Synthesis and characterization of dextran-based hydrogel prepared by photocrosslinking. Carbohydr Polym 40:183–190CrossRefGoogle Scholar
  213. Kim SY, Cho SM, Lee YM, Kim SJ (2000a) Thermo- and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78:1381–1391CrossRefGoogle Scholar
  214. Kim YJ, Yoon KJ, Ko SW (2000b) Preparation and properties of alginate superabsorbent filament fibers crosslinked with glutaraldehyde. J Appl Polym Sci 78:1797–1804CrossRefGoogle Scholar
  215. Kim SJ, Park SJ, Kim SI (2003) Swelling behavior of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and chitosan. React Funct Polym 55:53–59CrossRefGoogle Scholar
  216. Kim SJ, Yoon SG, Lee YM, Kim HC, Kim SI (2004) Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)-hyaluronic acid in solution. Biosens Bioelectron 19:531–536PubMedCrossRefGoogle Scholar
  217. Kim S, Nimni ME, Yang Z, Han B (2005) Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B 75:442–450CrossRefGoogle Scholar
  218. Kim JK, Lee JS, Jung HJ, Cho JH, Heo JI, Chang YH (2007) Preparation and properties of collagen/modified hyaluronic acid hydrogel for biomedical application. J Nanosci Nanotechno 7:3852–3856CrossRefGoogle Scholar
  219. Kim IY, Seo SJ, Moon HS, Yoo IY, Kim BC, Cho CS (2008a) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21PubMedCrossRefGoogle Scholar
  220. Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim JA, Choi HG (2008b) Development of polyvinyl alcohol-sodium alginate gel-matrix-based dressing system containing nitrofurazone. Int J Pharm 359:76–86Google Scholar
  221. Kim TG, Chung HJ, Park TG (2008c) Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater 4:1611–1619PubMedCrossRefGoogle Scholar
  222. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32:8771–8782PubMedPubMedCentralCrossRefGoogle Scholar
  223. Kim MS, Park SJ, Gu BK, Kim CH (2012) Ionically crosslinked alginate-carboxymethyl cellulose beads for the delivery of protein therapeutics. Appl Surf Sci 262:28–33CrossRefGoogle Scholar
  224. Kiyozumi T, Kanatani Y, Ishihara M, Saitoh D, Shimizu J, Yura J, Suzuki S, Okada Y, Kikuchi M (2006) Medium (DMEM/F12)-containing chitosan hydrogel as adhesive and dressing in autologous skin grafts and accelerator in the healing process. J Biomed Mater Res B 79:129–136CrossRefGoogle Scholar
  225. Klug ED (1971) Some properties of water-soluble hydroxylalkyl celluloses and their derivatives. J Polym Sci C 36:491–508CrossRefGoogle Scholar
  226. Knill CJ, Kennedy JF, Mistry J, Miraftab M, Smart G, Groocock MR, Williams H (2004) Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressing. Carbohydr Polym 55:65–76CrossRefGoogle Scholar
  227. Kolambkai YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32:65–74CrossRefGoogle Scholar
  228. Kono H (2014) Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol. Carbohydr Polym 106:84–93PubMedCrossRefGoogle Scholar
  229. Kono H, Zakimi M (2013) Preparation, water absorbency, and enzyme degradability of novel chitin- and cellulose/chitin-based superabsorbent hydrogels. J Appl Polym Sci 128:572–581CrossRefGoogle Scholar
  230. Kotek R (2007) Regenerated cellulose fibers. In: Lewin M, Perce EM (eds) Handbook of fiber chemistry, 3rd edn. Marcel Dekker, New York, pp 667–772Google Scholar
  231. Koyano T, Minoura N, Nagura M, Kobayashi K (1998) Attachment and growth of cultured fibroblast cells on PVA/chitosan-blended hydrogels. J Biomed Mater Res 39:486–490PubMedCrossRefGoogle Scholar
  232. Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E (2010) Calcium phosphate-DNA nanoparticle gene delivery from alginate hydrogels induces in vivo osteogenesis. J Biomed Mater Res A 92:1131–1138PubMedGoogle Scholar
  233. Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliver Rev 59:263–273CrossRefGoogle Scholar
  234. Kroll E, Winnik FM, Ziolo RF (1996) In situ preparation of nanocrystalline γ-Fe2O3 in iron(II) cross-linked alginate gels. Chem Mater 8:1594–1596CrossRefGoogle Scholar
  235. Kuijpers AJ, Engbers GHM, Meyvis TKL, de Smedt SSC, Demeester J, Krijgsveld J, Zaat SAJ, Danker J, Feijen J (2000) Combined gelatin–chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins. Macromolecules 33:3705–3713CrossRefGoogle Scholar
  236. Kulkarni RV, Sa B (2009a) Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Pol 24:368–384CrossRefGoogle Scholar
  237. Kulkarni RV, Sa B (2009b) Polyacrylamide-grafted-alginate-based pH-sensitive hydrogel beads for delivery of ketoprofen to the intestine. J Biomater Sci 20:235–251CrossRefGoogle Scholar
  238. Kulkarni AR, Soppimath KS, Aminabhavi TM, Dave AM, Mehta MH (1999) Urea-formaldehyde crosslinked starch and guar gum matrices for encapsulation of natural liquid pesticide [Azadirachta Indica A. Juss. (neem) seed oil]: swelling and release kinetics. J Appl Polym Sci 73:2437–2446CrossRefGoogle Scholar
  239. Kulkarni AR, Soppimath, KS, Aminabhavi TM, Dave AM, Mehta, MH (2000) Glutaraldehyde crosslinked sodium alginate beads containing liquid presticide for soil application. J Control Release 63:97–105Google Scholar
  240. Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE (2001) In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51:127–133PubMedCrossRefGoogle Scholar
  241. Kumar M, Tripathi BP, Shahi VK (2009) Crosslinked chitosan/polyvinyl alcohol blend beads for removal and recovery of Cd(II) from wastewater. J Hazard Mater 172:1041–1048PubMedCrossRefGoogle Scholar
  242. Kumar PTS, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629PubMedCrossRefGoogle Scholar
  243. Kumar PTS, Lakshmanan VK, Mincy R, Raja B, Tamura H, Nair SV, Jayakumar R (2013) Evaluation of wound healing potential of β-chitin hydrogel/zinc oxide composite bandage. Pharm Res 30:523–537CrossRefGoogle Scholar
  244. Kumbar SG, Kulkarni AR, Dave AM, Aminabhavi TM (2001) Encapsulation efficiency and release kinetics of solid and liquid pesticides through urea formaldehyde crosslinked starch, guar gum, and starch + guar gum matrices. J Appl Polym Sci 82:2863–2866CrossRefGoogle Scholar
  245. Kumbar SG, Soppimath KS, Aminabhavi TM (2003) Synthesis and characterization of polyacrylamide-grafted chitosan hydrogel microspheres for the controlled release of indomethacin. J Appl Polym Sci 87:1525–1536CrossRefGoogle Scholar
  246. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521PubMedCrossRefGoogle Scholar
  247. Kwon SS, Kong BJ, Park SN (2015) Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur J Pharam Biopharm 92:146–154CrossRefGoogle Scholar
  248. Lai JY (2014) Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid. Carbohydr Polym 101:203–212PubMedCrossRefGoogle Scholar
  249. Leach JB, Schmidt CE (2005) Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26:125–135PubMedCrossRefGoogle Scholar
  250. Leach JB, Bivens KA, Partick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82:578–589CrossRefGoogle Scholar
  251. Lee WF, Chen YJ (2001) Studies on preparation and swelling properties of the N-isopropylacrylamide/chitosan semi-IPN and IPN hydrogels. J Appl Polym Sci 82:2487–2496CrossRefGoogle Scholar
  252. Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ (1999) Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). J Appl Polym Sci 73:113–120CrossRefGoogle Scholar
  253. Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000a) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33:4291–4294CrossRefGoogle Scholar
  254. Lee SJ, Kim SS, Lee YM (2000b) Interpenetrating polymer network hydrogels based on poly(ethylene gylcol) macromer and chitosan. Carbohydr Polym 41:197–205CrossRefGoogle Scholar
  255. Lee JW, Jung MC, Park HD, Park KD, Ryu GH (2004a) Synthesis and characterization of thermosensitive chitosan copolymer as a novel biomaterial. J Biomater Sci Polymer Edn 15:1065–1079CrossRefGoogle Scholar
