Polymer Gels pp 87-127 | Cite as

Hemicellulose-Based Hydrogels and Their Potential Application

  • Weiqing Kong
  • Qingqing Dai
  • Cundian Gao
  • Junli RenEmail author
  • Chuanfu Liu
  • Runcang Sun
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


The hydrogels obtained from renewable resources have aroused great interests because they are nontoxic, economical, biodegradable, and biocompatible. Hemicellulose is the second most abundant polysaccharides after cellulose in lignocellulosic biomass. In recent years, hemicellulose-based hydrogels as biomaterials have received ever-increasing attention and they have a wide range of the promising applications in drug delivery and release, waste treatment, dye adsorption, and tissue engineering because of their peculiar physicochemical properties. This paper described the structure of hemicellulose in plant and its physical-chemical prosperities, and summarized the type of hemicellulose-based hydrogels and their potential application, which provide useful information for the utilization of hemicellulose polymers.


Hemicellulose Structure Physical-chemical prosperities Hydrogels preparation Application 



This work was supported by grants from National Natural Science Foundation of China (No. 21406080).


  1. Ahluwalia SS, Goyal D (2005) Removal of heavy metals from waste tea leaves from aqueous solution. Eng Life Sci 5:158–162CrossRefGoogle Scholar
  2. Albertsson AC, Voepel J, Edlund U, Dahlman O, Söderqvist-Lindblad M (2010) Design of renewable hydrogel release systems from fiberboard mill waste water. Biomacromol 11:1406–1411CrossRefGoogle Scholar
  3. Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013) Development of an acetylation reaction of switch grass hemicellulose in ionic liquid without catalyst. Ind Crop Prod 44:306–314CrossRefGoogle Scholar
  4. Bai L, Hu H, Xu J (2012) Influences of configuration and molecular weight of hemicelluloses on their paper-strenthening effects. Carbohyd Polym 88:1258–1263CrossRefGoogle Scholar
  5. Barbat A, Gloaguen V, Moine C, Sainte-Catherine O, Kraemer M, Rogniaux H, Ropartz D, Krausz P (2008) Structural characterization and cytotoxic properties of a 4-O-methylglucuronoxylan from Castanea satiwa. 2. Evidence of a structure-activity relationship. J Nat Prod 71:1404–1409PubMedCrossRefGoogle Scholar
  6. Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev 62:83–99CrossRefGoogle Scholar
  7. Bostan MS, Senol M, Cig T, Peker I, Goren AC, Ozturk T, Eroglu MS (2013) Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels. Int J Biol Macromol 52:177–183PubMedCrossRefPubMedCentralGoogle Scholar
  8. Buranov AU, Mazza G (2010) Extraction and characterization of hemicelluloses from flax shives by different methods. Carbohyd Polym 79:17–25CrossRefGoogle Scholar
  9. Cao XF, Peng XW, Zhong LX, Sun RC (2014) Multiresponsive hydrogels based on Xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier. J Agr Food Chem 62:10000–10007CrossRefGoogle Scholar
  10. Capek P, Alföldi J, Lišková D (2002) An acetylated galactoglucomannan from Picea abies L. Karst. Carbohyd Res 337:1033–1037CrossRefGoogle Scholar
  11. Cheng Y, Luo X, Payne GF, Rubloff GW (2012) Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. J Mater Chem 22:7659–7666CrossRefGoogle Scholar
  12. Chiang CY, Chu CC (2015) Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohyd Polym 119:18–25CrossRefGoogle Scholar
  13. Chikh L, Delhorbe V, Fichet O (2011) (Semi-)Interpenetrating polymer networks as fuel cell membranes. J Membane 368:1–17Google Scholar
  14. Chimphango AFA, Zyl WHV, Görgens JF (2012) In situ enzymatic aided formation of xylan hydrogels and encapsulation of horse radish peroxidase for slow release. Carbohyd Polym 88:1109–1117CrossRefGoogle Scholar
