Skip to main content
Book cover

Polymer Gels pp 413–443Cite as

Transport in and Through Gel

  • Chapter
  • First Online:
  • 1453 Accesses

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Gel is a state of matter that classified into the solid because it consists of the three-dimensional cross-linked polymer network. It, however, shows some liquid-like properties since it also contains a considerable amount of fluid. According to such a characteristic structure, many substances can pass the gel. In many separation technologies, therefore, gel is used as a molecular sieve. Although the gel plays many important roles in the separation technologies, the detailed roles played by the gel in the transport phenomena is not well understood yet. The transport phenomena in the gel are necessary to be clarified. In this chapter, we discuss tow transport phenomena that is related to the gel. The one is the friction of the gel against the liquid that flows through the gel, and the other is the resistance of the gel for the diffusional translation of the substances in the gel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bansil R, Gupta MK (1980) Effects of varying crosslinking density on polyacrylamide gels. Ferroelectrics 30:63–71

    Article  CAS  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  • Cukier RI (1984) Diffusion of Brownian spheres in semidilute polymer-solutions. Macromolecules 17:252–255

    Article  CAS  Google Scholar 

  • De Gennes PG (1976) On a relation between percolation theory and the elasticity of gels. J Phys Lett (Paris) 37:L1–L2

    Article  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press. Ithaca, pp 128–162

    Google Scholar 

  • Doi Y, Tokita M (2005a) Real space structure of opaque gel. Langmuir 21:5285–5289

    Google Scholar 

  • Doi Y, Tokita M (2005b) Friction coefficient and structural transition in a poly(acrylamide) gel. Langmuir 21:9420–9425

    Google Scholar 

  • Einstein A (1956) In: Furth R (ed) Investigations on the theory of the Brownian Movement. Dover Publications Inc.

    Google Scholar 

  • Fujiki M, Ito M, Kell M, Yashima S, Tokita M, Annnaka M (2016) Friction coefficient of well-defined hydrogel network. Macromolecules 49:634–642

    Article  CAS  Google Scholar 

  • Geissler E, Hecht AM (1982) Gel deswelling under reverse osmosis-II. J Chem Phys 77:1548–1553

    Article  CAS  Google Scholar 

  • Gibbs SJ, Johnson CS Jr (1991) Pulsed field gradient NMR-study of probe motion in polyacrylamide gels. Macromolecules 24:6110–6113

    Article  CAS  Google Scholar 

  • Hahn EL (1950) Spin echoes. Phys Rev 80:580–594

    Article  Google Scholar 

  • Hecht AM, Geissler E (1980) Gel deswelling under reverse osmosis. J Chem Phys 73:4077–4080

    Article  CAS  Google Scholar 

  • Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380

    Article  Google Scholar 

  • Hirokawa Y, Jinnai H, Nishikawa Y, Okamoto T, Hashimoto T (1999) Direct observation of internal structures in poly(N-isopropylacrylamide) chemical gels. Macromolecules 32:7093–7099

    Article  CAS  Google Scholar 

  • Langevin D, Rondelez F (1978) Sedimentation of large colloidal particles through semidilute polymer-solutions. Polymer 19:875–882

    Article  CAS  Google Scholar 

  • Matsukawa S, Yasunaga H, Zhao C, Kuroki S, Ando I (1999) Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo NMR sepectroscopy. Prog Polym Sci 24:995–1044

    Article  CAS  Google Scholar 

  • Matsuo ES, Tanaka T (1992) Patterns in shrinking gel. Nature 358:482–485

    Article  CAS  Google Scholar 

  • Morita T, Narita T, Mukai S, Yanagisawa M, Tokita M (2013) Phase behaviors of agarose gel. AIP Adv 3:42128

    Article  CAS  Google Scholar 

  • Muhr AH, Blanshard JMV (1982) Diffusion in gels. Polymer 23:1012–1026

    Article  CAS  Google Scholar 

  • Munch JP, Candau S, Herz J, Hilld G (1977a) Inelastic light-scattering by gel modes in semi-dilute polymer solutions and permanent network at equilibrium swollen state. J Phys (Paris) 38:971–976

    Article  CAS  Google Scholar 

  • Munch JP, Lemarechal P, Candau S (1977b) Light-scattering spectroscopy polydimethylsiloxane-toluene gel. J Phys (Paris) 38:1499–1509

    Article  CAS  Google Scholar 

  • Nakamura K, Shinoda E, Tokita M (2001) The influence of compression velocity on strength and structure of gellan gels. Food Hydrocolloids 15:247–252

