Advertisement

Polymer Gels pp 445-492 | Cite as

Incorporation of Filler/Additives in Polymer Gel for Advanced Application

  • Ida Idayu MuhamadEmail author
  • Eraricar Salleh
  • Shahrulzaman Shaharuddin
  • Norhayatie Pa’e
  • Suguna Selvakumaran
  • Mohd. Harfiz Salehudin
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

This chapter is aimed to review the literature concerning the filler and additive effect on polymer gel for various advanced applications including food, agriculture, pharmaceutical, and others. To date, polymer gel utilization is important due to its superior properties. Moreover, polymer gel is very responsiveness toward small environmental changes and significantly altered the gel behavior. Currently, incorporation of filler into polymer gel matrices is beneficial to enhance the characteristics of the gel such as mechanical, chemical, physical, and biological properties. Metallic compound, cellulosic material, and crosslinker are the various categories of filler that broadly used based on application and processing. Therefore, filler-loaded polymer gel could be a potential tool or vehicle for different advanced applications.

Keywords

Polymer gel Filler Metallic compound Cellulosic material Crosslinker Advanced application 

References

  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  2. Affatato S, Ruggiero A, Merola M (2015) Advanced biomaterials in hip joint arthroplasty. A review on polymer and ceramics composites as alternative bearings. Compos Part B 83:276–283CrossRefGoogle Scholar
  3. Aouada F, de Moura M, Orts W, Mattoso LC (2010) Polyacrylamide and methylcellulose hydrogel as delivery vehicle for the controlled release of paraquat pesticide. J Mater Sci 45:4977–4985CrossRefGoogle Scholar
  4. Asanza-Teruel ML, Gontier E, Bienaime C, Nava-Saucedo JE, Barbotin JN (1997) Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized streptomyces aureofaciens. Enzyme Microb Technol 21:314–320PubMedCrossRefPubMedCentralGoogle Scholar
  5. Athawale VD, Lele V (1998) Graft copolymerization onto starch. II. Grafting of acrylic acid and preparation of it’s hydrogels. Carbohydr Polym 35:21–27CrossRefGoogle Scholar
  6. Avadi MR, Sadeghi AMM, Tahzibi A, Bayati K, Pouladzadeh M, Zohuriaan-Mehr MJ, Rafiee-Tehrani M (2004) Dithymethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects. Eur Polym J 40:1355–1361Google Scholar
  7. Azeredo HM, Mattoso LH, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7PubMedCrossRefPubMedCentralGoogle Scholar
  8. Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330PubMedCrossRefPubMedCentralGoogle Scholar
  9. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res B Appl Biomater 100B:1451–1457CrossRefGoogle Scholar
  10. Ban W, Song J, Argyropoulos DS, Lucia LA (2006) Improved the physical and chemical functionality of starch-derived films with biopolymers. J Appl Poly Sci 100(3):2542–2548Google Scholar
  11. Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B (2000) Ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of Κ-carrageenases. J Biol Chem 275:35499–35505PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bernardo LFA, Amaro APBM, Pinto DG, Lopes SMR (2016) Modeling and simulation techniques for polymer nanoparticle composites—a review. Comput Mater Sci 118:32–46CrossRefGoogle Scholar
  13. Bi L, Cao Z, Hu Y, Song Y, Yu L, Yang B, Mu J, Huang Z, Han Y (2011) Effects of different cross-linking conditions on the properties of genipin cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J Mater Sci Mater Med 461(22):51–62Google Scholar
  14. Boateng JS, Pawar HV, Tetteh J (2013) Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 441:181–191PubMedCrossRefPubMedCentralGoogle Scholar
  15. Britton P, Teh E, Close D (2005) Investigation of the efficiency of bagasse as a thermal insulator. Proc Aust Soc Sugar Cane Technol 27:462–471Google Scholar
  16. Brown RM Jr (1991) Advances in cellulose biosynthesis. In: Chum HL (ed) Polymers from biobased materials. Doyes Data Corp, New JerseyGoogle Scholar
  17. Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104:467–483CrossRefGoogle Scholar
  18. Butler MF, Ng YF, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci Part A Polym Chem 41:3941–3953CrossRefGoogle Scholar