  15. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  16. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharides hydrogels for modified release formulations. J Control Release 119:5–24PubMedCrossRefGoogle Scholar
  17. Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccha-ride, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog Polym Sci 33:399–447CrossRefGoogle Scholar
  18. Dai QQ, Ren JL, Kong WQ, Peng F, Meng L (2015) Adsorption kinetics and thermodynamics of cellulose dinitrobenzoate prepared in ionic liquid for the removal of creatinine. Bioresources 10:3666–3681Google Scholar
  19. Dax D, Chávez MS, Xu C, Willför S, Mendonça RT, Sánchez J (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohyd Polym 111:797–805CrossRefGoogle Scholar
  20. Deszczynski M, Kasapis S, Macnaughton W, Mitchell JR (2003) Effect of sugars on the mechanical and thermal properties of agarose gels. Food Hydrocolloids 17:793–799CrossRefGoogle Scholar
  21. Diaz AF, Bargon J (1986) Electrochemical synthesis of conducting polymers. In: Skotheim TA (ed) Handbook of conducting polymers, New York, pp 81–115Google Scholar
  22. Diaz AF, Kanazawa KK (1979) Electrochemical polymerization of pyrrole. J Chem Soc Chem Commun, 635Google Scholar
  23. Ebringerová A (2005) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1-12Google Scholar
  24. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Comm 21:542–556Google Scholar
  25. Ebringerová A, Kardošová A, Hromádková Z, Malovı́ková A, Hřı́balová V (2002) Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. Int J Biol Macromol 30:1–6Google Scholar
  26. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  27. Edlund U, Albertsson AC (2008) A microspheric system: hemicellulose-based hydrogels. J Bioact Compat Pol 23:171–186CrossRefGoogle Scholar
  28. Falamarzian M, Varshosaz J (1998) The effect of structural changes on swelling kinetics of polybasic/hydrophobic pH-sensitive hydrogels. Drug Dev Ind Pharm 24:667–669PubMedCrossRefGoogle Scholar
  29. Fang JM, Sun RC, Tomkinson J, Fowler P (2000) Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohyd Polym 41:379–387CrossRefGoogle Scholar
  30. Ferrari E, Ranucci E, Edlund U, Albertsson AC (2014) Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. J Appl Polym Sci 132,
  31. Frechet JMJ, Henmi M, Gitsov I, Aoshima S, Leduc MR, Grubbs RB (1995) Self-condensing vinyl polymerization-an approach to dendritic. Mater Sci 269:1080–1083Google Scholar
  32. Fundueanu G, Constantin M, Ascenzi P (2008) Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials 29:2767–2775PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gabrielii I, Gatenholm P (1998) Preparation and properties of hydrogels based on hemicellulose. J Appl Polym Scie 69:1661–1667CrossRefGoogle Scholar
  34. Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohyd Polym 43:367–374CrossRefGoogle Scholar
  35. Gao Y, Wei Z, Li F, Yang ZM, Chen YM, Zrinyi M, Osada Y (2014) Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 16:1255–1261CrossRefGoogle Scholar
  36. Gao CD, Ren JL, Kong WQ, Sun RC, Chen QF (2015a) Comparative study on temperature/pH sensitive xylan-based hydrogels: their properties and drug controlled release. Rsc Adv 5:90671–90681CrossRefGoogle Scholar
  37. Gao LX, Chen JL, Han XW, Yan SX, Zhang Y (2015b) Electro-response characteristic of starch hydrogel crosslinked with glutaraldehyde. J Biomat Sci-Polym E 26:1–21CrossRefGoogle Scholar
  38. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+, from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372PubMedCrossRefGoogle Scholar
  39. Green RA, Hassarati RT, Goding JA, Baek S, Lovell NH, Martens PJ (2012) Conductive hydrogels: mechanically robust hybrids for use as biomaterials. Macromol Biosci 12:494–501PubMedCrossRefGoogle Scholar
  40. Guan Y, Bian J, Peng F, Zhang XM, Sun RC (2014a) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohyd Polym 101:272–280CrossRefGoogle Scholar