  256. Lee SB, Ha DI, Cho SK, Kim SJ, Lee YM (2004b) Temperature/pH-sensitive comb-type graft hydrogels composed of chitosan and poly(N-isopropylacrylamide). J Appl Polym Sci, 2612–2620Google Scholar
  257. Lee JH, Nho YC, Lim YM, Son TI (2005) Prevention of surgical adhesions with barriers of carboxymethylcellulose and poly(ethylene glycol) hydrogels synthesized by irradiation. J Appl Polym Sci 96:1138–1145CrossRefGoogle Scholar
  258. Lee SB, Park EK, Lim YM, Cho SK, Kim SY, Lee YM, Nho YC (2006) Preparation of alginate/poly(N-isopropylacrylamide) semi-interpenetrating and fully interpenetrating polymer network hydrogels with γ-ray irradiation and their swelling behaviors. J Appl Polym Sci 100:4439–4446CrossRefGoogle Scholar
  259. Lee SJ, Pereira BP, Yusof N, Selvaratnam L, Yu Z, Abbas AA, Kamrul T (2009) Unconfined compression properties of a porous poly(vinyl alcohol)–chitosan-based hydrogel after hydration. Acta Biomater 5:1919–1925PubMedCrossRefGoogle Scholar
  260. Lei Y, Rahim M, Ng Q, Sagura T (2011) Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J Control Release 153:255–261PubMedPubMedCentralCrossRefGoogle Scholar
  261. Lévesque SG, Shoichet MS (2007) Synthesis of enzyme-degradable, peptide-cross-linked dextran hydrogels. Bioconjug Chem 18:874–885PubMedCrossRefGoogle Scholar
  262. Li S (2010) Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Bioresour Technol 101:2197–2202PubMedCrossRefGoogle Scholar
  263. Li Q, Williams CG, Sun DDN, Wang J, Leong K, Elisseeff H (2004) Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res A 68:28–33PubMedCrossRefPubMedCentralGoogle Scholar
  264. Li J, Li Y, Dong H (2008) Controlled release of herbicide acetochlor from clay/carboxymethylcellulose gel formulations. J Agric Food Chem 56:1336–1346PubMedCrossRefGoogle Scholar
  265. Li J, Lu J, Li Y (2009) Carboxymethylcellulose/bentonite composite gels: water sorption behavior and controlled release of herbicide. J Appl Polym Sci 112:261–268CrossRefGoogle Scholar
  266. Li X, Ma X, Fan D, Zhu C (2012a) New suitable for tissue reconstruction injectable chitosan/collagen-based hydrogels. Soft Matter 8:3781–3790CrossRefGoogle Scholar
  267. Li X, Weng Y, Kong X, Zhang B, Li M, Diao K, Zhang Z, Wang X, Chen H (2012b) A covalently crosslinked polysaccharide hydrogel for potential applications in drug delivery and tissue engineering. J Mater Sci Mater Med 23:2857–2865PubMedCrossRefGoogle Scholar
  268. Li X, Li Q, Su Y, Yue Q, Gao B, Su Y (2015) A novel wheat straw cellulose-based semi-IPN superabsorbent with integration of water-retaining and controlled release. J Taiwan Inst Chem E 55:170–179CrossRefGoogle Scholar
  269. Liang S, Xu J, Weng L, Dai H, Zhang X, Zhang L (2006) Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J Control Release 115:189–196PubMedCrossRefGoogle Scholar
  270. Lin YH, Liang HF, Chung CK, Chen MC, Sung HW (2005) Physically crosslinked alginate/N, O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105–2113PubMedCrossRefGoogle Scholar
  271. Liu J, Li L (2005) SDS-aided immobilization and controlled release of camptothecin from agarose hydrogel. Eur J Pharm Sci 25:237–344PubMedCrossRefGoogle Scholar
  272. Liu G, Zhao X (2006) Electroresponsive behavior of gelatin/alginate semi-interpenetrating polymer network membranes under direct-current electric field. J Macromol Sci A 43:345–354CrossRefGoogle Scholar
  273. Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63:525–528CrossRefGoogle Scholar
  274. Liu W, Zhang B, Lu WW, Li X, Zhu D, Yao KD, Wang Q, Zhao C, Wang C (2004) A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25:3005–3012PubMedCrossRefGoogle Scholar
  275. Liu KH, Liu TY, Chen SY, Liu DM (2008a) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045PubMedCrossRefGoogle Scholar
  276. Liu W, Griffith M, Li F (2008b) Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med 19:3365–3371PubMedCrossRefGoogle Scholar
  277. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 104:150–155CrossRefGoogle Scholar
  278. Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose-chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRefGoogle Scholar
  279. Liu B, Ma X, Zhu C, Mi Y, Fan D, Li X, Chen L (2013) Study of a novel injectable hydrogel of human-like collagen and carboxymethylcellulose for soft tissue augmentation. e-Polymers 13:380–390Google Scholar
  280. Liu H, Sui X, Xu H, Zhang L, Zhong Y, Mao Z (2016) Self-healing polysaccharide hydrogels based on dynamic covalent enamine bonds. Macromol Mater Eng 301:725–732CrossRefGoogle Scholar
  281. LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 151:172–188PubMedCrossRefPubMedCentralGoogle Scholar
  282. Loubinox D, Chaunis S (1987) An experimental approach to spinning new cellulose fibers with N-methylmorpholine-oxide as a solvent. Text Res J 57:61–65CrossRefGoogle Scholar
  283. Lu X, Hu Z, Gao J (2000) Synthesis and light scattering study of hydroxypropyl cellulose microgels. Macromolecules 33:8698–8702CrossRefGoogle Scholar
  284. Lu S, Gao W, Gu HY (2008) Contruction, application and biosafety of silver nanocrystalline chitosan wound dressing. Burns 34:623–628PubMedCrossRefPubMedCentralGoogle Scholar
  285. Lu G, Ling K, Zhao P, Xu Z, Deng C, Zheng H, Huang J, Chen J (2010) A novel in situ-formed hydrogel wound dressing by the photocross-linking of a chitosan derivative. Wound Repair Regen 18:70–79PubMedCrossRefPubMedCentralGoogle Scholar
  286. Lü S, Liu M, Ni B, Gao C (2010) A novel pH- and thermo-sensitive PVP/CMC semi-IPN hydrogel: swelling, phase behavior, and drug release study. J Polym Sci B 48:1749–1756CrossRefGoogle Scholar
  287. Luo F, Chen Z, Megharaj M, Naidu R (2016) Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel. Chem Eng J 294:290–297CrossRefGoogle Scholar
  288. Ma J, Xu Y, Fan B, Liang B (2007a) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228CrossRefGoogle Scholar
  289. Ma J, Xu Y, Zhan Q, Zha L, Liang B (2007b) Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly (N-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 285:479–484CrossRefGoogle Scholar
  290. Ma YQ, Yi JZ, Zhang LM (2009) A facile approach to incorporate silver nanoparticles into dextran-based hydrogels for antibacterial and catalytical application. J Macromol Sci A 46:643–648CrossRefGoogle Scholar
  291. Madhumathi K, Kumar PTS, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci 21:807–813Google Scholar
  292. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:139–1407CrossRefGoogle Scholar
  293. Mai THA, Tran VN, Le VVM (2013) Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel. Biochem Eng J 74:81–87CrossRefGoogle Scholar
  294. Maia J, Ferreira L, Carvalho R, Ramos MA, Gil MH (2005) Synthesis and characterization of new injectable and degradable dextran-based hydrogels. Polymer 46:9604–9614CrossRefGoogle Scholar
  295. Mallick SP, Sagiri SS, Singh VK, Pal DK, Pradhan DK, Bhattacharya MK (2014) Effect of processed starches on the properties of gelatin-based physical hydrogels: characterization, in vitro drug release and antimicrobial studies. Polym-Plast Technol 53:700–715CrossRefGoogle Scholar
  296. Mandal B, Ray SK (2013) Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water. Carbohydr Polym 98:257–269PubMedCrossRefGoogle Scholar
  297. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  298. Marci G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8:439–444CrossRefGoogle Scholar
  299. Marsano E, Bianchi E (2002) A new class of hydrogels based on hydroxypropylcellulose and polyvinylpyrrolidone. Polymer 43:3371–3374CrossRefGoogle Scholar
  300. Marsano E, Gagliardi S, Ghioni F, Bianchi E (2000) Behavior of gels based on (hydroxypropyl) cellulose methacrylate. Polymer 41:7691–7698CrossRefGoogle Scholar
