Polymer Gels pp 413-443 | Cite as

Transport in and Through Gel

  • Masayuki TokitaEmail author
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Gel is a state of matter that classified into the solid because it consists of the three-dimensional cross-linked polymer network. It, however, shows some liquid-like properties since it also contains a considerable amount of fluid. According to such a characteristic structure, many substances can pass the gel. In many separation technologies, therefore, gel is used as a molecular sieve. Although the gel plays many important roles in the separation technologies, the detailed roles played by the gel in the transport phenomena is not well understood yet. The transport phenomena in the gel are necessary to be clarified. In this chapter, we discuss tow transport phenomena that is related to the gel. The one is the friction of the gel against the liquid that flows through the gel, and the other is the resistance of the gel for the diffusional translation of the substances in the gel.


Stokes–Einstein law Diffusion coefficient Darcy’s law Gel-solvent friction Scaling law 


  1. Bansil R, Gupta MK (1980) Effects of varying crosslinking density on polyacrylamide gels. Ferroelectrics 30:63–71CrossRefGoogle Scholar
  2. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance. Phys Rev 94:630–638CrossRefGoogle Scholar
  3. Cukier RI (1984) Diffusion of Brownian spheres in semidilute polymer-solutions. Macromolecules 17:252–255CrossRefGoogle Scholar
  4. De Gennes PG (1976) On a relation between percolation theory and the elasticity of gels. J Phys Lett (Paris) 37:L1–L2CrossRefGoogle Scholar
  5. De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press. Ithaca, pp 128–162Google Scholar
  6. Doi Y, Tokita M (2005a) Real space structure of opaque gel. Langmuir 21:5285–5289Google Scholar
  7. Doi Y, Tokita M (2005b) Friction coefficient and structural transition in a poly(acrylamide) gel. Langmuir 21:9420–9425Google Scholar
  8. Einstein A (1956) In: Furth R (ed) Investigations on the theory of the Brownian Movement. Dover Publications Inc.Google Scholar
  9. Fujiki M, Ito M, Kell M, Yashima S, Tokita M, Annnaka M (2016) Friction coefficient of well-defined hydrogel network. Macromolecules 49:634–642CrossRefGoogle Scholar
  10. Geissler E, Hecht AM (1982) Gel deswelling under reverse osmosis-II. J Chem Phys 77:1548–1553CrossRefGoogle Scholar
  11. Gibbs SJ, Johnson CS Jr (1991) Pulsed field gradient NMR-study of probe motion in polyacrylamide gels. Macromolecules 24:6110–6113CrossRefGoogle Scholar
  12. Hahn EL (1950) Spin echoes. Phys Rev 80:580–594CrossRefGoogle Scholar
  13. Hecht AM, Geissler E (1980) Gel deswelling under reverse osmosis. J Chem Phys 73:4077–4080CrossRefGoogle Scholar
  14. Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380CrossRefGoogle Scholar
  15. Hirokawa Y, Jinnai H, Nishikawa Y, Okamoto T, Hashimoto T (1999) Direct observation of internal structures in poly(N-isopropylacrylamide) chemical gels. Macromolecules 32:7093–7099CrossRefGoogle Scholar
  16. Langevin D, Rondelez F (1978) Sedimentation of large colloidal particles through semidilute polymer-solutions. Polymer 19:875–882CrossRefGoogle Scholar
  17. Matsukawa S, Yasunaga H, Zhao C, Kuroki S, Ando I (1999) Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo NMR sepectroscopy. Prog Polym Sci 24:995–1044CrossRefGoogle Scholar
  18. Matsuo ES, Tanaka T (1992) Patterns in shrinking gel. Nature 358:482–485CrossRefGoogle Scholar
  19. Morita T, Narita T, Mukai S, Yanagisawa M, Tokita M (2013) Phase behaviors of agarose gel. AIP Adv 3:42128CrossRefGoogle Scholar
  20. Muhr AH, Blanshard JMV (1982) Diffusion in gels. Polymer 23:1012–1026CrossRefGoogle Scholar
  21. Munch JP, Candau S, Herz J, Hilld G (1977a) Inelastic light-scattering by gel modes in semi-dilute polymer solutions and permanent network at equilibrium swollen state. J Phys (Paris) 38:971–976CrossRefGoogle Scholar
  22. Munch JP, Lemarechal P, Candau S (1977b) Light-scattering spectroscopy polydimethylsiloxane-toluene gel. J Phys (Paris) 38:1499–1509CrossRefGoogle Scholar