  41. Guan Y, Zhang B, Bian J, Peng F, Sun RC (2014b) Nanoreinforced hemicellulose-based hydrogels prepared by freeze-thaw treatment. Cellulose 21:1709–1721CrossRefGoogle Scholar
  42. Guan Y, Chen JH, Qi XM, Chen GG, Peng F, Sun RC (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54:7393–7400CrossRefGoogle Scholar
  43. Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2:218–227PubMedCrossRefGoogle Scholar
  44. Guilherme MR, Reis AV, Takahashi SH, Rubira AF, Feitosa JPA, Muniz EC (2005) Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohyd Polym 61:464–471CrossRefGoogle Scholar
  45. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921CrossRefGoogle Scholar
  46. Gulati I, Park J, Maken S, Lee MG (2014) Production of carboxymethylcellulose fibers from waste lignocellulosic sawdust using NaOH/NaClO2 pretreatment. Fiber Polym 15:680–686CrossRefGoogle Scholar
  47. Guo L, Zhang SF, Ju BZ, Yang JZ, Quan X (2006) Removal of Pb (II) from aqueous solution by cross-linked starch phosphate carbamate. J Polym Res 13:213–217CrossRefGoogle Scholar
  48. Guo BL, Glavas L, Albertsson AC (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38:1263–1286CrossRefGoogle Scholar
  49. Gurgel LVA, Karnitz Júnior O, Gil RPF, Gil LF (2008) Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresour Technol 99:3077–3083PubMedCrossRefPubMedCentralGoogle Scholar
  50. Habibi Y, Mahrouz M, Marais MF, Vignon MR (2004) An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits. Carbohyd Res 339:1201–1205CrossRefGoogle Scholar
  51. Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9:1493–1505CrossRefGoogle Scholar
  52. Hartman J, Albertsson AC, Lindblad MS, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRefGoogle Scholar
  53. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hebeish A, Waly A, AbdelMohdy FA, Aly AS (1997) Synthesis and characterization of cellulose ion exchangers.1. Polymerization of glycidyl methacrylate, dimethylaminoethyl methacrylate, and acrylic acid with cotton cellulose using thiocarbonate-H2O2 redox system. J Appl Polym Sci 66:1029–1037CrossRefGoogle Scholar
  55. Hebeish A, Farag S, Sharaf S, Shaheen TI (2014) Thermal responsive hydrogels based on semi interpenetrating network of poly (NIPAm) and cellulose nanowhiskers. Carbohyd Polym 102:159–166CrossRefGoogle Scholar
  56. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611CrossRefGoogle Scholar
  57. Hromadkova Z, Kovacikova J, Ebringerova A (1999) Study of the classical and ultrasound-assisted extraction of the corn cob xylan. Ind Crop Prod 9:101–109CrossRefGoogle Scholar
  58. Iravani S, Fitchett CS, Georget DMR (2011) Physical characterization of arabinoxylan powder and its hydrogel containing a methyl xanthine. Carbohydr Polym 85:201–207CrossRefGoogle Scholar
  59. Ishizu K, Mori A (2000) Synthesis of hyper branched polymers by self-addition free radical vinyl polymerization of photo functional styrene. Macromol Rapid Comm 21:665–668CrossRefGoogle Scholar
  60. Ishizu K, Shen XX, Tsubaki KI (2000) Radical copolymerization reactivity of methacryloyl-terminated poly(ethylene glycol methylether) with vinylbenzyl-terminated polystyrene macromonomers. Polym 41:2053–2057CrossRefGoogle Scholar
  61. Karaaslan AM, Tshabalala MA, Buschle-Diller G (2010) Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels: mechanical, swelling and controlled drug release properties. BioResources 5:1036–1054Google Scholar
  62. Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohyd Polym 86:192–201CrossRefGoogle Scholar
  63. Karaaslan MA, Tshabalala MA, Buschle-Diller G (2012) Semi-interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties. J Appl Polym Sci 124:1168–1177CrossRefGoogle Scholar
  64. Kent K, Ganetsky M, Cohen J, Bird S (2008) Non-fatal ventricular dysrhythmias associated with severe salicylate toxicity. Clin Toxicol 46:297–299CrossRefGoogle Scholar