  19. Buyanov AL, Gofman IV, Revel’skayaa LG, Khripunova AK, Tkachenkob AA (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly(acrylamide or acrylamide–sodium acrylate) hydrogels. J Mech Behav Biomed Mater 3:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  20. Caceres PJ, Carlucci MJ, Damonte EB, Matsuhiro B, Zuniga EA (2000) Carrageenans from chilean samples of stenogramme interrupta (phyllophoraceae): structural analysis and biological activity. Phytochemistry 53:81–86PubMedCrossRefPubMedCentralGoogle Scholar
  21. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267CrossRefGoogle Scholar
  22. Campo VL, Kawano DF, Silva DB Jr, Carvalho DI (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77:167–180Google Scholar
  23. Caner C, Vergano P, Wiles J (1998) Chitosan film mechanical and permeation properties as affected by acid, plastisizer and storage. J Food Sci 63:1049–1053Google Scholar
  24. Cevallos J, Bar-cohen A, Deisenroth DC (2016) Thermal performance of a polymer composite webbed-tube heat exchanger. Int J Heat Mass Transf 98:845–856CrossRefGoogle Scholar
  25. Chang WH, Chang Y, Lai PH, Sung HW (2003) A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies. J Biomater Sci Polym Ed 14(5):481–495PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chang PR, Jian R, Yu J, Ma X (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:420–425CrossRefGoogle Scholar
  27. Chen MC, Yeh GHC, Chiang BH (1996) Antimicrobial and physicochemical properties of methyl cellulose and chitosan films containing a preservative. J Food Process Preserv 20:279–390Google Scholar
  28. Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW (2004) A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J Control Release 96:285–300PubMedCrossRefGoogle Scholar
  29. Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chin NL, Che Man HA, Talib R, Esa F, Tasirin SM, Rahman NA (2014) 2nd international conference on agricultural and food engineering (CAFEi 2014)—new trends forward overview of bacterial cellulose production and application. Agric Agric Sci Procedia 2:113–119Google Scholar
  31. Chitprasert P, Sudsai P, Rodklongtan A (2012) Aluminum carboxymethyl cellulose–rice bran microcapsules: enhancing survival of Lactobacillus reuteri KUB-AC5. Carbohydr Polym 90:78–86PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cioffi N, Torsi L, Ditaranto N, Sabbatini L, Zambonin PG, Tantillo G, Ghibelli L, D’Alessio M, Bleve-Zacheo T, Traversa E (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85:2417–2419CrossRefGoogle Scholar
  33. Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595CrossRefGoogle Scholar
  34. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release Official J Control Release Soc 162:56–67CrossRefGoogle Scholar
  35. Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38PubMedCrossRefGoogle Scholar
  36. Daniel-Da-Silva AL, Moreira J, Neto R, Estrada AC, Gil AM, Trindade T (2012) Impact of magnetic nanofillers in the swelling and release properties of K-carrageenan hydrogel nanocomposites. Carbohydr Polym 87:328–335CrossRefGoogle Scholar
  37. Dave R, Madamwar D (2006) Esterification in organic solvents by lipase immobilized in polymer of PVA–alginate–boric acid. Process Biochem 41:951–955CrossRefGoogle Scholar
  38. De Angelis M, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Gobbetti M (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157:792–801PubMedCrossRefPubMedCentralGoogle Scholar
  39. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460CrossRefGoogle Scholar
  40. Distantina S, Rochmadi, Fahrurrozi M, Wiratni (2013) Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J 17:3Google Scholar
  41. Distantina S, Rochmadi, Fahrurrozi M, Wiratni (2014) Stabilization of kappa carrageenan film by crosslinking: comparison of glutaraldehyde and potassium sulphate as the crosslinker. In: 5th international conference on chemical engineering and applications 74Google Scholar
  42. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Tech Today 1(6):246–253Google Scholar
  43. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels: a review. Chem Eng J 243:572–590CrossRefGoogle Scholar