  23. Nakamura K, Shinoda E, Tokita M (2001) The influence of compression velocity on strength and structure of gellan gels. Food Hydrocolloids 15:247–252CrossRefGoogle Scholar
  24. Narita T, Tokita M (2006) Liesegang pattern formation in k-carrageenan gel. Langmuir 22:349–352CrossRefPubMedGoogle Scholar
  25. Narita T, Tokita M (2010) Spatial pattern induced by gelation of polysaccharide solutions. In: Lagzi I (ed) Precipitation patterns in reaction-diffusion systems. Research Signpost, KeralaGoogle Scholar
  26. Papon P, Leblond J, Meijer PHE (2002) The physics of phase transitions. Conceps and applications. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  27. Park IH, Johnson CS Jr, Gablriel DA (1990) Probe diffusion in polyacrylamide gels as observed by means of holographic relaxation methods—search for a universal equation. Macromolecules 23:1548–1553CrossRefGoogle Scholar
  28. Richards EG, Temple CJ (1971) Some properties of polyacrylamide gels. Nature (Phys Sci) 230:92CrossRefGoogle Scholar
  29. Stanley HE (1971) Introduction to phase transition and critical phenomena. Oxford University Press Inc.Google Scholar
  30. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  31. Suzuki YY, Tokita M, Mukai S (2009) Kinetics of water flow through a polymer gel. Eur J Phys E29:415–422Google Scholar
  32. Takebe T, Nawa K, Suehiro S, Hashimoto T (1989) Quasielastic light-scattering studies of swollen and stretched polymer gels. J Chem Phys 59:4360–4368CrossRefGoogle Scholar
  33. Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823CrossRefGoogle Scholar
  34. Tanaka T (1981) Gels. Aci Am 244:124–136Google Scholar
  35. Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phy 70:1214–1218CrossRefGoogle Scholar
  36. Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159CrossRefGoogle Scholar
  37. Tanaka T, Ishiwata S, Ishimoto C (1977) Critical behavior of density fluctuations in gels. Phys Rev Lett 38:771–774CrossRefGoogle Scholar
  38. Tanaka T, Sato E, Hirokawa Y, Hirotsu S (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458CrossRefPubMedGoogle Scholar
  39. Tanaka T, Sun S-T, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Mechanical instability of gels at the phase transition. Nature 325:796–798CrossRefGoogle Scholar
  40. Tokita M, Hikichi K (1987) Mechanical studies of sol-gel transition: universal behavior of elastic modulus. Phys Rev A 35:4329–4333Google Scholar
  41. Tokita M, Tanaka T (1991a) Friction coefficient of polymer networks of gels. J Chem Phys 95:4613–4619CrossRefGoogle Scholar
  42. Tokita M, Tanaka T (1991b) Reversible decrease of gel-solvent friction. Science 253:1121–1123CrossRefPubMedGoogle Scholar
  43. Tokita M, Hikichi K, Niki R, Arima S (1982) Dynamic viscoelastic studies on the mechanism of milk clotting process. Biorheology 19:209–219CrossRefPubMedGoogle Scholar
  44. Tokita M, Niki R, Hikichi K (1985) Critical behavior of modulus of gel. J Chem Phys 83:2583–2586CrossRefGoogle Scholar
  45. Tokita M, Miyoshi T, Takegoshi K, Hikichi K (1996) Probe diffusion in gels. Phys Rev E 53:1823–1827CrossRefGoogle Scholar
  46. Tokita M, Suzuki S, Miyamoto K, Komai T (1999) Confocal laser scanning microscope imaging of a pattern in shrinking gel. J Phys Soc Jpn 68:330–333CrossRefGoogle Scholar
  47. Tokita M, Miyamoto K, Komai T (2000) Polymer network dynamics in shrinking patterns of gels. J Chem Phys 113:1647–1650CrossRefGoogle Scholar
  48. Weiss N, van Vilet T, Silberberg A (1979) Permeability of heterogeneous gels. J Polym Sci Polym Phys Eds 17:2229–2240CrossRefGoogle Scholar
  49. Yamashita Y, Yanagisawa M, Tokita M (2014) Sol-gel transition and phase separation in ternary system of gelatin-water-poly(ethylene glycol) oligomer. J Mol Liq 200:47–51CrossRefGoogle Scholar
  50. Zhao QH, Matsukawa S (2012) Estimation of the hydrodynamic screening length in kappa-carrageenan solutions using NMR diffusion measurements. Polymer J 44:901–906CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKyushu UniversityFukuoka, FukuokaJapan

Personalised recommendations