  301. Marsich E, Travan A, Donati I, Luca AD, Benincasa M, Crosera M, Paoletti S (2011) Biological response of hydrogels embedding gold nanoparticles. Colloid Surf B 83:331–339CrossRefGoogle Scholar
  302. McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18:2394–2401CrossRefGoogle Scholar
  303. McKelvery JB, Benerito RR, Berni RJ, Burgis BG (1963) The action of epichlorohydrin in the presence of alkalies and various salts on the crease recovery of cotton. J Appl Polym Sci 7:1371–1389CrossRefGoogle Scholar
  304. Meilander NJ, Pasumarthy MK, Kowalczyk TH, Cooper MJ, Bellamkonda RV (2003) Sustained release of plasmide DNA using lipid microtubules and agarose hydrogel. J Control Release 88:321–331PubMedCrossRefGoogle Scholar
  305. Menakbi C, Quignard F, Mineva T (2016) Complexation of trivalent metal cations to mannuronate type alginate models from a density functional study. J Phys Chem B 120:3615–3623PubMedCrossRefGoogle Scholar
  306. Mi FL, Sung HW, Shyu SS (2000) Synthesis and characterization of a novel chitosan-based network prepared using naturally occuring crosslinker. J Polym Scie A 38:2804–2814CrossRefGoogle Scholar
  307. Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao JY (2002) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449PubMedCrossRefGoogle Scholar
  308. Mi FL, Shyu SS, Peng CK (2005) Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci A 43:1985–2000CrossRefGoogle Scholar
  309. Miao T, Fenn SL, Charron PN, Oldinski RA (2015) Self-healing and theroresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromol 16:3740–3750CrossRefGoogle Scholar
  310. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859CrossRefGoogle Scholar
  311. Miles MJ, Morris VJ, Orford PD, Ring SG (1985) The roles of amylose and amylopectin in the gelation andretrogradation of starch. Carbohydr Res 135:271–281CrossRefGoogle Scholar
  312. Millon LE, Wan WK (2006) The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res B 79:245–253CrossRefGoogle Scholar
  313. Minoura N, Koyano T, Koshizaki N, Umehara H, Nagura M, Kobayashi K (1998) Preparation, properties, and cell attachment/growth behavior of PVA/chitosan-blended hydrogels. Mater Sci Eng C 6:275–280CrossRefGoogle Scholar
  314. Mironov V, Kasyanov V, Shu XZ, Eisenberg C, Eisenberg L, Gonda S, Trusk T, Markwald RR, Prestwich GD (2005) Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel. Biomaterials 26:7628–7635PubMedCrossRefGoogle Scholar
  315. Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater Polym Biomater 62:605–611CrossRefGoogle Scholar
  316. Mishra RK, Datt M, Banthia AK (2008) Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. AAPS PharmSciTech 9:395–403Google Scholar
  317. Misra BN, Mehta IK, Khetarpal RC (1984) Grafting onto cellulose. VIII. Graft copolymerization of poly(ethylacrylate) onto cellulose by use of redox initiators. Comparison of initiator reactivities. J Polym Sci A 22:2767–2775Google Scholar
  318. Mittal H, Parashar V, Mishra SB, Mishra AK (2014) Fe3O4 MNPs and gum xanthan based hydrogels nanocomposites for the efficient capture of malachite green from aqueous solution. Chem Eng J 255:471–482CrossRefGoogle Scholar
  319. Mohr S, Siegenthaler M, Mueller MD, Kuhn A (2013) Bulking agents: an analysis of 500 cases and review of the literature. Int Urogynecol J 24:241–247PubMedCrossRefGoogle Scholar
  320. Muzzarelli RAA (1988) Carboxymethylate chitins and chitosans. Carbohydr Polym 8:1–21CrossRefGoogle Scholar
  321. Muzzarelli RAA (1993) Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydr Polym 20:7−16Google Scholar
  322. Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A (2012) Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym 89:732–739CrossRefGoogle Scholar
  323. Nagahama H, Nwe N, Jayakumar R, Koiwa S, Furuike T, Tamura H (2008) Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr Polym 73:295–302CrossRefGoogle Scholar
  324. Nagahama H, Meada H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRefGoogle Scholar
  325. Nagasawa N, Yagi T, Kume T, Yoshii F (2004) Radiation crosslinking of carboxymethyl starch. Carbohydr Polym 58:109–113CrossRefGoogle Scholar
  326. Nakajima N, Ikada Y (1995) Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media. Bioconjug Chem 6:123–130PubMedCrossRefGoogle Scholar
  327. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRefGoogle Scholar
  328. Nazari A, Montazer M, Rashidi A, Yazdanshenas M, Anary-Abbasinejad M (2009) Nano TiO2 photo-catalyst and sodium hypophosphite for crosslinking cotton with poly carboxylic acids under UV and high temperature. Appl Catal A-Gen 371:10–16CrossRefGoogle Scholar
  329. Ng RW, Cheng YL (2007) Calcium alginate dressing-related hypercalcemia. J Burn Care Res 28:203–204PubMedCrossRefGoogle Scholar
  330. Nho YC, Park KR (2002) Preparation and properties of PVA/PVP hydrogels containing chitosan by radiation. J Appl Polym Sci 85:1787–1794CrossRefGoogle Scholar
  331. Ni B, Liu S, Lü S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175Google Scholar
  332. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng B 14:149–165CrossRefGoogle Scholar
  333. Nie H, Liu M, Zhan F, Guo M (2004) Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydr Polym 58:185–189CrossRefGoogle Scholar
  334. Nnadi F, Brave C (2011) Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J Soil Sci Environ Manage 2:206–211Google Scholar
  335. Nyström B, Lindman B (1995) Dynamic and viscoelastic properties during the thermal gelation process of a nonionic cellulose ether dissolved in water in the presence of ionic surfactants. Macromolecules 28:967–974CrossRefGoogle Scholar
  336. Obradovic B, Stojkovsak J, Jovanovic Z, Miskovic-Stankovic V (2012) Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J Mater Sci Mater Med 23:99–107PubMedCrossRefGoogle Scholar
  337. Oh ST, Kim WR, Kim SH, Chung YC, Park JS (2011) The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fiber Polym 12:159–165CrossRefGoogle Scholar
  338. Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromol 2:856–863CrossRefGoogle Scholar
  339. Omidian H, Rocca JG, Park K (2006) Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol Biosci 6:703–710PubMedCrossRefGoogle Scholar
  340. Omlor GW, Nerlich AG, Lorenz H, Burkner T, Richter W, Pfeiffer M, Gühring T (2012) Injection of a polymerized hyaluronic acid/collagen hydrogel matrix in an in vivo porcine disc degeneration model. Eur Spine J 21:1700–1708Google Scholar
  341. Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M (1999) Photcrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 49:289–295CrossRefGoogle Scholar
  342. Oprea AM, Profire L, Lupusoru CE, Ghiciuc CM, Ciolacu D, Vasile C (2012) Synthesis and characterization of some cellulose/chondroitin sulphate hydrogels and their evaluation as carriers for drug delivery. Carbohydr Polym 87:721–729CrossRefGoogle Scholar
  343. Östlund Ǻ, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromol 10:2401–2407CrossRefGoogle Scholar
  344. Pal K, Banthia AK, Majumdar DK (2006) Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends Biomater Artif Organs 20:59–67Google Scholar
  345. Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Deit HL, Kanellopoulos NK (2006) Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater 137:1765–1772PubMedCrossRefGoogle Scholar
  346. Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur VK (2015) Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review. Int J Biol Macromol 79:449–458PubMedCrossRefGoogle Scholar
  347. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432CrossRefGoogle Scholar
  348. Park JS, Park JW, Ruckenstein E (2001) Thermal and dynamic mechanical analysis of PVA/MC blend hydrogels. Polymer 42:4271–4280CrossRefGoogle Scholar