  44. Dufresne A (2012) TEMPO-mediated oxidation. In: Dufresne A (ed) Nanocellulose. Walter de Gruyter, Berlin/Boston, pp 162–164Google Scholar
  45. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan S (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mat Sci 45:1–33Google Scholar
  46. Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77:289–311CrossRefGoogle Scholar
  47. Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel–silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611:205–211PubMedCrossRefPubMedCentralGoogle Scholar
  48. Fateixa S, Soares SF, Daniel-da-Silva AL, Nogueira HIS, Trindade T (2015) Silver-gelatine bionanocomposites for qualitative detection of a pesticide by SERS. Analyst 140:1693–1701PubMedCrossRefPubMedCentralGoogle Scholar
  49. Fedotova AV, Snezhko AG, Sdobnikova OA, Samoilova LG, Smurova TA, Revina AA, Khailova EB (2010) Packaging materials manufactured from natural polymers modified with silver nanoparticles. Int Polym Sci Technol 37:59CrossRefGoogle Scholar
  50. Fuhrer R, Athanassiou EK, Luechinger NA, Stark WJ (2009) Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5:383–388PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gao X, Shi Z, Lau A, Liu C, Yang G, Silberschmidt VV (2016) Effect of microstructure on anomalous strain-rate-dependent behavior of bacterial cellulose hydrogel. Mater Sci Eng C 62:130–136CrossRefGoogle Scholar
  53. García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  54. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257CrossRefGoogle Scholar
  55. Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MFT, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. Eur Polymer J 72:365–385CrossRefGoogle Scholar
  56. Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. Progress in molecular and environmental bioengineering—from analysis and modelling to technology applicationsGoogle Scholar
  57. Gupta MN, Raghava S (2008) Natural based polymers for biomedical application. T J International Limited, Cornwall, pp 129–130Google Scholar
  58. Hari BNV, Lobo FJ, Devi DR (2015) Polymeric in-situ gels as smart carriers for pesticide delivery in agricultural practice. Int J Pharm Clin Res 7:113–118Google Scholar
  59. Hekmat A, Barati A, Frahani EV, Afraz A (2009) Synthesis and analysis of swelling and controlled release behaviour of anionic sIPN acrylamide based hydrogels. World Acad Sci Eng Technol 56:96–100Google Scholar
  60. Hezaveh H, Muhamad II (2012a) Effect of natural cross-linker on swelling and structural stability of kappa-carrageenan/hydroxyethyl cellulose pH-sensitive hydrogels. Korean J Chem Eng 29(11):1647–1655CrossRefGoogle Scholar
  61. Hezaveh H, Muhamad II (2012b) Impact of metal oxide nanoparticles on oral release properties of pH-sensitive hydrogel nanocomposites. Int J Biol Macromol 50:1334–1340PubMedCrossRefGoogle Scholar
  62. Hezaveh H, Muhamad II (2013) Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem Eng Res Des 9(1):508–519CrossRefGoogle Scholar
  63. Horii F, Yamamoto H, Hirai A (1997) Microstructural analysis of microfibrils of bacterial cellulose. Macromol Symp 120:197–205CrossRefGoogle Scholar
  64. Hornof MD, Kast CE, Bernkop-Schnürch A (2003) In vitro evaluation of the viscoelastic properties of chitosan–thioglycolic acid conjugates. Eur J Pharm Biopharm 55:185–190PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hou Y, Chen C, Liu K, Tu Y, Zhang L, Li Y (2015) Preparation of PVA hydrogel with high-transparence and investigations of its transparent mechanism. RSC Adv 5:24023–24030CrossRefGoogle Scholar
  66. Illum L (2003) Nasal drug delivery–possibilities, problems and solutions. J Control Release 87(1–3):187–198Google Scholar
  67. Imeson A (1997) Thickening and gelling agents for food, 2nd edn. Blackie Academic & Professional, London, pp 45–83Google Scholar
  68. Işıklan N (2007) Controlled release study of carbaryl insecticide from calcium alginate and nickel alginate hydrogel beads. J Appl Polym Sci 105:718–725CrossRefGoogle Scholar
  69. Ismail H, Irani M, Ahmad Z (2013) Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater 62:411–420CrossRefGoogle Scholar