  65. Khalil MS (2015) The postulated mechanism of the protective effect of ginger on the aspirin induced gastric ulcer: histological and immunohistochemical studies. Histol Histopathol 30:855–864Google Scholar
  66. Kiefer LL, York WS, Albersheim P, Darvill AG (1990) Structural characterization of an arabinose-containing heptadecasaccharide enzymically isolated from sycamore extracellular xyloglucan. Carbohyd Res 197:139–158CrossRefGoogle Scholar
  67. Kim BS, Chen L, Gong JP, Osada Y (1999) Titration behavior and spectral transition of water-soluble polythiopherie carboxylie acids. Macromolecules 32:3964–3969CrossRefGoogle Scholar
  68. Kong WQ, Ren JL, Wang SY, Chen Q (2014) Removal of heavy metals from aqueous solutions using acrylic-modified sugarcane bagasse-based adsorbents: equilibrium and kinetic studies. BioResources 9:3184–3196CrossRefGoogle Scholar
  69. Kong WQ, Huang DY, Xu GB, Ren JL, Liu CF, Zhao LH, Sun RC (2016) A new design strategy for graphene oxide/polyacrylamide/aluminium ion-crosslinked carboxymethyl hemicelluloses nanocomposite hydrogels with highly tough and elastic properties. Chem Asian J. Scholar
  70. Kopecek J, Yang JY (2007) Revie—Hydrogels as smart biomaterials. Polym Inter 56:1078–1098CrossRefGoogle Scholar
  71. Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffoldsfor drug delivery in tissue engineering. Adv Drug Deliver Rev 59:263–273CrossRefGoogle Scholar
  72. Kuzmenko V, Hägg D, Toriz G, Gatenholm P (2014) In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohyd Polym 102:862–868CrossRefGoogle Scholar
  73. Kweon JO, Noh IT (2001) Thermal, thermomechanical. And electrochemical characterizaion of the organic-inorganic hybrids poly (ethylene oxide) (PEO)-silia and PEO-silica-LiClO4. J Appl Polym Science 81:2471–2479CrossRefGoogle Scholar
  74. Lai JY, Wang TP, Li YT, Tu IH (2012) Synthesis, characterization and ocular biocompatibility of potential keratoprosthetic hydrogels based on photopolymerized poly(2-hydroxyethyl methacrylate)-co-poly(acrylic acid). J Mater Chem 22:1812–1823CrossRefGoogle Scholar
  75. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880PubMedCrossRefPubMedCentralGoogle Scholar
  76. Li YT, Armes SP (2005) Synthesis and chemical degradation of branched vinyl polymers prepared via ATRP: use of a cleavable disulfide-based branching agent. Macromolecules 38:8155–8162CrossRefGoogle Scholar
  77. Li N, Bai RB (2006) Highly enhanced adsorption of lead ions on chitosan granules functionalized with poly(acrylic acid). Ind Eng Chem Res 45:7897–7904CrossRefGoogle Scholar
  78. Li GY, Guo L, Chang XJ, Yang MY (2012) Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drug. Int J Biol Macromol 50:899–904PubMedCrossRefGoogle Scholar
  79. Li YJ, Sun XF, Ye Q, Liu BC, Wu YG (2014) Preparation and properties of a novel hemicellulose-based magnetic hydrogel. Acta Phys-Chim Sin 30:111–120Google Scholar
  80. Lima-Tenorio MK, Tenorio-Neto ET, Garcia FP, Nakamura CV, Guilherme MR, Muniz EC (2015) Hydrogel nanocomposite based on starch and Co-doped zinc ferrite nanoparticles that shows magnetic field-responsive drug release changes. J Mol Liq 210:100–105CrossRefGoogle Scholar
  81. Lin C, Gitsov I (2010) Preparation and characterization of novel amphiphilic hydrogels with covalently attached drugs and fluorescent markers. Macromolecules 43:10017–10030CrossRefGoogle Scholar
  82. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliver Rev 58:1379–1408CrossRefGoogle Scholar
  83. Lindblad MS, Ranucci E, Albertsson AC (2001) Biodegradable polymers from renewable sources. New hemicellulose-based hydrogels. Macromol Rapid Comm 22:962–967CrossRefGoogle Scholar