  349. Park SN, Lee HJ, Lee KH, Suh H (2003) Biological characterization of EDC-crosslinked collagen–hyaluronic acid matrix in dermal tissue restoration. Biomaterials 24:1631–1641PubMedCrossRefGoogle Scholar
  350. Patchan M, Graham JL, Xia Z, Maranchi JP, McCally R, Schein O, Elisseeff JH, Trexler MM (2013) Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage. Mater Sci Eng C 33:3069–3076CrossRefGoogle Scholar
  351. Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781PubMedPubMedCentralCrossRefGoogle Scholar
  352. Pekel N, Yoshii F, Kume T, Güven O (2004) Radiation crosslinking of biodegradable hydroxypropylmethylcellulose. Carbohydr Polym 55:139–147CrossRefGoogle Scholar
  353. Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47:6481–6484CrossRefGoogle Scholar
  354. Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB (2007) Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer 48:4943–4949CrossRefGoogle Scholar
  355. Petrusic S, Lewandowski M, Giraud S, Jovanic P, Bugarski B, Ostojic S, Koncar V (2012) Development and characterization of thermosensitive hydrogels based on poly(N-isopropylacrylamide) and calcium alginate. J Appl Polym Sci 124:890–903CrossRefGoogle Scholar
  356. Pettignano A, Häring M, Bernardi L, Tanchoux N, Quignard F, Díaz Díaz D (2017) Self-healing alginate–gelatin biohydrogels based on dynamic covalent chemistry: elucidation of key parameters. Mater Chem Front 1:73–79CrossRefGoogle Scholar
  357. Plungpongpan K, Koyanukkul K, Kaewvilai A, Nootsuwan N, Kewsuwan P, Laobuthee A (2013) Preparation of PVP/MHEC blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energia Procedia 34:775–781CrossRefGoogle Scholar
  358. Potthast A, Rosenau T, Buchner R, Röder T, Ebner G, Bruglachner H, Sixta H, Kosma P (2002a) The cellulose solvent system N, N-dimethylacetamide/lithium chloride revisited: the effect of water on physicochemical properties and chemical stability. Cellulose 9:41–53CrossRefGoogle Scholar
  359. Potthast A, Rosenau T, Sixta H, Kosma P (2002b) Degradation of cellulosic materials by heating in DMAc/LiCl. Tetrahedron Lett 43:7757–7759CrossRefGoogle Scholar
  360. Pourjavadi A, Barzengar S, Mahdavinia GR (2006) MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsobent hydrogels. Carbohydr Polym 66:386–395CrossRefGoogle Scholar
  361. Pourjavadi A, Ghasemzadeh H, Soleyman R (2007) Synthesis, characterization, and swelling behavior of alginate-g-poly(sodium acrylate)/kaolin superabsorbent hydrogel composites. J Appl Polym Sci 105:2631–2639CrossRefGoogle Scholar
  362. Price RD, Myers S, Leigh IM, Navsaria HA (2005) The role of hyaluronic acid in wound healing. Am J Clin Dermatol 6:393–402PubMedCrossRefGoogle Scholar
  363. Qiao D, Liu H, Yu L, Bao X, Simon GP, Petinakis E, Chen L (2016) Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr Polym 147:146–154PubMedCrossRefGoogle Scholar
  364. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–329CrossRefGoogle Scholar
  365. Qu X, Wirsén A, Albertsson AC (1999) Synthesis and characterization of pH-sensitive hydrogels based on chitosan and D, L-lactic acid. J Appl Polym Sci 74:3193–3202CrossRefGoogle Scholar
  366. Quinn FX, Hatakeyama T, Takahashi M, Hatakeyama H (1994) The effect of annealing on the conformational properties of xanthan hydrogels. Polymer 35:1248–1252CrossRefGoogle Scholar
  367. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M (2008) PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972Google Scholar
  368. Rahman L, Silong S, Zin WM, Rahman MZA, Ahmad M, Haron J (2000) Graft copolymerization of methyl acrylate onto sago starch using ceric ammonium nitrate as an initiator. J Appl Polym Sci 76:516–523CrossRefGoogle Scholar
  369. Rao KSVM, Naidu BVK, Subha MCS, Sairam M, Aminabhavi TM (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333–344CrossRefGoogle Scholar
  370. Rao KM, Mallikarjuna B, Krishna Rao KSV, Prabhakar MN, Chowdoji Rao K, Subha MCS (2012) Preparation and characterization of pH sensitive poly(vinyl alcohol)/sodium carboxymethyl cellulose IPN microspheres for in vitro release studies of an anti-cancer drug. Polym Bull 68:1905–1919CrossRefGoogle Scholar
  371. Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278PubMedCrossRefGoogle Scholar
  372. Rashidzadeh A, Olad A, Salari D, Reyhanitabar (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:344–358Google Scholar
  373. Rathna GVN, Rao DVM, Chatterji PR (1996) Hydrogels of gelatin-sodium carboxymethylcellulose: synthesis and swelling kinetics. J Macromol Sci A 33:1199–1207CrossRefGoogle Scholar
  374. Ray R, Maity S, Mandal S, Chatterjee TK, Sa B (2011) Cross-linked homopolymeric and interpenetrating network hydrogel beads of carboxymethyl xanthan and sodium alginate. Adv Polym Tech 30:1–11CrossRefGoogle Scholar
  375. Reddy KR, Rajgopal K, Maheswari CU, Kantam ML (2006) Chitosan hydrogel: a green and recyclable biopolymer catalyst for aldol and knoevenagel reactions. New J Chem 30:1549–1552CrossRefGoogle Scholar
  376. Rehab A, Akelah A, Issa R, D’Antone S, Solaro R, Chiellini E (1991) Controlled release of herbicides supported on polysaccharide based hydrogels. J Bioact Comp Polym 6:52–63CrossRefGoogle Scholar
  377. Reis LA, Chiu LLY, Liang Y, Hyunh K, Momen A, Radisic M (2012) A peptide-modified chitosan-collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8:1022–1036PubMedCrossRefGoogle Scholar
  378. Relleve L, Yoshii F, dela Rosa A, Kume T (1999) Radiation-modified hydrogel based on poly(N-vinyl-2-pyrrolidone) and carrageenan. Angew Makromol Chem 273:63–68Google Scholar
  379. Ren H, Gao Z, Wu D, Jiang J, Sun Y, Luo C (2016) Efficient Pb(II) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism. Carbohydr Polym 137:402–409PubMedCrossRefGoogle Scholar
  380. Rimdusit S, Somsaeng K, Kewsuwan P, Jubsilp C, Tiptipakorn S (2012) Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methylcellulose hydrogel. Eng J 16:15–28CrossRefGoogle Scholar
  381. Rinaudo M, Pavlov G, Desbrières J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40:7029–7032CrossRefGoogle Scholar
  382. Risbud MV, Bhat SV (2001) Properties of polyvinyl pyrrolidone/β-chitosan hydrogel membranes and their biocompatibility evaluation by haemorheological method. J Mater Sci Mater M 12:75–79CrossRefGoogle Scholar
  383. Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75PubMedCrossRefGoogle Scholar
  384. Risbud M, Hardikar A, Bhonde R (2001) Growth modulation of fibroblasts by chitosan-polyvinyl pyrrolidone hydrogel: implications for wound management. J Biosci 25:25–31CrossRefGoogle Scholar
  385. Rochefort WE, Rehg T, Chau PC (1986) Trivalent cation stabilization of alginate gel for cell immobilization. Biotechnol Lett 8:115–120CrossRefGoogle Scholar
  386. Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:242–252CrossRefGoogle Scholar
  387. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273PubMedCrossRefGoogle Scholar
  388. Rosiak JM, Ulański P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151CrossRefGoogle Scholar
  389. Roy C, Budtova T, Navard P (2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromol 4:259–264CrossRefGoogle Scholar
  390. Roy A, Bajpai J, Bajpai AK (2009) Dynamics of controlled release of chlorpyrifos from swelling and eroding biopolymeric microspheres of calcium alginate and starch. Carbohydr Polym 76:221–231CrossRefGoogle Scholar
  391. Roy N, Saha N, Kitano T, Saha P (2010) Novel hydrogels of PVP-CMC and their swelling effect on viscoelastic properties. J Appl Polym Sci 117:1703–1710Google Scholar
  392. Rudzinski WE, Dave AM, Vaishnav UH, Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Hydrogels as controlled release devices in agriculture. Design Monomers Polym 5:39–65CrossRefGoogle Scholar