  70. Jayakrishnan A, Jameela SR (1996) Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterids 17:471–484CrossRefGoogle Scholar
  71. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramamc K, Raju KM (2013) Iota- carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 95:188–194PubMedCrossRefPubMedCentralGoogle Scholar
  72. Jegal J, Lee KH (1996) Pervaporation separation of water-ethanol mixtures through PVA-Sodium alginate blend membranes. J Appl Polym Sci 61:389–392CrossRefGoogle Scholar
  73. John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364CrossRefGoogle Scholar
  74. Jones JI (1973) Polyvinyl alcohol. Properties and applications. Br Polym J 5:493–494 (Finch CA (ed), Wiley, Chichester, pp xviii + 622)Google Scholar
  75. Keady TWJ, Steen WJ (1996) Effect of applying a bacterial inoculants to silage immediately before feeding on silage intake, degradability and rumen volatile fatty acid concentrations in growing beef cattle. Grass Forage Sci 51:155–162CrossRefGoogle Scholar
  76. Khuntia A, Chaundhary LC (2002) Performance of male cross-bred calves as influenced by substitution of grain by wheat bran and the addition of lactic acid bacteria to diet. Asian Aust J Anim Sci 15:188–194CrossRefGoogle Scholar
  77. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349Google Scholar
  78. Koide SS (1998) Chitin–chitosan: properties, benefits and risks. Nutr Res 18:1091–1101Google Scholar
  79. Kosin B, Rakshit SK (2010) Induction of heat tolerance in autochthonous and allochthonous thermotolerant probiotics for application to white shrimp feed. Aquaculture 306:302–309CrossRefGoogle Scholar
  80. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13CrossRefGoogle Scholar
  81. Kuhad RC, Kuhar S, Kapoor M, Sharma KK, Singh A (2007) Lignocellulolytic microorganisms, their enzymes and possible biotechnologies based on lignocellulolytic microorganisms and their enzymes. In: Kuhad RC, Singh A (eds) Lignocellulose biotechnology: future prospects. New Delhi, I.K. InternationalGoogle Scholar
  82. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084Google Scholar
  83. Laksono PW, Rochman T, Setyanto H, Pujiyanto E, Diharjo K (2014) Design and manufacturing bio composite (sugarcane bagasse—polyvinyl acetate) panel that characterized thermal conductivity. Adv Mater Res 893:504–507CrossRefGoogle Scholar
  84. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764PubMedCrossRefGoogle Scholar
  85. Leblanc JL (2009) Types of fillers. In: Filled polymers. CRC Press, Boca Raton, pp 11–14Google Scholar
  86. Leong KH, Chung LY, Noordin MI, Mohamad K, Nishikawa M, Onuki Y, Morishitab M, Takayamabet K (2011) Carboxymethylation of kappa carrageenan for intestinal-targeted delivery of bioactive macromolecules. Carbohydr Polym 83:1507–1515CrossRefGoogle Scholar
  87. Liu Y, Ma L, Gao C (2012) Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater Sci Eng C 32:2361–2366CrossRefGoogle Scholar
  88. Lu M, Li YY, Guan XH, Wei DZ (2010) Preparation of bacterial cellulose and its adsorption of Cd2+. J Northeast Univ 31(8):1196–1199Google Scholar
  89. Lu M, Guan XH, Xu X, Wei DZ (2013) Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chin Chem Lett 24:253–256CrossRefGoogle Scholar
  90. Lu M, Zhang YM, Guan XH, Xu X, Gao T (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Met Soc China 24:1912–1917CrossRefGoogle Scholar
  91. Ma XF, Chang PR, Yu JG (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 72:369–375CrossRefGoogle Scholar
  92. Maitra J, Shukla VK (2014) Cross-linking in hydrogels—a review. Am J Polym Sci 4(2):25–31Google Scholar
  93. Malik R, Sharma DD (1998) In vitro evaluation of different probiotics as feed supplement. Indian J Dairy Sci 51:357–362Google Scholar
  94. Manohar K, Ramlakhan D, Kochhar G, Haldar S (2006) Biodegradable fibrous thermal insulation. J Braz Soc Mech Sci Eng 28:45–47CrossRefGoogle Scholar
  95. Marcelo G, López-González M, Mendicuti F, Tarazona MP, Valiente M (2014) Poly(N-isopropylacrylamide)/gold hybrid hydrogels prepared by catechol redox chemistry. Characterization and smart tunable catalytic activity. Macromolecules 47:6028–6036CrossRefGoogle Scholar