  84. Liu Y, Ranucci E, Lindblad MS, Albertsson AC (2001) New biodegradable polymers from renewable sources: polyester-carbonates based on 1,3-propylene-co -1,4-cyclohexanedimethylene succinate. J Polym Sci, Part A: Polym Chem 39:2508–2519CrossRefGoogle Scholar
  85. Liu ZL, Hu H, Zhuo RX (2004) Konjac glucomannan-graft-acrylic acid hydrogels containing azo crosslinker for colon-specific delivery. J Polym Sci, Part A: Polym Chem 42:4370–4378CrossRefGoogle Scholar
  86. Liu C, Chen Y, Chen J (2010) Synthesis and characteristics of ph-sensitive semi-interpenetrating polymer network hydrogels based on konjac glucomannan and poly(aspartic acid) for in vitro drug delivery. Carbohyd Polym 79:500–506CrossRefGoogle Scholar
  87. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859CrossRefGoogle Scholar
  88. Morimoto N, Endo T, Iwasaki Y, Akiyoshi K (2005) Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: interaction with proteins and chaperone-like activity. Biomacromol 6:1829–1834CrossRefGoogle Scholar
  89. Mv S, Lahooti S, Mh BJM (2000) Making microencapsulation work: conformal coating, immobilization gels and in vivo performance. J Control Release 65:173–186CrossRefGoogle Scholar
  90. Nagasaki Y, Ogawa R, Yamamoto S, Kato M, Kataoka K (1997) Synthesis of heterotelechelic poly(ethylene glycol) macromonomers. Preparation of poly(ethylene glycol) possessing a methacryloyl group at one end and a formyl group at the other end. Macromolecules 30:6489–6493CrossRefGoogle Scholar
  91. Nghiem NP, Montanti J, Johnston DB, Drapcho C (2011) Fractionation of corn fiber treated by soaking in aqueous ammonia (SAA) for isolation of hemicellulose B and production of C5 sugars by enzyme hydrolysis. Appl Biochem Biotechnol 164:1390–1404PubMedCrossRefGoogle Scholar
  92. Noaman E, El-Din NKB, Bibars MA, Abou Mossallam AA, Ghoneum M (2008) Antioxidant potential by arabinoxylan rice bran, MGN-3/biobran, represents a mechanism for its oncostatic effect against murine solid Ehrlich carcinoma. Cancer Lett 268:348–359Google Scholar
  93. Nugent MJD, Higginbotham CL (2007) Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. Eur J Pharm Biopharm 67:377–386PubMedCrossRefGoogle Scholar
  94. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresource Technol 99:6709–6724CrossRefGoogle Scholar
  95. Ohsedo Y, Takashina R, Gong JP, Osada Y (2004) Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir 20:6549–6555PubMedCrossRefGoogle Scholar
  96. Okazaki M, Hamada T, Fujii H, Kusudo O, Mizobe A, Matsuzawa S (1995) Development of poly(vinyl alcohol) hydrogel for waste water cleaning. II. Treatment of N, N -dimethylformamide in waste water with poly(vinyl alcohol) gel with immobilized microorganisms. J Appl Polym Sci 58:2243–2249CrossRefGoogle Scholar
  97. Oliveira EE, Silva AE, Júnior TN, Gomes MCS, Aguiar LM, Marcelino HR (2010) Xylan from corn cobs, a promising polymer for drug delivery: production and characterization. Bioresource Technol 101:5402–5406CrossRefGoogle Scholar
  98. Osada Y, Kish R, Hasebe M (1987) Anomalous chemomechanical characteristics of electro-activated polyelectrolyte gel. Polymer Sco 25:41–485Google Scholar
  99. Osato M, Yuko N, Hitoshi K, Yoshinobu I, Hitomi K, Hidetoshi S (2003) Effect of water potential on sol-gel transition and intermolecular interaction of gelatin near the transition temperature. Biopolymers 70:482–491CrossRefGoogle Scholar
  100. Pan XJ, Sano Y (2005) Fractionation of wheat straw by atmospheric acetic acid process. Bioresource Technol 96:1256–1263CrossRefGoogle Scholar
  101. Peng XW, Ren JL, Zhong LX, Cao XF, Sun RC (2010a) Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties. J Agr Food Chem 59:570–576CrossRefGoogle Scholar
  102. Peng XW, Ren JL, Sun RC (2010b) Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromol 11:3519–3524CrossRefGoogle Scholar
  103. Peng XW, Ren JL, Zhong LX, Peng F, Sun RC (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agri Food Chem 59:8208–8215CrossRefGoogle Scholar