  393. Ruiz-Capillas C, Carmona P, Jiménez-Colmenero F, Herrero AM (2013) Oil bulking agents based on polysaccharide gels in meat batters: a Raman spectroscopy study. Food Chem 141:3688–3694PubMedCrossRefGoogle Scholar
  394. Sadeghi M, Hosseinzadeh H (2007) Synthesis and superswelling behavior of carboxymethylcellulose–poly(sodium-acrylate-co-acrylamide) hydrogel. J Appl Polym Sci 108:1142–1151CrossRefGoogle Scholar
  395. Saglam A, Yalcinkaya Y, Denizli A, Arica MY, Genc Ö, Bektas S (2002) Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium. Microchem J 71:73–81CrossRefGoogle Scholar
  396. Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893PubMedCrossRefGoogle Scholar
  397. Sahoo S, Cung C, Khetan S, Burdick JA (2008) Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromol 9:1088–1092CrossRefGoogle Scholar
  398. Sakai S, Yamaguchi S, Takei T, Kawakami K (2008) Oxidized alginate-cross-linked alginate/gelatin hydrogel fibers for fabricating tubular constructs with layered smooth muscle cells and endothelial cells in collagen gels. Biomacromol 9:2036–2041CrossRefGoogle Scholar
  399. Salama A, El-Sakhawy M, Kamel S (2016) Carboxymethyl cellulose based hybrid material for sustained release of protein drugs. Int J Biol Macromol 93:1647–1652PubMedCrossRefGoogle Scholar
  400. Sannino A, Madaghiele M, Conversano F, Mele G, Maffezzoli A, Netti PA, Ambrosio L, Nicolais L (2004) Cellulose derivative–hyaluronic acid-based microporous hydrogels cross-linked through divinyl sulfone (DVS) to modulate equilibrium sorption capacity and network stability. Biomacromol 5:92–96CrossRefGoogle Scholar
  401. Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530CrossRefGoogle Scholar
  402. Sannino A, Madaghiele M, Demitri C, Scalera F, Esposito A, Esposito V, Maffezzoli A (2010) Development and characterization of cellulose-based hydrogels for use as dietary bulking agent. J Appl Polym Sci 115:1438–1444CrossRefGoogle Scholar
  403. Santos JR, Alves NM, Mano JF (2010) New thermo-responsive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid semi-interpenetrated polymer networks: swelling properties and drug release studies. J Bioact Compat Polym 25:169–184CrossRefGoogle Scholar
  404. Sanz T, Slavador A, Fiszman SM (2004) Effect of concentration and temperature of methylcellulose-added batters application to battered, fried seafood. Food Hydrolloid 18:127–131CrossRefGoogle Scholar
  405. Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J App Polym Sci 24:1073–1087CrossRefGoogle Scholar
  406. Saska S, Texeira LN, de Oliveira PT, Gaspar AMM, Ribeiro SJL, Messaddeq Y, Marchetto R (2012) Bacterial cellulose-collagen nanocomposite for bone tissue engineering. J Mater Chem 22:22102–22112CrossRefGoogle Scholar
  407. Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  408. Segura T, Andorson BC, Chung PH, Webber R, Shull KR, Shea LD (2005a) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371PubMedCrossRefPubMedCentralGoogle Scholar
  409. Segura T, Chung PH, Shea LD (2005b) DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach. Biomaterials 26:1575–1584PubMedPubMedCentralCrossRefGoogle Scholar
  410. Senna AM, do Carmo JB, da Silva JMS, Botaro VR (2015) Synthesis, characterization and application of hydrogel derived from cellulose acetate as a substrate for slow-release NPK fertilizer and water retention in soil. J Environ Chem Eng 3:996–1002Google Scholar
  411. Serwer P (1983) Agarose gels: properties and use for electrophoresis. Electrophoresis 4:375–382CrossRefGoogle Scholar
  412. Sezer AD, Cevher E, Hatıpoğlu Z, Baș AL, Akbuğa J (2008) Preparation of fucoidan-chitosan hydrogel and its application as burn healing accelerator on rabbits. Biol Pharm Bull 31:2326–2333PubMedCrossRefPubMedCentralGoogle Scholar
  413. Shen F, Cui YL, Yang LF, Yao KD, Dong XH, Jia WY, Shi HD (2000) A study on the fabrication of porous chitosan/gelatin network scaffold for tissue engineering. Polym Int 49:1596–1599CrossRefGoogle Scholar
  414. Shen C, Shen Y, Wen Y, Wang H, Liu W (2011) Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res 45:5200–5210PubMedCrossRefGoogle Scholar
  415. Shi XY, Tan TW (2004) New contact lens based on chitosan/gelatin composites. J Bioact Compat Polym 19:467–479CrossRefGoogle Scholar
  416. Shi J, Alves NM, Mano JF (2006) Drug release of pH/temperature-responsive calcium alginate/poly(N-isopropylacrylamide) semi-IPN beads. Macromol Biosci 6:358–363PubMedCrossRefGoogle Scholar
  417. Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tain W (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770CrossRefGoogle Scholar
  418. Shim JW, Nho YC (2003) Preparation of poly(acrylic acid)–chitosan hydrogel by gamma irradiation and in vitro drug release. J Appl Polym Sci 90:3660–3667CrossRefGoogle Scholar
  419. Shu XZ, Liu Y, Luo Y, Roberts MC, Prestwich GD (2002) Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3:1304–1311Google Scholar
  420. Shu XZ, Liu Y, Palumbo F, Prestwich GD (2003) Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials 24:3825–3834PubMedCrossRefGoogle Scholar
  421. Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD (2004) In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 25:1339–1348CrossRefGoogle Scholar
  422. Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factory delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35:562–569PubMedCrossRefGoogle Scholar
  423. Singh B, Sharma V (2014) Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr Polym 101:928–940Google Scholar
  424. Singh R, Singh D (2012) Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci Mater Med 23:2649–2658PubMedCrossRefGoogle Scholar
  425. Singh A, Narvi SS, Dutta PK, Pandey ND (2006a) External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull Mater Sci 29:233–238CrossRefGoogle Scholar
  426. Singh V, Tiwari A, Pandey S, Singh SK (2006b) Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide). Starch 58:536–543CrossRefGoogle Scholar
  427. Singh B, Sharma DK, Gupta A (2007) Controlled release of thiram fungicide from starch-based hydrogels. J Environ Sci Heal B 42:677–695CrossRefGoogle Scholar
  428. Singh B, Sharma DK, Gupta A (2009a) A study towards release dynamics of thiram fungicide from starch–alginate beads to control environmental and health hazards. J Hazard Mater 161:208–216PubMedCrossRefGoogle Scholar
  429. Singh B, Sharma DK, Kumar R, Gupta A (2009b) Controlled release of the fungicide thiram from starch-alginate-clay based formulation. Appl Clay Sci 45:76–82CrossRefGoogle Scholar
  430. Skardal A, Zhang J, McCoard L, XU X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng A 16:2675–2685CrossRefGoogle Scholar
  431. Smeds KA, Grinstaff MW (2001) Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res 54:115–121PubMedCrossRefGoogle Scholar
  432. Sokker HH, El-Savvy NM, Hassan MA, El-Anadouli BE (2011) Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced grafting polymerization. J Hazard Mater 190:359–365PubMedCrossRefGoogle Scholar
  433. Song K, Yiao M, Liu T, Jiang B, Macedo HM, Ma X, Cui Z (2010) Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J Mater Sci Mater Med 21:2835–2842PubMedCrossRefGoogle Scholar
  434. Sowmya A, Meenakshi S (2013) An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions. J Environ Chem Eng 1:906–915CrossRefGoogle Scholar
  435. Spiridon I, Popescu MC, Bodârlău R, Vasile C (2008) Enzymatic degradation of some nanocomposites of poly(vinyl alcohol) with starch. Polym Degrad Stabil 93:1884–1890CrossRefGoogle Scholar
  436. Stalling SS, Akintoye SO, Nicoll SB (2009) Development of photocrosslinked methylcellulose hydrogels for soft tissue reconstruction. Acta Biomater 5:1911–1918PubMedCrossRefGoogle Scholar
  437. Stashak TS, Farsvedt E, Othic A (2004) Update on wound dressing: indications and best use. Clin Tech Equine Pract 3:148–163CrossRefGoogle Scholar