  96. Meena R, Prasad K, Siddhanta AK (2007) Effect of genipin, a naturally occurring crosslinker on the properties of kappa-carrageenan. Int J Biol Macromol 41:94–101PubMedCrossRefPubMedCentralGoogle Scholar
  97. Meena R, Prasad K, Siddhanta AK (2009) Development of a stable hydrogel network based on agar–kappa-carrageenan blend cross-linked with genipin. Food Hydrocolloids, pp 497–509Google Scholar
  98. Mendes DF, Nascimento JE, Facholli AFDL, Casa MDA, Carvalho LDS, Sato K (2012) Evaluation of plasticity and radiopacity of elastic separators by means of traction tests and radiography. Dent Press J Orthod 17:6CrossRefGoogle Scholar
  99. Mi FL, Tan YC, Liang HC, Huang RN, Sung HW (2001) In vitro evaluation of a chitosan membrane cross-linked with genipin. J Biomater Sci Polym Ed 12(8):835–850PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mi FL, Tan YC, Liang HF Sung HW (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan based implant. Biomaterials 23:181–191Google Scholar
  101. Mi FL, Shyu SS, Peng CK (2005) Characterization of ring opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J Polym Sci Part A Polym Chem 43:1985–2000CrossRefGoogle Scholar
  102. Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859CrossRefGoogle Scholar
  103. Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and car-rageenases. Appl Microbiol Biotechnol 71:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  104. Moffat KL, Marra KG (2004) Biodegradable poly (ethylene glycol) hydrogel crosslinked with genipin for tissue engineering application. J Biomed Mater Res Part B Appl Biomater 71:181–187PubMedCrossRefPubMedCentralGoogle Scholar
  105. Morris CJ (2003) Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol 225:115–121PubMedPubMedCentralGoogle Scholar
  106. Muhamad II, Fen LS, Hui HN, Mustapha NA (2011) Genipin-cross-linked kappa carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr Polym 83:1207–1212Google Scholar
  107. Muhamad I, Salehudin M, Salleh E (2015) Cellulose nanofiber for eco-friendly polymer nanocomposites. In: Thakur VK, Thakur MK (eds) Eco-friendly polymer nanocomposites, vol 75, pp 323–365. Springer India, New DelhiGoogle Scholar
  108. Mulinari DR, Voorwald HJC, Cioffi MOH, Rocha GJ, Lucia CPM (2010) Surface modification of sugarcane bagasse cellulose and its effect on mechanical and water absorption properties of sugarcane bagasse cellulose/HDPE composites. BioResources 5:661–671Google Scholar
  109. Musatto SI, Teixeira, JA (2010) Lignocellulose as raw material in fermentation processes. In: Mendez-Vilas (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Braga, PortugalGoogle Scholar
  110. Myoga H, Asano H, Nomura Y, Yoshida H (1991) Effects of immobilization conditions on the nitrification treatability of entrapped cell reactors using the PVA freezing method. Water Sci Technol 23:1117–1124CrossRefGoogle Scholar
  111. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58:187–205Google Scholar
  112. Nilsen-Nygaard J, Strand S, Vårum K, Draget K, Nordgård C (2015) Chitosan: gels and interfacial properties. Polymers 7:552CrossRefGoogle Scholar
  113. Nimrat S, Boonthai T, Vuthiphandchai V (2011) Effects of probiotic forms, compositions of and mode of probiotic administration on rearing of Pacific white shrimp (Litopenaeus vannamei) larvae and postlarvae. Anim Feed Sci Technol 169:244–258CrossRefGoogle Scholar
  114. Norman FS, Harris P (1990) Carrageenans. Food Gel. Galliard (Printers) Ltd., Great Britain, pp 79–111Google Scholar
  115. Nousiainen J, Javanainen P, Setala J (2004) Lactic acid bacteria: microbiology and functional concepts, 3rd edn. Valio Ltd, Helsinki, pp 547–588Google Scholar
  116. Omidian H, Park KJ (2012) Hydrogels. In: Siepmann et al. (eds) Fundamentals and applications of controlled release drug delivery. Adv Deliv Sci Technol, 75–106Google Scholar
  117. Onyishi IV, Chime SA, Egwu E (2013) Application of k-carrageenan as a sustained release matrix in floating tablets containing sodium salicylate. Afr J Pharm Pharmacol 7(39):2667–2673Google Scholar
  118. Osada Y, Gong JP (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837CrossRefGoogle Scholar
  119. Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from acetobacter xylinum using different fermentation methods. Int J Eng Technol (IJET-IJENS) 11(5):90–98Google Scholar