    Article  CAS  Google Scholar 

  • Narita T, Tokita M (2006) Liesegang pattern formation in k-carrageenan gel. Langmuir 22:349–352

    Article  CAS  PubMed  Google Scholar 

  • Narita T, Tokita M (2010) Spatial pattern induced by gelation of polysaccharide solutions. In: Lagzi I (ed) Precipitation patterns in reaction-diffusion systems. Research Signpost, Kerala

    Google Scholar 

  • Papon P, Leblond J, Meijer PHE (2002) The physics of phase transitions. Conceps and applications. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Park IH, Johnson CS Jr, Gablriel DA (1990) Probe diffusion in polyacrylamide gels as observed by means of holographic relaxation methods—search for a universal equation. Macromolecules 23:1548–1553

    Article  CAS  Google Scholar 

  • Richards EG, Temple CJ (1971) Some properties of polyacrylamide gels. Nature (Phys Sci) 230:92

    Article  CAS  Google Scholar 

  • Stanley HE (1971) Introduction to phase transition and critical phenomena. Oxford University Press Inc.

    Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Suzuki YY, Tokita M, Mukai S (2009) Kinetics of water flow through a polymer gel. Eur J Phys E29:415–422

    Google Scholar 

  • Takebe T, Nawa K, Suehiro S, Hashimoto T (1989) Quasielastic light-scattering studies of swollen and stretched polymer gels. J Chem Phys 59:4360–4368

    Article  Google Scholar 

  • Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823

    Article  CAS  Google Scholar 

  • Tanaka T (1981) Gels. Aci Am 244:124–136

    CAS  Google Scholar 

  • Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phy 70:1214–1218

    Article  CAS  Google Scholar 

  • Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159

    Article  CAS  Google Scholar 

  • Tanaka T, Ishiwata S, Ishimoto C (1977) Critical behavior of density fluctuations in gels. Phys Rev Lett 38:771–774

    Article  CAS  Google Scholar 

  • Tanaka T, Sato E, Hirokawa Y, Hirotsu S (1985) Critical kinetics of volume phase transition of gels. Phys Rev Lett 55:2455–2458

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Sun S-T, Hirokawa Y, Katayama S, Kucera J, Hirose Y, Amiya T (1987) Mechanical instability of gels at the phase transition. Nature 325:796–798

    Article  CAS  Google Scholar 

  • Tokita M, Hikichi K (1987) Mechanical studies of sol-gel transition: universal behavior of elastic modulus. Phys Rev A 35:4329–4333

    Google Scholar 

  • Tokita M, Tanaka T (1991a) Friction coefficient of polymer networks of gels. J Chem Phys 95:4613–4619

    Article  CAS  Google Scholar 

  • Tokita M, Tanaka T (1991b) Reversible decrease of gel-solvent friction. Science 253:1121–1123

    Article  CAS  PubMed  Google Scholar 

  • Tokita M, Hikichi K, Niki R, Arima S (1982) Dynamic viscoelastic studies on the mechanism of milk clotting process. Biorheology 19:209–219

    Article  CAS  PubMed  Google Scholar 

  • Tokita M, Niki R, Hikichi K (1985) Critical behavior of modulus of gel. J Chem Phys 83:2583–2586

    Article  CAS  Google Scholar 

  • Tokita M, Miyoshi T, Takegoshi K, Hikichi K (1996) Probe diffusion in gels. Phys Rev E 53:1823–1827

    Article  CAS  Google Scholar 

  • Tokita M, Suzuki S, Miyamoto K, Komai T (1999) Confocal laser scanning microscope imaging of a pattern in shrinking gel. J Phys Soc Jpn 68:330–333

    Article  CAS  Google Scholar 

  • Tokita M, Miyamoto K, Komai T (2000) Polymer network dynamics in shrinking patterns of gels. J Chem Phys 113:1647–1650

    Article  CAS  Google Scholar 

  • Weiss N, van Vilet T, Silberberg A (1979) Permeability of heterogeneous gels. J Polym Sci Polym Phys Eds 17:2229–2240

    Article  CAS  Google Scholar 

  • Yamashita Y, Yanagisawa M, Tokita M (2014) Sol-gel transition and phase separation in ternary system of gelatin-water-poly(ethylene glycol) oligomer. J Mol Liq 200:47–51

    Article  CAS  Google Scholar 

  • Zhao QH, Matsukawa S (2012) Estimation of the hydrodynamic screening length in kappa-carrageenan solutions using NMR diffusion measurements. Polymer J 44:901–906

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Tokita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tokita, M. (2018). Transport in and Through Gel. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6086-1_11

Download citation

Publish with us

Policies and ethics