  438. Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff (2010) A versatile pH sensitive chondroitin sulfate–PEG tissue adhesive and hydrogel. Biomaterials 31:2788–2797Google Scholar
  439. Striegel AM (1997) Theory and applications of DMAC/LICL in the analysis of polysaccharides. Carbohydr Polym 34:267–274CrossRefGoogle Scholar
  440. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027PubMedCrossRefGoogle Scholar
  441. Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  442. Sun X, Peng B, Ji Y, Chen J, Li D (2009) Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AlChE J 55:2062–2069CrossRefGoogle Scholar
  443. Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 392:232–240PubMedCrossRefGoogle Scholar
  444. Suo A, Qian J, Yao Y, Zhang W (2007) Synthesis and properties of carboxymethyl cellulose-graft-poly(acrylic acid-co-acrylamide) as a novel cellulose-based superabsorbent. J Appl Polym Sci 103:1382–1388CrossRefGoogle Scholar
  445. Suri S, Schmidt CE (2009) Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater 5:2385–2397PubMedCrossRefGoogle Scholar
  446. Sutar PB, Mishra RK, Pal K, Banthia AK (2008) Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med 19:2247–2253PubMedCrossRefGoogle Scholar
  447. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431PubMedCrossRefGoogle Scholar
  448. Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119PubMedCrossRefGoogle Scholar
  449. Swatlowski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefGoogle Scholar
  450. Tada D, Tanabe T, Tachibana A, Yamauchi K (2007) Albumin-crosslinked alginate hydrogels as sustained drug release carrier. Mater Sci Eng 27:870–874CrossRefGoogle Scholar
  451. Takahashi M, Shimazaki M, Yamamoto J (2001) Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci B Polym Phys 39:91–100CrossRefGoogle Scholar
  452. Taleb MFA, El-Mohdy HLA, Abd El-Rehim HA (2009) Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J Hazard Mater 168:68–75PubMedCrossRefGoogle Scholar
  453. Tamura H, Nagahama H, Tokura S (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13:357–364CrossRefGoogle Scholar
  454. Tan W, Krishnaraj R, Desai TA (2001) Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Eng 7:203–210PubMedCrossRefGoogle Scholar
  455. Tan H, Wu J, Lao L, Gao C (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337PubMedCrossRefGoogle Scholar
  456. Tang YF, Du YM, Hu XW, Shi XW, Kennedy JF (2007) Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 67:491–499CrossRefGoogle Scholar
  457. Tang S, Zou P, Xiong H, Tang H (2008) Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr Polym 72:521–526CrossRefGoogle Scholar
  458. Tang H, Zhou W, Zhang L (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J Hazard Mater 209–210:218–225PubMedCrossRefGoogle Scholar
  459. Tang H, Chen H, Duan B, Lu A, Zhang L (2014) Swelling behaviors of superabsorbent chitin/carboxymethylcellulose hydrogels. J Mater Sci 49:2235–2242CrossRefGoogle Scholar
  460. Tanodekaew S, Prasitsilp M, Somporn S, Boonlom T, Pothsree Pateepasen R (2004) Preparation of acrylic acid grafted chitin for wound dressing application. Biomaterials 25:1453–1460PubMedCrossRefGoogle Scholar
  461. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  462. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  463. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefGoogle Scholar
  464. Thornton AJ, Alsberg E, Hill EE, Mooney DJ (2004) Shape retaining injectable hydrogels for minimally invasive bulking. J Urol 172:763–768PubMedCrossRefGoogle Scholar
  465. Tomihata K, Ikada Y (1997a) Crosslinking of hyaluronic acid with water-soluble carbodiimide. J Biomed Mater Res 37:243–251PubMedCrossRefGoogle Scholar
  466. Tomihata K, Ikada Y (1997b) Crosslinking of hyaluronic acid with glutaraldehyde. Polym Chem 35:3553–3559CrossRefGoogle Scholar
  467. Topuz F, Henke A, Richtering W, Groll J (2012) Magnesium ions and alginate do form hydrogels: a rheological study. Soft Matter 8:4877–4881CrossRefGoogle Scholar
  468. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786PubMedCrossRefGoogle Scholar
  469. Tran THA, Tran VN, Le VVM (2013) Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel. Biochem Eng J 74:81–87CrossRefGoogle Scholar
  470. Trimnell D, Shasha BS, Otey FH (1985) The effect of α-amylases upon the release of trifuralin encapsulated in starch. J Contol Release 1:183–190CrossRefGoogle Scholar
  471. Tsioptsias C, Panayiotou C (2008) Foaming of chitin hydrogels processed by supercritical carbon dioxide. J Supercrit Fluid 47:302–308CrossRefGoogle Scholar
  472. Ulanski P, von Sonntag C (2000) OH-radical-induced chain scission of chitosan in the absence and presence of dioxygen. J Chem Soc Perkin Trans 2(2000):2022–2028CrossRefGoogle Scholar
  473. Vaghani SS, Patel MM, Satish CS (2012) Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohydr Res 347:76–82PubMedCrossRefGoogle Scholar
  474. Vaizey CJ, Kamm MA (2005) Infectable bulking agents for treating faecal incontinence. Brit J Surg 92:521–527PubMedCrossRefGoogle Scholar
  475. van Dijk-Wolthuis WNE, Hoogeboom JAM, van Steenbergen MJ, Tsang SKY, Hennink WE (1997) Degradation and release behavior of dextran-based hydrogels. Macromolecules 30:4639–4645CrossRefGoogle Scholar
  476. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12:1387–1408CrossRefGoogle Scholar
  477. Vanderhoogz JL, Alcoutlabi M, Magda JJ, Prestwich GD (2009) Rheological properties of cross-linked hyaluronan–gelatin hydrogels for tissue engineering. Macromol Biosci 9:20–28CrossRefGoogle Scholar
  478. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  479. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281PubMedCrossRefGoogle Scholar
  480. Verestiuc L, Ivanov C, Barbu E, Tsibouklis J (2004) Dual-stimuli-responsive hydrogels based on poly(N-isopropylacrylamide)/chitosan semi-interpenetrating networks. Int J Pharm 269:185–194PubMedCrossRefGoogle Scholar
  481. Villanueva ME, del Rosario Diez AM, González JA, Pérez CJ, Orrego M, Piehl L, Teves S, Copello GJ (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces. (in press)CrossRefPubMedGoogle Scholar
  482. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  483. Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J Appl Polym Sci 81:3030–3037CrossRefGoogle Scholar
  484. Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003a) Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions. Nucl Intrum Meth B 211:533–544CrossRefGoogle Scholar
  485. Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003b) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295CrossRefGoogle Scholar
  486. Wach RA, Kudoh H, Zhai M, Nagasawa N, Muroya Y, Yoshii F, Katsumura Y (2004) Rate constants of reactions of carboxymethylcellulose with hydrated electron, hydroxyl radical and the decay of CMC macroradicals. A pulse radiolysis study. Polymer 45:8165–8171CrossRefGoogle Scholar
  487. Wach RA, Rokita B, Bartoszek N, Katsumura Y, Ulanski P, Rosiak JM (2014) Hydroxyl radical-induced crosslinking and radiation-initiated hydrogel formation in dilute aqueous solutions of carboxymethylcellulose. Carbohydr Polym 112:412–415PubMedCrossRefGoogle Scholar
  488. Wang G, Olofsson G (1995) Ethyl(hydroxyethyl)cellulose and ionic surfactants in dilute solution. Calorimetric viscosity study of the interaction with SDS and some cationic surfactants. J Phys Chem 99:5588–5596CrossRefGoogle Scholar
  489. Wang L, Stegemann JP (2010) Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering. Biomaterials 31:3976–3985PubMedPubMedCentralCrossRefGoogle Scholar
  490. Wang L, Stegemann JP (2011) Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 7:2410–2417PubMedPubMedCentralCrossRefGoogle Scholar