  120. Panchal R, Thakur G (2014) Glutaraldehyde cross-linked chitosan-PVA composite films: a promising candidate for wound healing management. In: MUSRF-SRPC-2014, pp 11–12Google Scholar
  121. Panlasigui LN, Baello OQ, Dimatangal JM, Dumelod BD (2003) Blood cholesterol and lipid-lowering effects of carrageenan on human volunteers. Asia Pac J Clin Nutr 12:209–214PubMedPubMedCentralGoogle Scholar
  122. Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I (2001) Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv Mater 13:1320–1323CrossRefGoogle Scholar
  123. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  124. Pappu A, Patil V, Jain S, Mahindrakar A, Haque R, Thakur VK (2015) Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: a review. Int J Biol Macromol 79:449–458PubMedCrossRefGoogle Scholar
  125. Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432CrossRefGoogle Scholar
  126. Peppas NA (1987) Hydrogels in medicine and pharmacy, vols I–III. CRC, Boca RatonGoogle Scholar
  127. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46PubMedCrossRefPubMedCentralGoogle Scholar
  128. Phiriyawirut M, Maniaw P (2012) Cellulose microfibril from banana peels as a nanoreinforcing fillers for zein films. Open J Polym Chem 02:56–62CrossRefGoogle Scholar
  129. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112PubMedCrossRefPubMedCentralGoogle Scholar
  130. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465Google Scholar
  131. Ratner BD, Williams DF (1981) Biocompatibility of clinical implant materials. CRC, Boca RatonGoogle Scholar
  132. Ratner BD, Hoffman AS, Andrade JD (1976) Hydrogels for medical and related applications. American Chemical Society, Washington, p 1Google Scholar
  133. Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients. Pharmaceutical Press, LondonGoogle Scholar
  134. Riddell JB, Gallegos AJ, Harmon DL, McLeod KR (2010) Addition of a Bacillus based probiotic to the diet of preruminant calves: influence on growth, health, and blood parameters. Int J Appl Res Vet Med 8:78–85Google Scholar
  135. Rinaudo M (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40:7029–7032Google Scholar
  136. Rogovina LZ, Vasil’ev VG, Braudo EE (2008) Definition of the concept of polymer gel. Polym Sci Ser C 50(1):85–92Google Scholar
  137. Rosas-Ledesma P, Leon-Rubio JM, Alarcon FJ, Morinigo MA, Balebona MC (2012) Calcium alginate capsules for oral administration of fish probiotic bacteria: assessment of optimal conditions for encapsulation. Aquac Res 43:106–116CrossRefGoogle Scholar
  138. Ross GR, Gusils C, Gonzalez SN (2008) Microencapsulation of probiotic strains for swine feeding. Biol Pharm Bull 31:2121–2125PubMedCrossRefPubMedCentralGoogle Scholar
  139. Sahiner N (2013) Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci 38:1329–1356CrossRefGoogle Scholar
  140. Saïd Azizi Samir MA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316CrossRefGoogle Scholar
  141. Sangsuwan J, Rattanapanone N, Rachtanapun P (2008) Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Bio Tech 49:403–410Google Scholar
  142. Saravanan P, Padmanabha Raju M, Alam S (2007) A study on synthesis and properties of Ag nanoparticles immobilized polyacrylamide hydrogel composites. Mater Chem Phys 103:278–282CrossRefGoogle Scholar
  143. Selvakumaran S, Muhamad II (2015) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: effect of cross linker. Int J Pharm 496:323–331PubMedCrossRefPubMedCentralGoogle Scholar
  144. Seo JK, Kim S, Kim MH, Upadhaya SD, Kam DK, Ha JK (2010) Direct-fed microbials for ruminant animals. Asian Aust J Anim Sci 23:1657–1667CrossRefGoogle Scholar
  145. Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760PubMedCrossRefGoogle Scholar
  146. Shaharuddin S, Muhamad II (2015) Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL: enhancement of survivability and thermotolerance. Carbohydr Polym 119:173–181Google Scholar
  147. Shaharuddin S, Muhamad II, Seng KF, Zahan KA, Khairuddin N (2014a) Potential use of biofibers for functional immobilization of Lactobacillus rhamnosus NRRL 442. Key Eng Mater 595:231–235Google Scholar