  104. Peng XW, Ren JL, Zhong LX, Sun RC, Shi WB, Hu BJ (2012a) Glycidyl methacrylate derivatized xylan-rich hemicelluloses: synthesis and characterizations. Cellulose 19:1361–1372CrossRefGoogle Scholar
  105. Peng XW, Zhong LX, Ren JL, Sun RC (2012b) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agr Food Chem 60:3909–3916CrossRefGoogle Scholar
  106. Petzold K, Schwikal K, Günther W, Heinze T (2005) Carboxymethyl xylan-control of properties by synthesis. Macromol Symp 232:27–36CrossRefGoogle Scholar
  107. Petzold K, Schwikal K, Heinze T (2006) Carboxymethyl xylan—synthesis and detailed structure characterization. Carbohyd Polym 64:292–298CrossRefGoogle Scholar
  108. Pourjavadi A, Barzegar S, Mahdavinia GR (2004) Modified chitosan, 7-Graft copolymerization of methacrylonitrile onto chitosan using ammonium persulfate initiator. E-PolymGoogle Scholar
  109. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339CrossRefGoogle Scholar
  110. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed-Nanotechnol 2:8–21CrossRefGoogle Scholar
  111. Ren JL, Sun RC, Liu CF, Chao ZY, Luo W (2006) Two-step preparation and thermal characterization of cationic 2-hydroxypropyltrimethylammonium chloride hemicellulose polymers from sugarcane bagasse. Polym Degrad Stabil 91:2579–2587CrossRefGoogle Scholar
  112. Ren JL, Sun RC, Liu CF, Cao ZN, Luo W (2007a) Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohyd Polym 70:406–414CrossRefGoogle Scholar
  113. Ren JL, Sun RC, Liu CF, Lin L, He BH (2007b) Synthesis and characterization of novel cationic scb hemicelluloses with a low degree of substitution. Carbohyd Polym 67:347–357CrossRefGoogle Scholar
  114. Ren JL, Peng F, Sun RC, Liu CF, Cao ZN, Luo W (2008a) Synthesis of cationic hemicellulosic derivatives with a low degree of substitution in dimethyl sulfoxide media. J Appl Polym Sci 109:2711–2717CrossRefGoogle Scholar
  115. Ren JL, Xu F, Sun RC, Peng B, Sun JX (2008b) Studies of the lauroylation of wheat straw hemicelluloses under heating. J Agri Food Chem 56:1251–1258CrossRefGoogle Scholar
  116. Ren JL, Peng XW, Peng F, Sun RC (2011) The preparation and application of the cationic biopolymer based on xylan-rich hemicelluloses from agricultural biomass. Adv Mater Res 239–242:463–467CrossRefGoogle Scholar
  117. Ren JL, Kong WQ, Sun RC (2014) Preparation of sugarcane bagasse/Poly(Acrylic Acid-co-Acrylamide) hydrogels and their application. BioResources 9:3290–3303Google Scholar
  118. Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohyd Polym 67:605–613CrossRefGoogle Scholar
  119. Roos AA, Edlund U, Sjöberg J, Albertsson AC, Stålbrand H (2008) Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by beta-mannanase. Biomacromol 9:2104–2110CrossRefGoogle Scholar
  120. Samuelsen AB (2000) Structural features of biologically active polysaccharide fractions from the leaves and seeds of Plantago major L. Springer, NetherlandsCrossRefGoogle Scholar
  121. Sandhu JS, Hudson GJ, Kennedy JF (1981) The gel nature and structure of the carbohydrate of ispaghula husk ex Plantago ovata Forsk. Carbohyd Res 93:247–259CrossRefGoogle Scholar
  122. Schwikal K, Heinze T (2007) Dialkylaminoethyl xylans: Polysaccharide etherswith pH-sensitive solubility. Polym Bull 59:161–167CrossRefGoogle Scholar
  123. Schwikal K, Heinze T, Ebringerová A, Petzold K (2005) Cationic xylan derivatives with high degree of functionalization. Macromol Symp 232:49–56CrossRefGoogle Scholar
  124. Sefton MV, May MH, Lahooti S, Babensee JE (2000) Making microencapsulation work: conformal coating, immobilization gels and in vivo performance. J Control Release 65:173–186PubMedCrossRefPubMedCentralGoogle Scholar
  125. Shahbuddin M, Bullock AJ, MacNeil S, Rimmer S (2014) Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J mater chem B 2(6):727–738CrossRefGoogle Scholar