  491. Wang W, Wang A (2009) Preparation, characterization and properties of superabsorbent nanocomposites based on natural guar gum and modified rectorite. Cabrohydr Polym 77:891–897CrossRefGoogle Scholar
  492. Wang W, Wang A (2010) Nanocomposite of carboxymethylcellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82:83–91CrossRefGoogle Scholar
  493. Wang M, Wang L (2013) Synthesis and characterization of carboxymethyl cellulose/organic montmorillonite nanocomposites and its adsorption behavior for Congo Red dye. Water Sci Eng 6:272–282Google Scholar
  494. Wang N, Wu XS (1997) Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm Dev Technol 2:135–142PubMedCrossRefGoogle Scholar
  495. Wang H, Li W, Lu Y, Wang Z (1997) Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly (acrylic acid): chitosan semi-interpenetrating polymer network. J Appl Polym Sci 65:1445–1450CrossRefGoogle Scholar
  496. Wang M, Qiang J, Fang Y, Hu D, Cui Y, Fu X (2000) Preparation and properties of chitosan-poly(N-isopropylacrylamide) semi-IPN hydrogels. J Polym Sci A 38:474–481CrossRefGoogle Scholar
  497. Wang CC, Juanf LC, Hsu TC, Lee CK, Lee JF, Huang FC (2004a) Adsorption of basic dyes onto montmorillonite. J Colloid Interf Sci 273:80–86CrossRefGoogle Scholar
  498. Wang T, Turhan M, Gunasekaran S (2004b) Selected properties of pH-sensitive biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polym Int, 911–918Google Scholar
  499. Wang M, Xu L, Hu H, Zhai M, Peng J, Nho Y, Li J, Wei G (2007) Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nucl Instrum Meth B 265:385–389Google Scholar
  500. Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737CrossRefGoogle Scholar
  501. Wang T, Zhu XK, Xue XT, Wu DY (2012) Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 88:75–83CrossRefGoogle Scholar
  502. Wang F, Zhao J, Pan F, Zhou H, Yang X, Li W, Liu H (2013a) Adsorption properties toward trivalent rare earths by alginate beads doping with silica. Ind Eng Chem Res 52:3453–3461CrossRefGoogle Scholar
  503. Wang J, Wei L, Ma Y, Li K, Li M, Yu Y, Wang L, Qiu H (2013b) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu(II) adsorption. Carbohydr Polym 98:736–743PubMedCrossRefPubMedCentralGoogle Scholar
  504. Wang J, Zhou X, Xiao H (2013c) Structure and properties of cellulose/poly(N-isopropylacrylamide) hydrogels prepared by SIPN strategy. Carbohydr Polym 94:749–754PubMedCrossRefPubMedCentralGoogle Scholar
  505. Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013d) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686Google Scholar
  506. Wang Y, Liu M, Ni B, Xie L (2013e) κ-carrageenan–sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Ind Eng Chem Res 51:1413–1422CrossRefGoogle Scholar
  507. Wang Y, Wang W, Shi X, Wang A (2013f) A superabsorbent nanocomposite based on sodium alginate and illite/smectite mixed layer clay. J Appl Polym Sci 130:161–167CrossRefGoogle Scholar
  508. Wang Y, Wang W, Wang A (2013g) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139CrossRefGoogle Scholar
  509. Wang J, Hu H, Yang Z, Wei J, Li J (2016) IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Mater Sci Eng C 61:376–386CrossRefGoogle Scholar
  510. Weeks A, Morrison D, Alauzun JG, Brook MA, Jones L, Sheardown H (2012) Photocrosslinkable hyaluronic acid as an internal wetting agent in model conventional and silicone hydrogel contact lenses. J Biomed Mater Res A 100:1972–1982PubMedCrossRefPubMedCentralGoogle Scholar
  511. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, Osada Y, Chen YM (2015) Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater 25:1352–1359CrossRefGoogle Scholar
  512. Wen C, Lu L, Li X (2014) Mechanically robust gelatin–alginate IPN hydrogels by a combination of enzymatic and ionic crosslinking approaches. Macromol Mater Eng 299:504–513CrossRefGoogle Scholar
  513. Wertz JL, Bédué O, Mercier JP (2010) Cellulose science and technology. EPFL Press, SwitzerlandGoogle Scholar
  514. Westman L, Lindström T (1981) Swelling and mechanical properties of cellulose hydrogels. I. Preparation, characterization and swelling behavior. J Appl Polym Sci 26:2519–2532CrossRefGoogle Scholar
  515. White CJ, McBride MK, Pate KM, Tieppo A, Byrne ME (2011) Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contacts. Biomaterials 32:5698–5705PubMedCrossRefGoogle Scholar
  516. Wintgens V, Lorthioir C, Dubot P, Sébille B, Amiel C (2015) Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate. Carbohydr Polym 132:80–88PubMedCrossRefGoogle Scholar
  517. Woodings C (ed) (2001) Regenerated cellulose fibres. Woodhead Publishing Ltd., EnglandGoogle Scholar
  518. Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72:240–247CrossRefGoogle Scholar
  519. Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034CrossRefGoogle Scholar
  520. Wu J, Wei Y, Lin J, Lin S (2003) Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 44:6513–6520CrossRefGoogle Scholar
  521. Wu X, Black L, Santacana-Laffitte G, Partick CW (2007) Preparation and assessment of glutaraldehyde-crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A 81:59–65PubMedCrossRefGoogle Scholar
  522. Wu F, Zhang Y, Liu L, Yao J (2012a) Synthesis and characterization of a novel cellulose-g-poly(acrylic acid-co-acrylamide) superabsorbent composite based on flax yarn waste. Carbohydr Polym 87:2519–2525CrossRefGoogle Scholar
  523. Wu J, Zhao N, Zhang X (2012b) Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19:1239–1249CrossRefGoogle Scholar
  524. Xia X, Tang S, Lu X, Hu Z (2003) Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution. Macromolecules 36:3695–3698CrossRefGoogle Scholar
  525. Xia Y, Guo T, Song M, Zhang B, Zhang B (2005) Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromol 6:2601–2606CrossRefGoogle Scholar
  526. Xiao C, Yang M (2006) Controlled preparation of physically cross-linked starch-g-PVA hydrogel. Carbohydr Polym 64:37–40CrossRefGoogle Scholar
  527. Xie Y, Wang A (2009) Study on superabsorbent composites XIX. Synthesis, characterization and performance of chitosan-g-poly(acrylic acid)/vermiculite superabsorbent composites. J Polym Res 16:143–150CrossRefGoogle Scholar
  528. Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192CrossRefGoogle Scholar
  529. Xu JB, Bartley JP, Johnson RA (2002a) Preparation and characterization of alginate hydrogel membranes crosslinked using a water-soluble carbodiimide. J Appl Polym Sci 90:747–753CrossRefGoogle Scholar
  530. Xu L, Nagasawa N, Fumio Y, Kume T (2002b) Syntheses of hydroxypropyl methylcellulose phtalate hydrogels in Na2CO3 aqueous solution with electron-beam irradiation. J Appl Polym Sci 89:2123–2130CrossRefGoogle Scholar
  531. Xu JB, Bartley JP, Johnson RA (2003) Preparation and characterization of alginate–carrageenan hydrogel films crosslinked using a water-soluble carbodimide (WSC). J Membr Sci 218:131–146CrossRefGoogle Scholar
  532. Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691CrossRefGoogle Scholar
  533. Xu FJ, ZhuY Liu FS, Nie J, Ma NJ, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacrylamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21:456–464PubMedCrossRefGoogle Scholar
  534. Yadav M, Rhee KY (2012) Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): Synthesis, characterization and swelling behavior. Carbohydr Polym 90:165–173PubMedCrossRefGoogle Scholar
  535. Yadollahi M, Farhoudian S, Namazi H (2015a) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43PubMedCrossRefGoogle Scholar
  536. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015b) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114PubMedCrossRefGoogle Scholar
  537. Yadollahi M, Namazi H, Aghazadeh M (2015c) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277PubMedCrossRefGoogle Scholar
  538. Yahși A, Șahin F, Demirel G, Tümtürk H (2005) Binary immobilization of tyrosinase by using alginate gel beads and poly(acrylamide-co-acrylic acid) hydrogels. Int J Biol Macromol 36:253–258PubMedCrossRefGoogle Scholar
  539. Yan L, Shuai Q, Gong X, Gu Q, Yu H (2009) Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal. Clean 37:392–398Google Scholar
  540. Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB, Wang LY, Ji PH, Oliveira JM, Oliveira JT, Mano JF, Reis RL (2010) Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A 95:465–475PubMedCrossRefGoogle Scholar
  541. Yang JM, Lin HT (2004) Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven farbic for wound dressing. J Membr Sci 243:1–7CrossRefGoogle Scholar
  542. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401–408CrossRefGoogle Scholar
  543. Yang C, Frei H, Rossi F, Burt HM (2009) The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin–alginate scaffolds. J Tissue Eng Regen M 3:601–614CrossRefGoogle Scholar
  544. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CMC-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305CrossRefGoogle Scholar
  545. Yang L, Ma X, Guo N (2012) Sodium alginate/Na+-rectorite composite microspheres: preparation, characterization, and dye adsorption. Carbohydr Polym 90:853–858PubMedCrossRefGoogle Scholar
  546. Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou J, Suo Z (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422PubMedCrossRefGoogle Scholar
  547. Yao KD, Yin YJ, Xu MX, Wang YF (1995) Investigation of pH-sensitive drug delivery system of chitosan/gelatin hybrid polymer network. Polym Int 38:77–82CrossRefGoogle Scholar
  548. Yazdani-Pedram M, Retuert J, Quijada R (2000) Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromol Chem Phys 201:923–930CrossRefGoogle Scholar
  549. Yeom J, Bhang SH, Kim BS, Seo MS, Hwang EJ, Cho IH, Park JK, Hahn SK (2010) Effect of cross-linking reagents for hyaluronic acid hydrogel dermal fillers on tissue augmentation and regeneration. Bioconjug Chem 21:240–247PubMedCrossRefGoogle Scholar
  550. Yi Y, Xu S, Sun H, Chang D, Yin Y, Zheng H, Xu H, Lou Y (2011) Gelation of photocrosslinkable carboxymethyl chitosan and its application in controlled release of pesticide. Carbohydr Polym 86:1007–1013CrossRefGoogle Scholar
  551. Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266PubMedCrossRefGoogle Scholar
  552. Yin Y, Ji X, Dong H, Ying Y, Zheng H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydr Polym 71:682–689CrossRefGoogle Scholar
  553. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264:595–601CrossRefGoogle Scholar
  554. Yoshimura T, Uchikoshi I, Yoshiura Y, Fujioka R (2005) Synthesis and characterization of novel biodegradable hydrogels based on chitin and succinic anhydride. Carbohydr Polym 61:322–326CrossRefGoogle Scholar
  555. Yoshimura T, Yoshimura R, Seki C, Fujioka R (2006) Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr Polym 64:345–349CrossRefGoogle Scholar
  556. Yu H, Xu X, Chen X, Hao J, Jing X (2006) Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J Appl Polym Sci 101:2453–2463Google Scholar
  557. Zamani A, Henriksson D, Taherzadeh MJ (2010) A new foaming technique for production of superabsorbents from carboxymethyl chitosan. Carbohydr Polym 80:1091–1101CrossRefGoogle Scholar
  558. Zhai M, Yoshii F, Kume T, Hashim K (2002) Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50:295–303CrossRefGoogle Scholar
  559. Zhang Y, Ji C (2010) Electro-induced covalent cross-linking of chitosan and formation of chitosan hydrogel films: its application as an enzyme immobilization matrix for use in a phenol sensor. Anal Chem 82:5275–5281PubMedCrossRefGoogle Scholar
  560. Zhang Q, Liu L, Ren L, Wang F (1997) Preparation and characterization of collagen–chitosan composites. J Appl Polym Sci 64:2127–2130CrossRefGoogle Scholar
  561. Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005a) Preparation and characterization of pH- and temperature responsive semi-interpenetrating polymer network hydrogels based on linear sodium alginate and crosslinked poly(N-isopropylacrylamide). J Appl Polym Sci 97:1931–1940CrossRefGoogle Scholar
  562. Zhang H, Wu J, Zhang J, He J (2005b) 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRefGoogle Scholar
  563. Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J (2005c) A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26:4677–4683PubMedCrossRefGoogle Scholar
  564. Zhang S, Li FX, Yu JY, Hsieh YL (2010) Dissolution behavior and solubility of cellulose in NaOH complex solution. Carbohydr Polym 81:668–674CrossRefGoogle Scholar
  565. Zhang F, He C, Cao L, Feng W, Wang H, Mo X, Wang J (2011a) Fabrication of gelatin–hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. Int J Biol Macromol 48:474–481PubMedCrossRefGoogle Scholar
  566. Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, Zhang X (2011b) Preparation of collagen–chondroitin sulfate–hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 84:118–125CrossRefGoogle Scholar
  567. Zhang LM, Wu CX, Huang JY, Peng XH, Chen P, Tanf SQ (2012) Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydr Polym 88:1445–1452CrossRefGoogle Scholar
  568. Zhang G, Yi L, Deng H, Sun P (2014a) Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent. J Environ Sci 26:1203–1211CrossRefGoogle Scholar
  569. Zhang L, Wang L, Guo B, Ma PX (2014b) Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym 103:110–118PubMedCrossRefGoogle Scholar
  570. Zhao X, Kato K, Fukumoto Y, Nakamae K (2001) Synthesis of bioadhesive hydrogels from chitin derivatives. Int J Adhes Adhes 21:227–232CrossRefGoogle Scholar
  571. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23:3227–3234PubMedCrossRefGoogle Scholar
  572. Zhao L, Mitomo H, Nagasawa N, Yoshii F, Kume T (2003a) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydr Polym 51:169–175CrossRefGoogle Scholar
  573. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003b) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym 53:439–446CrossRefGoogle Scholar
  574. Zhao L, Xu L, Mitomo H, Yoshii F (2006) Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydr Polym 64:473–480CrossRefGoogle Scholar
  575. Zheng WJ, Gao J, Wei Z, Zhou J, Chen YM (2015) Facile fabrication of self-healing carboxymethyl cellulose hydrogels. Eur Polym J 72:514–522CrossRefGoogle Scholar
  576. Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120:2938–2944CrossRefGoogle Scholar
  577. Zhong C, Wu J, Reinhart-King CA, Chu CC (2010) Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater 6:3908–3918PubMedCrossRefGoogle Scholar
  578. Zhong K, Lin ZT, Zhen XL, Jiang GB, Fang YS, Mao XY, Liao ZW (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92:1367–1376PubMedCrossRefGoogle Scholar
  579. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809PubMedCrossRefGoogle Scholar
  580. Zhou ZH, He SL, Huang TL, Liu LH, Liu QQ, Zhao YM, Ou BL, Zeng WN, Yang ZM, Cao D (2013a) Degradation behavior and biological properties of gelatin/hyaluronic acid composite scaffolds. Mater Res Innov 17:420–424CrossRefGoogle Scholar
  581. Zhou Z, Yang Z, Huang T, Liu L, Liu Q, Zhao Y, Zeng W, Yi Q, Cao D (2013b) Effect of chemical cross-linking on properties of gelatin/hyaluronic acid composite hydrogels. Polym Plast Technol 52:45–50CrossRefGoogle Scholar
  582. Zhu HY, Fu YQ, Jiang R, Yao J, Xiao L, Zeng GM (2012) Novel magnetic chitosan/poly(vinyl alcohol) hydrogel beads: preparation, characterization and application for adsorption of dye from aqueous solution. Bioresour Technol 105:24–30PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Centre for Energy Research, Hungarian Academy of Sciences, Institute for Energy Security and Environmental SafetyBudapestHungary
  2. 2.Faculty of Light Industry and Environmental EngineeringÓbuda-UniversityBudapestHungary

Personalised recommendations