  148. Shaharuddin S, Saiful IAR, Muhamad II (2014b) Sugarcane bagasse as the potential agro-waste resource for the immobilization of Lactobacillus rhamnosus NRRL 442. Adv Mater Res 1043:214–218CrossRefGoogle Scholar
  149. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Tech 10:37–51Google Scholar
  150. Shetty K, Paliyath G, Pometto A, Levin RE (2006) Food biotechnology, 2nd edn. CRC Press, Boca Raton, pp 512–514Google Scholar
  151. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRefGoogle Scholar
  152. Silva AJPS, Lahr FAR, Christofor AL, Panzera TH (2012) Properties of sugar cane bagasse to use in OSB. Int J Mater Eng 2:50–56CrossRefGoogle Scholar
  153. Singh V (2016) World hydrogel market- opportunities and forecasts, 2015–2022. Allied market research reportGoogle Scholar
  154. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765CrossRefGoogle Scholar
  155. Siritientong T, Ratanavaraporn J, Srichana T, Aramwit P (2013) Preliminary characterization of genipin-cross-linked silk sericin/poly (vinyl alcohol) films as two- dimensional wound dressings for the healing of superficial wounds. BioMed Res Int, 1–13Google Scholar
  156. Singha AS, Shama A, Thakur VK (2008) X-ray diffraction, morphological, and thermal studies on methylmethacrylate graft copolymerized Saccharum ciliare fiber. Int J Polym Anal Charact 13(6):447–462CrossRefGoogle Scholar
  157. Singha AS, Thakur VK (2008) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. BioResources 3(4):1173–1186Google Scholar
  158. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329PubMedPubMedCentralCrossRefGoogle Scholar
  159. Slominski BA, Davie T, Nyachoti MC, Jones O (2007) Heat stability of endogenous and microbial phytase during feed pelleting. Livestock Sci 109:244–246CrossRefGoogle Scholar
  160. Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1–2):15–27Google Scholar
  161. Soto LP, Frizzo LS, Avataneo E, Zbrun MV, Bertozzi E, Sequeira G, Rosmini MR (2011) Design of macrocapsules to improve bacterial viability and supplementation with a probiotic for young calves. Anim Feed Sci Technol 165:176–183CrossRefGoogle Scholar
  162. Stanley N (1987) Production and utilization of products from commercial seaweeds. In: Mchugh DJ (ed) FAO fisheries technical paper (vol 288, pp 116–146). FAO, RomeGoogle Scholar
  163. Steinbuchel A, Rhee SK (2005) Polysaccharides and polyamides in food industry (vol 1). Wiley-VCH, Germany, pp 85–166Google Scholar
  164. Sun Y, Cheng J (2002) Hydrolisis of lignocellulosic material from ethanol production: a review. Biores Technol 83:1–11CrossRefGoogle Scholar
  165. Sung HW, Huang RN, Huang LLH, Tsai CC (1999) In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J Biomater Sci Polym Ed 10(1):63–78PubMedCrossRefGoogle Scholar
  166. Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRefGoogle Scholar
  167. Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39:151–165CrossRefGoogle Scholar
  168. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1–2Google Scholar
  169. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  170. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  171. Thakur VK, Kessler MR (2014) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460CrossRefGoogle Scholar
  172. Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polymer 69:369–383CrossRefGoogle Scholar
  173. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefGoogle Scholar
  174. Thakur VK, Thakur MK, Gupta RK (2013a) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51PubMedCrossRefPubMedCentralGoogle Scholar
  175. Thakur VK, Thakur MK, Gupta RK (2013b) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98(1):820–828PubMedCrossRefPubMedCentralGoogle Scholar
  176. Trindade T, Daniel-Da-Silva AL (2011) Nanocomposite particles for bioapplications, materials and bio-interfaces. Pan Stanford Publishing Pte Ltd, SingaporeGoogle Scholar
  177. Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786PubMedCrossRefGoogle Scholar
  178. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603CrossRefGoogle Scholar
  179. Van De Velde F, Knutsen SH, Usov AL, Rollema HS, Cerezo AS (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13:73–92CrossRefGoogle Scholar