  126. Shawky HA, El-Hag Ali A, El Sheikh RA (2006) Characterization and adsorption properties of the chelating hydrogels derived from natural materials for possible use in the improvement of groundwater quality. J Appl Polym Sci 99:2904–2912CrossRefGoogle Scholar
  127. Singha AS, Shama A, Thakur VK (2008) X-ray diffraction, morphological, and thermal studies on methylmethacrylate graft copolymerized Saccharum ciliare fiber. Int J Polym Anal Charact 13(6):447–462CrossRefGoogle Scholar
  128. Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38PubMedCrossRefGoogle Scholar
  129. Sinha VR, Mittal BR, Bhutani KK, Kumria R (2004) Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int J Pharm 269:101–108PubMedCrossRefGoogle Scholar
  130. Stephen AM (1983) 3–Other plant polysaccharides. Polysaccharides, 97–193Google Scholar
  131. Stevens BJH, Selvendran RR (1980) Structural investigation of an arabinan from cabbage (Brassica oleracea var. capitata). Phytochemistry 19:559–561CrossRefGoogle Scholar
  132. Sumaru K, Ohi K, Takagi T, Kanamori T, Shinbo T (2006) Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22:4353–4356PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sun JX, Sun XF, Sun RC, Su YQ (2004a) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohyd Polym 56:195–204CrossRefGoogle Scholar
  134. Sun XF, Sun RC, Sun JX (2004b) Oleoylation of sugarcane bagasse hemicelluloses using N-bromosuccinimide as a catalyst. J Sci Food Agr 84:800–810CrossRefGoogle Scholar
  135. Sun XF, Xu F, Zhao H, Sun RC, Fowler P, Baird MS (2005) Physicochemical characterisation of residual hemicelluloses isolated with cyanamide-activated hydrogen peroxide from organosolv pre-treated wheat straw. Bioresource Technol 96:1342–1349CrossRefGoogle Scholar
  136. Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohyd Polym 92:1357–1366CrossRefGoogle Scholar
  137. Sun XF, Gan Z, Jing Z, Wang H, Wang D, Jin Y (2015a) Adsorption of methylene blue on hemicellulose-based stimuli-responsive porous hydrogel. J Appl Polym Sci 132(10)Google Scholar
  138. Sun XF, Jing ZX, Wang HH, Liu YY (2015b) Physical-chemical properties of xylan/PAAc magnetic semi-interpenetrating network hydrogel. Polym Comp 36:2317–2325CrossRefGoogle Scholar
  139. Sun XF, Liu BC, Jing ZX, Wang HH (2015c) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohyd Polym 118:16–23CrossRefGoogle Scholar
  140. Szilagyi A, Sumaru K, Sugiura S, Takagi T, Shinbo T, Zrinyi M (2007) Rewritable microrelief formation on photoresponsive hydrogel layers. Chem Mater 19:2730–2732CrossRefGoogle Scholar
  141. Tang XH, Zhang XM, Guo CC, Zhou AL (2007) Adsorption of Pb2+ on chitosan cross-linked with triethylene—tetramine. Chem Eng Technol 30:955–961CrossRefGoogle Scholar
  142. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  143. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefGoogle Scholar
  144. Thakur MK, Thakur VK, Gupta RK, Pappu A (2016) Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain Chem Eng 4(1):1–17CrossRefGoogle Scholar
  145. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786PubMedCrossRefGoogle Scholar
  146. Uraki Y, Imura T, Kishimoto T (2006) Body temperature-responsive gels derived from hydroxypropycellulose bearing lignin II: adsorption and release behavior. Cellulose 13:225–234CrossRefGoogle Scholar
  147. Van Tomme SR, Storm G, Hennink WE (2008) In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharmaceut 355:1–18CrossRefGoogle Scholar
  148. Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888PubMedCrossRefPubMedCentralGoogle Scholar
  149. Voepel J, John Sjöberg MR, Albertsson AC, Hultin UK, Gasslander U (2009) Drug diffusion in neutral and ionic hydrogels assembled from acetylated galactoglucomannan. J Appl Polym Sci 112:2401–2412CrossRefGoogle Scholar