  180. Vogelsang C, Husby A, Østgaard K (1997) Functional stability of temperature-compensated nitrification in domestic wastewater treatment obtained with PVA-SbQ/alginate gel entrapment. Water Res 31:1659–1664CrossRefGoogle Scholar
  181. Voo WP, Ravindra P, Tey BT, Chan ES (2011) Comparison of alginate and pectin based beads for production of poultry probiotic cells. J Biosci Bioeng 111:294–299PubMedCrossRefPubMedCentralGoogle Scholar
  182. Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774CrossRefGoogle Scholar
  183. Wallace RJ, Newbold CJ (1993) Rumen fermentation and its manipulation: the development of yeast cultures as feed additives. In: Lyons TP (ed) Biotechnology in the feed industry. Alltech Technical Publications, Kentucky, pp 173–192Google Scholar
  184. Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC//PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218CrossRefGoogle Scholar
  185. Wang J, Lu X, Ng PF, Lee K, Fei B, Xin JH, Wu J (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38PubMedCrossRefPubMedCentralGoogle Scholar
  186. Weiner ML (1991) Toxicological properties of carrageenan. Agents Actions 32(1-2):46–51Google Scholar
  187. White RJ, Budarin VL, Clark JH (2008) Tuneable mesoporous materials from α-d-polysaccharides. Chemsuschem 1:408–411PubMedCrossRefPubMedCentralGoogle Scholar
  188. Williams PA, Phillips GO (2000) Gum Arabic. In: Philips GO, Williams PA (eds) Handbook of hydrocolloids, Woodhead Publishing Limited, New York, pp 155–168Google Scholar
  189. Wise DL (2000) Bioremediation of contaminated soils. Taylor & Francis, UKGoogle Scholar
  190. Woraharn S, Chaiyasut C, Sirithunyalug B (2010) Survival enhancement of probiotic Lactobacillus plantarum CMU-FP002 by granulation and encapsulation techniques. Afr J Microbiol Res 4:2086–2093Google Scholar
  191. Wu X, Black L, Santacana-Laffitte G, Patrick CW Jr (2006) Preparation and assessment of glutaraldehyde-crosslinked collagen–chitosan hydrogels for adipose tissue engineering. Wiley InterScience, New Jersey, pp 59–65Google Scholar
  192. Xie F, Pollet E, Halley PJ, Avérous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38:1590–1628CrossRefGoogle Scholar
  193. Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan-starch composite film: preparation and characterization. Ind Crops Prod 21:185–192CrossRefGoogle Scholar
  194. Yaszemski M, Trntolo D, Lewandrowski KU, Hasirci V, Altobelli D, Wise D (eds) (2004) Tissue engineering and novel delivery systems. CRC Press, Boca RatonGoogle Scholar
  195. Yeoh QL, Lee GL, Fatimah H (1985) Teknologi pengeluaran Nata. J Teknologi Makanan 4(1):36–39Google Scholar
  196. Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL, Bumgardner JD (2007) The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym 68(3):561–567CrossRefGoogle Scholar
  197. Zahan KA, Pa’e N, Muhamad II (2014) Process parameter for fermentation in rotary discs reactor for optimum bacterial cellulose production using response surface methodology. Bioresources 9(2):1858–1872Google Scholar
  198. Zhai M, Yoshii F, Kume T (2003) Radiation modification of starch-based plastic sheets. Carbohydr Polym 52:311–317Google Scholar
  199. Zhang Y, Wang QS, Yan K, Qi Y, Wang GF, Cui YL (2016) Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications. J Biomed Mater Res Part A, 1–8Google Scholar
  200. Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from chondrus ocellatus. Pharmacol Res 50:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  201. Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2011) Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564CrossRefGoogle Scholar
  202. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477 (English Edition)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ida Idayu Muhamad
    • 1
    • 2
    Email author
  • Eraricar Salleh
    • 1
  • Shahrulzaman Shaharuddin
    • 1
  • Norhayatie Pa’e
    • 1
  • Suguna Selvakumaran
    • 1
  • Mohd. Harfiz Salehudin
    • 1
  1. 1.Department of Bioprocess Engineering, Faculty of Chemical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.COE—Cardiac Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Center Level 2Johor BahruMalaysia

Personalised recommendations