  150. Voepel J, Edlund U, Albertsson AC (2010) Alkenyl-functionalized precursors for renewable hydrogels design. J Polym Sci, Part A: Polym Chem 47:3595–3606CrossRefGoogle Scholar
  151. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  152. Wan Ngah WS, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Biores Technol 99:3935–3948CrossRefGoogle Scholar
  153. Wang QQ, Chen DJ (2016) Synthesis and characterization of a chitosan based nanocomposite injectable hydrogel. Carbohyd Polym 136:1228–1237CrossRefGoogle Scholar
  154. Wang LX, SoczkaGuth T, Havinga E, Mullen K (1996) Poly(phenylenesulfidephenylenamine) (PPSA) e the (‘compound’) of polyphenylenesulfide with polyaniline. Angew Chem Int Ed 35:1495–1497CrossRefGoogle Scholar
  155. Whistler RL, Bushway AA, Singh PP, Nakahara W, Tokuzen R (1976) Noncytotoxic, antitumor polysaccharides. Adv Carbohyd Chem Bi 32:235–275CrossRefGoogle Scholar
  156. Xu F, Sun JX, Geng ZC, Liu CF, Ren JL, Sun RC (2007) Comparative study of water-soluble and alkali-soluble hemicelluloses from perennial ryegrass leaves (Lolium peree). Carbohyd Polym 67:56–65CrossRefGoogle Scholar
  157. Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yang JY, Fang J, Zhou XS (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohyd Polym 86:1113–1117CrossRefGoogle Scholar
  159. Zhang XZ, Wu DQ, Chu CC (2004) Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials 25:4719–4730PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zhang C, Han HM, Qu P, Xu J, Zhou Y, Wang J, Zhao N, Xu J (2012) Initiator concentration effect on rheological properties of a ph-sensitive semi-ipn hydrogel based on konjac glucomannan and methacrylic acid. Adv Mater Res 627:730–733CrossRefGoogle Scholar
  161. Zhang S, Guan Y, Fu GQ, Chen BY, Peng F, Yao CL, Sun RC (2014a) Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite. J Nanomater 1:3669–3676Google Scholar
  162. Zhang XQ, Chen MJ, Liu CF, Sun RC (2014b) Dual-component systemdimethyl sulfoxide/LiCl as a solvent and catalyst for homogeneous ring-openinggrafted polymerization of—caprolactone onto xylan. J Agr Food Chem 62:682–690CrossRefGoogle Scholar
  163. Zhao Y, Kang J, Tan TW (2006) Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid). Polymer 47:7702–7710CrossRefGoogle Scholar
  164. Zhao L, Li W, Plog A, Xu YP, Buntkowsky G, Gutmann T, Zhang K (2014a) Multi-responsive cellulose nanocrystal-rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR. Phys Chem Chem Phys 16:26322–26329PubMedCrossRefGoogle Scholar
  165. Zhao W, Glavas L, Odelius K, Edlund U, Albertsson AC (2014b) Facile and green approach towards electrically conductive hemicellulose hydrogels with tunable conductivity and swelling behavior. Chem Mater 26:4265–4273CrossRefGoogle Scholar
  166. Zhao WF, Glavas L, Odelius K, Edlund U, Albertsson AC (2014c) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55:2967–2976CrossRefGoogle Scholar
  167. Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly(acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171:671–677PubMedCrossRefGoogle Scholar
  168. Zhong LX, Peng XW, Song LX, Yang D, Cao XF, Sun RC (2013) Adsorption of Cu2+ and Ni2+ from aqueous solution by arabinoxylan hydrogel: equilibrium, kinetic, competitive adsorption. Sep Sci Technol 48:2659–2669CrossRefGoogle Scholar
  169. Zhou C, Wu Q, Lei T, Negulescu II (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 1251:17–24CrossRefGoogle Scholar
  170. Zhu CH, Hai ZB, Cui CH, Li HH, Chen JF, Yu SH (2012) In situ controlled synthesis of thermosensitive Poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small 8:930–936PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Weiqing Kong
    • 1
  • Qingqing Dai
    • 1
  • Cundian Gao
    • 1
  • Junli Ren
    • 1
    Email author
  • Chuanfu Liu
    • 1
  • Runcang Sun
    • 1
  1. 1.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations