Polymer Hydrogel-Clay (Nano)Composites

  • Piotr KuśtrowskiEmail author
  • Piotr Natkański
  • Anna Rokicińska
  • Ewa Witek
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Among various (nano)composites containing hydrogels, materials based on clays are emphasized. We show features of clays, which are beneficial in the formation of (nano)composites with hydrogels. Methods used in the synthesis of these materials and the resulting structures are demonstrated. Physicochemical techniques being valuable tools for characterization of this type of materials are also presented. Furthermore, the most important properties of hydrogel-clay (nano)composites are shown. Beside typically improved features like thermal stability, mechanical, rheological, and optical properties, as well as swelling and adsorption capacity are discussed. Finally, a wide range of possible applications of hydrogel-clay (nano)composites is outlined.


Hydrogel-clay (nano)composites Synthesis Physicochemical characterization Applications 


  1. Aalaie J, Vasheghani-Farahani E, Rahmatpour A, Semsarzadeh MA (2008) Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur Polym J 44:2024–2031CrossRefGoogle Scholar
  2. Adams JM, McCabe RW (2006) Handbook of clay science: developments in clay science, vol 1. Chapter 10.2: clay minerals as catalysts. Elsevier, USAGoogle Scholar
  3. Agrawal SK, Sanabria-Delong N, Bhatia SK, Tew GN, Bhatia SR (2010) Energetics of association in poly(lactic acid)-based hydrogels with crystalline and nanoparticle—polymer junctions. Langmuir 26:17330–17338PubMedPubMedCentralCrossRefGoogle Scholar
  4. Al E, Gűҫlű G, Íyim TB, Emik S, Özgűműş S (2008) Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. J Appl Polym Sci 109:16–22CrossRefGoogle Scholar
  5. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63CrossRefGoogle Scholar
  6. Anderson RL, Ratcliffe I, Greenwell HC, Williams PA, Cliffe S, Coveney PV (2010) Clay swelling—a challenge in the oilfield. Earth Sci Rev 98:201–216CrossRefGoogle Scholar
  7. Beisebekov MM, Serikpayeva SB, Zhumagalieva SN, Beisebekov MK, Abilov ZA, Kosmella S, Koetz J (2014) Interactions of bentonite clay in composite gels of non-ionic polymers with cationic surfactants and heavy metal ions. Colloid Polym Sci 293:633–639CrossRefGoogle Scholar
  8. Bhattacharyya R, Ray SK (2014) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283CrossRefGoogle Scholar
  9. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439PubMedCrossRefGoogle Scholar
  10. Boruah M, Mili M, Sharma S, Gogoi B, Dolui SK (2015) Synthesis and evaluation of swelling kinetics of electric field responsive poly(vinyl alcohol)-g-polyacrylic acid/OMNT nanocomposite hydrogels. Polym Compos 36:34–41CrossRefGoogle Scholar
  11. Breen Ch, Watson R (1998) Acid activated organoclays: preparation, characterization and catalytic activity of polycation-treated bentonites. Appl Clay Sci 12:479–494CrossRefGoogle Scholar
  12. Brigatti MF, Galan E, Theng BKG (2006) Handbook of clay science: developments in clay science, vol 1. Chapter 2: structures and mineralogy of clay minerals. Elsevier, USAGoogle Scholar
  13. Brindley GW, Brown G (eds) (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, LondonGoogle Scholar
  14. Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2014) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Dev 35:47–66CrossRefGoogle Scholar
  15. Can V, Abdurrahmanoglu S, Okay O (2007) Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer 48:5016–5023CrossRefGoogle Scholar
  16. Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer-clay nanocomposites. Chem Soc Rev 37:568–594PubMedCrossRefGoogle Scholar
  17. Chen P, Xu S, Wu R, Wang J, Gu R, Du J (2013) A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl Clay Sci 72:196–200CrossRefGoogle Scholar
  18. Chen Y, Xu W, Zeng G (2014a) The preparation and characteristic of robust inorganic/organic IPN nanocomposite hydrogels with fast response rate. J Mater Sci 49:7360–7370CrossRefGoogle Scholar
  19. Chen HB, Hollinger E, Wang YZ, Schiraldi DA (2014b) Facile fabrication of poly(vinyl alcohol) gels and derivative aerogels. Polymer 55:380–384CrossRefGoogle Scholar
  20. Chirino E, Vilagrosa A, Vallejo VR (2011) Using hydrogel and clay to improve the water status of seedlings for dryland restoration. Plant Soil 344:99–110CrossRefGoogle Scholar
  21. Chitnis SD, Sharma MM (1997) Industrial applications of acid-treated clays as catalysts. React Funct Polym 32:93–115CrossRefGoogle Scholar
  22. Choudhary MS (2009) Inverse suspension polymerization of partially neutralized and lightly cross-linked acrylic acid: effect of reaction parameters. Macromol Symp 277:171–176CrossRefGoogle Scholar
  23. Dadkhah D, Navarchian AH, Aref L, Tavakoli N (2014) Application of taguchi method to investigate the drug release behavior of poly(acrylamide-co-maleic acid)/montmorillonite nanocomposite hydrogels. Adv Polym Tech 33:21426CrossRefGoogle Scholar
  24. Dalaran M, Emik S, Güçlü G, Iyim TB, Özgümüş S (2009) Removal of acidic dye from aqueous solutions using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels. Polym Bull 63:159–171CrossRefGoogle Scholar
  25. Dalaran M, Emik S, Güçlü G, Iyim TB, Özgümüş S (2011) Study on a novel polyampholyte nanocomposite superabsorbent hydrogels: synthesis, characterization and investigation of removal of indigo carmine from aqueous solution. Desalination 279:170–182CrossRefGoogle Scholar
  26. Dinu MV, Perju MM, Drăgan ES (2011) Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness. Macromol Chem Phys 212:240–251CrossRefGoogle Scholar
  27. Dong Y, Feng SS (2005) Poly(d, l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:6068–6076PubMedCrossRefGoogle Scholar
  28. Du J, Chen P, Adalati A, Xu S, Wu R, Wang J, Zhang C (2014) Preparation and mechanical properties of a transparent ionic nanocomposite hydrogel. J Polym Res 21:541CrossRefGoogle Scholar
  29. Ekici S, Işikver Y, Saraydm D (2006) Poly (acrylamide-sepiolite) composite hydrogels: preparation, swelling and dye adsorption properties. Polym Bull 57:231–241CrossRefGoogle Scholar
  30. El-Sigeny S, Mohamed SK, Abou Taleb MF (2014) Radiation synthesis and characterization of styrene/acrylic acid/organophilic montmorillonite hybrid nanocomposite for sorption of dyes from aqueous solutions. Polym Compos 35:2353–2364CrossRefGoogle Scholar
  31. Etika KC, Liu L, Cox MA, Grunlan JC (2016) Clay-mediated carbon nanotube dispersion in poly(N-Isopropylacrylamide). Colloid Surf A 489:19–26CrossRefGoogle Scholar
  32. Flessner U, Jones DJ, Rozière J, Zajac J, Storaro L, Lenarda M, Pavan M, Jiménez-López A, Rodrıguez-Castellón E, Trombetta M, Busca G (2001) A study of the surface acidity of acid-treated montmorillonite clay catalysts. J Mol Catal A Chem 168:247–256CrossRefGoogle Scholar
  33. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRefGoogle Scholar
  34. Ganguly S, Dana K, Mukhopadhyay TK, Parya TK, Ghatak S (2011) Organophilic nano clay: a comprehensive review. Trans Ind Ceram Soc 70:189–206CrossRefGoogle Scholar
  35. Gao L, Sun Y, Zhang W, Li D, Hou C, Liu Y (2015) Mechanical behavior of a terpolymer-based pH- and temperature-responsive hydrogel. J Polym Res 22:221–230CrossRefGoogle Scholar
  36. Ghadiri M, Chrzanowski W, Rohanizadeh R (2014) Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J Mater Sci Mater Med 25:2513–2526PubMedCrossRefGoogle Scholar
  37. Güçlü G, Al E, Emik S, Iyim TB, Özgümüş S, Özyürek M (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346CrossRefGoogle Scholar
  38. Guggenheim S, Adams JM, Bain DC, Bergaya F, Brigatti MF, Drits VA, Formoso ML, Galan E, Kogure T, Stanjek H (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale Pour L’etude Des Argiles (AIPEA) nomenclature committee for 2006. Clays Clay Miner 54:761–772CrossRefGoogle Scholar
  39. Guilherme MR, Fajardo AR, Moia TA, Kunita MH, Gonçalves MDC, Rubira AF, Tambourgi EB (2010) Porous nanocomposite hydrogel of vinyled montmorillonite-crosslinked maltodextrin-co-dimethylacrylamide as a highly stable polymer carrier for controlled release systems. Eur Polym J 46:1465–1474CrossRefGoogle Scholar
  40. Güler MA, Gök MK, Figen AK, Özgümüş S (2015) Swelling, mechanical and mucoadhesion properties of Mt/starch-g-PMAA nanocomposite hydrogels. Appl Clay Sci 112–113:44–52CrossRefGoogle Scholar
  41. Haraguchi K (2007a) Nanocomposite gels: new advanced functional soft materials. Macromol Symp 256:120–130CrossRefGoogle Scholar
  42. Haraguchi K (2007b) Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 11:47–54CrossRefGoogle Scholar
  43. Haraguchi K (2008) Nanocomposite gels—fundamental significance and new functions. Kobunshi Ronbunshu 65:619–633CrossRefGoogle Scholar
  44. Haraguchi K (2011a) Stimuli-responsive nanocomposite gels. Colloid Polym Sci 289:455–473CrossRefGoogle Scholar
  45. Haraguchi K (2011b) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241CrossRefGoogle Scholar
  46. Haraguchi K, Li HJ (2009) The effect of water content on the ultimate properties of rubbery nanocomposite gels. J Polym Sci Part B Polym Phys 47:2328–2340CrossRefGoogle Scholar
  47. Haraguchi K, Li HJ (2010) Hydrophobic surface characteristics of nanocomposite hydrogels. Macromol Symp 291–292:159–167CrossRefGoogle Scholar
  48. Haraguchi K, Takada T (2010) Synthesis and characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules 43:4294–4299CrossRefGoogle Scholar
  49. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRefGoogle Scholar
  50. Haraguchi K, Varade D (2014) Platinum-polymer-clay nanocomposite hydrogels via exfoliated clay-mediated in situ reduction. Polymer (UK) 55:2496–2500CrossRefGoogle Scholar
  51. Haraguchi K, Xu Y (2012) Thermal analyses of poly(N-isopropylacrylamide) in aqueous solutions and in nanocomposite gels. Colloid Polym Sci 290:1627–1636CrossRefGoogle Scholar
  52. Haraguchi K, Li H-J, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 2005(38):3482–3490CrossRefGoogle Scholar
  53. Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromol 7:3267–3275CrossRefGoogle Scholar
  54. Haraguchi K, Li HJ, Ren HY, Zhu M (2010) Modification of nanocomposite gels by irreversible rearrangement of polymer/clay network structure through drying. Macromolecules 43:9848–9853CrossRefGoogle Scholar
  55. Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258PubMedCrossRefGoogle Scholar
  56. Harini M, Deshpande AP (2009) Rheology of poly(sodium acrylate) hydrogels during cross-linking with and without cellulose microfibrils. J Rheol 53:31–47CrossRefGoogle Scholar
  57. Helvacioǧlu E, AydIn V, Nugay T, Nugay N, Uluocak BG, Şen S (2011) High strength poly(acrylamide)-clay hydrogels. J Polym Res 18:2341–2350CrossRefGoogle Scholar
  58. Hennink WE, Van Nostrum C (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236CrossRefGoogle Scholar
  59. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRefGoogle Scholar
  60. Hosseinzadeh H, Zoroufi S, Mahdavinia GR (2015) Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels. Polym Bull 72:1339–1363CrossRefGoogle Scholar
  61. Hu X, Wang T, Xiong L, Wang C, Liu X, Tong Z (2010) Preferential adsorption of poly(ethylene glycol) on hectorite clay and effects on poly(N-isopropylacrylamide)/hectorite nanocomposite hydrogels. Langmuir 26:4233–4238PubMedCrossRefGoogle Scholar
  62. Hua S, Yang H, Wang W, Wang A (2010) Controlled release of ofloxacin from chitosan-montmorillonite hydrogel. Appl Clay Sci 50:112–117CrossRefGoogle Scholar
  63. Huang T (2012) P(NIPAM-co-AA)/clay nanocomposite hydrogels exhibiting high swelling ratio accompanied by excellent mechanical strength. Appl Phys A Mater Sci Process 107:905–909CrossRefGoogle Scholar
  64. Hussain YA, Liu T, Roberts GW (2012) Synthesis of cross-linked, partially neutralized poly(acrylic acid) by suspension polymerization in supercritical carbon dioxide. Ind Eng Chem Res 51:11401–11408Google Scholar
  65. Hussien RA, Donia AM, Atia AA, El-Sedfy OF, El-Hamid ARA, Rashad RT (2012) Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. Catena 92:172–178Google Scholar
  66. Ibraeva ZE, Zhumaly AA, Blagih E, Kudaibergenov SE (2015) Preparation and characterization of organic-inorganic composite materials based on poly(acrylamide) hydrogels and clay minerals. Macromol Symp 351:97–111CrossRefGoogle Scholar
  67. Ibrahim SM, El-Naggar AA (2013) Preparation of poly(vinyl alcohol)/clay hydrogel through freezing and thawing followed by electron beam irradiation for the treatment of wastewater. J Thermoplast Compos Mater 26:1332–1348CrossRefGoogle Scholar
  68. Ihsanullah AA, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161CrossRefGoogle Scholar
  69. Irani M, Ismail H, Ahmad Z (2013) Preparation and properties of linear low-density polyethylene-g-poly(acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym Test 32:502–512CrossRefGoogle Scholar
  70. Irani M, Ismail H, Ahmad Z, Fan M (2015) Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions. J Environ Sci 27:9–20CrossRefGoogle Scholar
  71. Janovák L, Varga J, Kemény L, Dékány I (2008) Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly(N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels. Colloid Polym Sci 286:1575–1585CrossRefGoogle Scholar
  72. Janovák L, Varga J, Kemény L, Dékány I (2009a) Swelling properties of copolymer hydrogels in the presence of montmorillonite and alkylammonium montmorillonite. Appl Clay Sci 43:260–270CrossRefGoogle Scholar
  73. Janovák L, Varga J, Kemény L, Dékány I (2009b) The effect of surface modification of layer silicates on the thermoanalytical properties of poly(NIPAAm-co-AAm) based composite hydrogels. J Therm Anal Calorim 98:485–493CrossRefGoogle Scholar
  74. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289CrossRefGoogle Scholar
  75. Kamoun EA, Menzel H (2012) HES-HEMA nanocomposite polymer hydrogels: swelling behavior and characterization. J Polym Res 19:1–14CrossRefGoogle Scholar
  76. Kaplan M, Kasgoz H (2011) Hydrogel nanocomposite sorbents for removal of basic dyes. Polym Bull 67:1153–1168CrossRefGoogle Scholar
  77. Karadaǧ E, Hasgül B, Kundakci S, Üzüm ÖB (2014) A study of polymer/clay hybrid composite sorbent-based AAm/SMA hydrogels and semi-IPNs composed of l-carrageenan and montmorillonite for water and dye sorption. Adv Polym Tech 33:21432CrossRefGoogle Scholar
  78. Karadağ E, Ödemiş H, Kundakçi S, Üzüm OB (2015) Swelling characterization of acrylamide/zinc acrylate/xanthan gum/sepiolite hybrid hydrogels and its application in sorption of Janus Green B from aqueous solutions. Adv Polym Tech 35:248–259CrossRefGoogle Scholar
  79. Kaşgӧz H, Durmus A (2008) Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polym Adv Technol 19:838–845CrossRefGoogle Scholar
  80. Kaygusuz H, Erim FB (2013) Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. React Funct Polym 73:1420–1425CrossRefGoogle Scholar
  81. Kevadiya BD, Joshi GV, Bajaj HC (2010) Layered bionanocomposites as carrier for procainamide. Int J Pharm 388:280–286PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kevadiya BD, Joshi GV, Mody HM, Bajaj HC (2011) Biopolymer-clay hydrogel composites as drug carrier: host-guest intercalation and in vitro release study of lidocaine hydrochloride. Appl Clay Sci 52:364–367CrossRefGoogle Scholar
  83. Kevadiya BD, Patel TA, Jhala DD, Thumbar RP, Brambhatt H, Pandya MP, Rajkumar S, Jena PK, Joshi GV, Gadhia PK, Tripathi CB, Bajaj HC (2012) Layered inorganic nanocomposites: a promising carrier for 5-fluorouracil (5-FU). Eur J Pharm Biopharm 81:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kevadiya BD, Rajkumar S, Bajaj HC, Chettiar SS, Gosai K, Brahmbhatt H, Bhatt AS, Barvaliya YK, Dave GS, Kothari RK (2014) Biodegradable gelatin-ciprofloxacin-montmorillonite composite hydrogels for controlled drug release and wound dressing application. Colloids Surf B 122:175–183CrossRefGoogle Scholar
  85. Khunawattanakul W, Puttipipatkhachorn S, Rades T, Pongjanyakul T (2011) Novel chitosan–magnesium aluminum silicate nanocomposite film coatings for modified-release tablets. Int J Pharm 407:132–141PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kloprogge JT (1998) Synthesis of smectites and porous pillared clay catalysts: a review. J Porous Mater 5:5–41CrossRefGoogle Scholar
  87. Kloprogge JT, Komarneni S, Amonette JE (1999) Synthesis of smectite clay minerale: a critical review. Clays Clay Miner 47:529–554CrossRefGoogle Scholar
  88. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781CrossRefGoogle Scholar
  89. Komadel P, Madejova J (2006) Handbook of clay science: developments in clay science, vol 1. Chapter 7.1: Acid activation of clay minerals. Elsevier, USAGoogle Scholar
  90. Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Review article. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  91. Kundakci S, Üzüm OB, Karadaǧ E (2008) Swelling and dye sorption studies of acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/bentonite highly swollen composite hydrogels. React Funct Polym 68:458–473CrossRefGoogle Scholar
  92. Kundakci S, Üzüm OB, Karadaǧ E (2009) A new composite sorbent for water and dye uptake: highly swollen acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid/clay hydrogels crosslinked by 1,4-butanediol dimethacrylate. Polym Compos 30:29–37CrossRefGoogle Scholar
  93. Kundakci S, Üzüm ÖB, Karadaĝ E (2011) Behaviors of polyelectrolyte AAm/AMPS/bentonite composite hydrogels in uptake of uranyl ions from aqueous solutions. Polym Compos 32:994–1001CrossRefGoogle Scholar
  94. Lagaly G, Ogawa M, Dekany I (2007) Applied clay mineralogy: developments in clay science 2, Chapter 7.3: Clay mineral organic interactions. Elsevier, USAGoogle Scholar
  95. Lee WF, Chen JC (2004) Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. J Appl Polym Sci 91:2934–2941CrossRefGoogle Scholar
  96. Lee WF, Jou LL (2004) Effect of the intercalation agent content of montmorillonite on the swelling behavior and drug release behavior of nanocomposite hydrogels. J Appl Polym Sci 94:74–82CrossRefGoogle Scholar
  97. Li A, Wang A (2005) Synthesis and properties of clay-based superabsorbent composite. Eur Polym J 41:1630–1637CrossRefGoogle Scholar
  98. Li A, Zhang J, Wang A (2007) Utilization of starch and clay for the preparation of superabsorbent composite. Bioresour Technol 98:327–332PubMedCrossRefPubMedCentralGoogle Scholar
  99. Li P, Siddaramaiah Kim NH, Heo SB, Lee JH (2008) Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Compos B 39:756–763CrossRefGoogle Scholar
  100. Li P, Kim NH, Hui D, Rhee KY, Lee JH (2009a) Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl Clay Sci 46:414–417CrossRefGoogle Scholar
  101. Li P, Siddaramaiah Kim NH, Yoo GH, Lee JH (2009b) Poly(acrylamide/laponite) nanocomposite hydrogels: swelling and cationic dye adsorption properties. J Appl Polym Sci 111:1786–1798CrossRefGoogle Scholar
  102. Li Y, Wang X, Wang J (2012) Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions. J Therm Anal Calorim 110:1199–1206CrossRefGoogle Scholar
  103. Li H, Gu R, Xu S, Abudurman A, Wang J (2014) Surfactant-assisted synthesis of a transparent ionic nanocomposite hydrogel. Appl Clay Sci 101:335–338CrossRefGoogle Scholar
  104. Lian C, Yang Y, Wang T, Sun W, Liu X, Tong Z (2014) A facile method for reinforcing poly(N-isopropylacrylamide)-hectorite clay nanocomposite hydrogels by heat treatment. Polym Compos 37:1557–1563CrossRefGoogle Scholar
  105. Lian C, Zhang E, Wang T, Sun W, Liu X, Tong Z (2015) Binding interaction and gelation in aqueous mixtures of poly(N-isopropylacrylamide) and hectorite clay. J Phys Chem B 119:612–619PubMedCrossRefGoogle Scholar
  106. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23CrossRefGoogle Scholar
  107. Liu Y, Zhu M, Liu X, Jiang YM, Ma Y, Qin ZY, Kuckling D, Adler HJP (2007) Mechanical properties and phase transition of high clay content clay/poly(N-isopropylacrylamide) nanocomposite hydrogel. Macromol Symp 254:353–360CrossRefGoogle Scholar
  108. Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan–montmorillonite, nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045PubMedCrossRefGoogle Scholar
  109. Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22:486–493CrossRefGoogle Scholar
  110. Liu Y, Zheng Y, Wang A (2011) Effect of biotite content of hydrogels on enhanced removal of methylene blue from aqueous solution. Ionics 17:535–543CrossRefGoogle Scholar
  111. Liu D, Wang T, Liu X, Tong Z (2012a) Accelerated cell sheet detachment by copolymerizing hydrophilic PEG side chains into PNIPAm nanocomposite hydrogels. Biomed Mater 7:055008PubMedCrossRefGoogle Scholar
  112. Liu M, Li W, Rong J, Zhou C (2012b) Novel polymer nanocomposite hydrogel with natural clay nanotubes. Colloid Polym Sci 290:895–905CrossRefGoogle Scholar
  113. Liu M, Zhang Y, Li J, Zhou C (2013) Chitin-natural clay nanotubes hybrid hydrogel. Int J Biol Macromol 58:23–30PubMedCrossRefGoogle Scholar
  114. Liu D, Wang T, Liu X, Tong Z (2014) Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels. Biopolymers 101:58–65PubMedCrossRefGoogle Scholar
  115. Lungu A, Perrin FX, Belec L, Sarbu A, Teodorescu M (2012) Kaolin/poly(acrylic acid) composites as precursors for porous kaolin ceramics. Appl Clay Sci 62–63:63–69CrossRefGoogle Scholar
  116. Ma J, Xu Y, Fan B, Liang B (2007a) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228CrossRefGoogle Scholar
  117. Ma J, Xu Y, Zhang Q, Zha L, Liang B (2007b) Preparation and characterization of pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly (N-isopropyl acrylamide) crosslinked by clay. Colloid Polym Sci 285:479–484CrossRefGoogle Scholar
  118. Ma J, Zhang L, Li Z, Liang B (2008) Preparation and characterization of porous poly (N-isopropylacrylamide)/clay nanocomposite hydrogels. Polym Bull 61:593–602CrossRefGoogle Scholar
  119. Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470CrossRefGoogle Scholar
  120. Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J 21:609–619CrossRefGoogle Scholar
  121. Mahdavinia GR, Aghaie H, Sheykhloie H, Vardini MT, Etemadi H (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365PubMedCrossRefGoogle Scholar
  122. Mansoori Y, Salemi H (2015) Nanocomposite hydrogels composed of cloisite 30B-graft-poly(acrylic acid)/poly(acrylic acid): synthesis and characterization. Polym Sci Ser B 57:167–179CrossRefGoogle Scholar
  123. Marandi GB, Baharloui M, Kurdtabar M, Sharabian LM, Mojarrad MA (2015) Hydrogel with high laponite content as nanoclay: swelling and cationic dye adsorption properties. Res Chem Intermed 41:7043–7058CrossRefGoogle Scholar
  124. Mauroy H, Rozynek Z, Plivelic TS, Fossum JO, Helgesen G, Knudsen KD (2013) Oxygen-controlled phase segregation in poly(N-isopropylacrylamide)/laponite nanocomposite hydrogels. Langmuir 29:371–379PubMedCrossRefGoogle Scholar
  125. Merinska D, Malac Z, Pospisil M, Weiss Z, Chmielova M, Capkova P, Simonik J (2002) Polymer/clay nanocomposites based on MMT/ODA intercalates. Compos Interf 9:529–541CrossRefGoogle Scholar
  126. Miyazaki S, Endo H, Karino T, Haraguchi K, Shibayama M (2007) Gelation mechanism of poly(N-isopropylacrylamide)–clay nanocomposite gels. Macromolecules 40:4287–4295CrossRefGoogle Scholar
  127. Molu ZB, Seki Y, Yurdakoç K (2010) Preparation and characterization of poly(acrylic acid)/pillared clay superabsorbent composite. Polym Bull 64:171–183CrossRefGoogle Scholar
  128. Moradi-Araghi A (2000) A review of thermally stable gels for fluid diversion in petroleum production. J Petrol Sci Eng 26:1–10CrossRefGoogle Scholar
  129. Murray HH (2007a) Handbook of clay science: developments in clay science, vol 2. Chapter 6: bentonite applications. Elsevier, USAGoogle Scholar
  130. Murray HH (2007b) Handbook of clay science: developments in clay science, vol 2. Chapter 2: applied clay mineralogy occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier, USAGoogle Scholar
  131. Nair SH, Pawar KC, Jog JP, Badiger MV (2007) Swelling and mechanical behavior of modified poly(vinyl alcohol)/laponite nanocomposite membranes. J Appl Polym Sci 103:2896–2903CrossRefGoogle Scholar
  132. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds. Part III, 4th edn. Wiley, New YorkGoogle Scholar
  133. Nakamura T, Ogawa M (2013) Adsorption of cationic dyes within spherical particles of poly(N-isopropylacrylamide) hydrogel containing smectite. Appl Clay Sci 83–84:469–473CrossRefGoogle Scholar
  134. Natkański P, Kuśtrowski P, Białas A, Piwowarska Z, Michalik M (2012) Controlled swelling and adsorption properties of polyacrylate/ montmorillonite composites. Mater Chem Phys 136:1109–1115CrossRefGoogle Scholar
  135. Natkański P, Kuśtrowski P, Białas A, Piwowarska Z, Michalik M (2013a) Thermal stability of montmorillonite polyacrylamide and polyacrylate nanocomposites and adsorption of Fe(III) ions. Appl Clay Sci 75–76:153–157CrossRefGoogle Scholar
  136. Natkański P, Kuśtrowski P, Białas A, Surman J (2013b) Effect of Fe3+ ions present in the structure of poly(acrylic acid)/montmorillonite composites on their thermal decomposition. J Therm Anal Calorim 113:335–342CrossRefGoogle Scholar
  137. Natkański P, Kuśtrowski P, Białas A, Wach A, Rokicińska A, Kozak M, Lityńska-Dobrzyńska L (2016) Hydrogel template-assisted synthesis of nanometric Fe2O3 supported on exfoliated clay. Microporous Mesoporous Mater 221:212–219CrossRefGoogle Scholar
  138. Ni B, Liu M, Lü S, Xie L, Wang Y (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175PubMedCrossRefPubMedCentralGoogle Scholar
  139. Nie X, Adalati A, Du J, Liu H, Xu S, Wang J (2014) Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers. Appl Clay Sci 97–98:132–137CrossRefGoogle Scholar
  140. Nishida T, Obayashi A, Haraguchi K, Shibayama M (2012) Stress relaxation and hysteresis of nanocomposite gel investigated by SAXS and SANS measurement. Polymer 53:4533–4538CrossRefGoogle Scholar
  141. Nistor MT, Vasile C, Chiriac AP, Tarţǎu L (2013) Biocompatibility, biodegradability, and drug carrier ability of hybrid collagen-based hydrogel nanocomposites. J Bioact Compat Polym 28:540–556CrossRefGoogle Scholar
  142. Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New YorkGoogle Scholar
  143. Oh ST, Kim WR, Kim SH, Chung YC, Park JS (2011) The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fiber Polym 12:159–165CrossRefGoogle Scholar
  144. Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476CrossRefGoogle Scholar
  145. Okay O, Oppermann W (2007) Polyacrylamide-clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40:3378–3387CrossRefGoogle Scholar
  146. Oliveira MJA, Amato VS, Lugão AB, Parra DF (2012) Hybrid hydrogels produced by ionizing radiation technique. Radiat Phys Chem 81:1471–1474CrossRefGoogle Scholar
  147. Oliveira MJA, Estefânia OS, Braz LMA, Regina M, Amato VS, Lugão AB, Parra DF (2014) Influence of chitosan/clay in drug delivery of glucantime from PVP membranes. Radiat Phys Chem 94:194–198CrossRefGoogle Scholar
  148. Panagopoulou A, Vázquez Molina J, Kyritsis A, Monleón Pradas M, Vallés Lluch A, Gallego Ferrer G, Pissis P (2013) Glass transition and water dynamics in hyaluronic acid. Food Biophys 8:192–202CrossRefGoogle Scholar
  149. Paranhos CM, Soares BG, Machado JC, Windmöller D, Pessan LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890CrossRefGoogle Scholar
  150. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  151. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  152. Pereira EI, Da Cruz CCT, Solomon A, Le A, Cavigelli MA, Ribeiro C (2015) Novel slow-release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function. Ind Eng Chem Res 54:3717–3725CrossRefGoogle Scholar
  153. Pongjanyakul T, Puttipipatkhachorn S (2007) Alginate-magnesium aluminum silicate films: effect of plasticizers on film properties, drug permeation and drug release from coated tablets. Int J Pharm 333:34–44PubMedCrossRefPubMedCentralGoogle Scholar
  154. Pongjanyakul T, Rongthong T (2010) Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug-clay intercalated complexes as microreservoirs. Carbohydr Polym 81:409–419CrossRefGoogle Scholar
  155. Pongjanyakul T, Suksri H (2009) Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids Surf B 74:103–113CrossRefGoogle Scholar
  156. Potoczek M, Zawadzak E (2004) Initiator effect on the gelcasting properties of alumina in a system involving low-toxic monomers. Ceram Int 30:793–799CrossRefGoogle Scholar
  157. Rieder M, Cavazzini G, D’yakonov YS, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Canad Miner 36:1366–1374Google Scholar
  158. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Control Release 5:37–42CrossRefGoogle Scholar
  159. Rodrigues LADS, Figueiras A, Veiga F, de Freitas RM, Nunes LCC, da Silva Filho EC, da Silva Leite CM (2013) The systems containing clays and clay minerals from modified drug release: a review. Colloids Surf B 103:642–651CrossRefGoogle Scholar
  160. Rokicińska A, Natkański P, Dudek B, Drozdek M, Lityńska-Dobrzyńska L, Kuśtrowski P (2016) Co3O4-pillared montmorillonite catalysts synthesized by hydrogel-assisted route for total oxidation of toluene. Appl Catal B Environ 195:59–68CrossRefGoogle Scholar
  161. Rutkevičius M, Munusami SK, Watson Z , Field AD, Salt M, Stoyanov SD, Petkov J, Mehl GH, Paunov VN (2012) Fabrication of novel lightweight composites by a hydrogel templating technique. Mater Res Bulletin 47 (4):980–986Google Scholar
  162. Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, Sanchez R, Viseras C, Caramella C (2012) In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci 55:131–137CrossRefGoogle Scholar
  163. Salimi F, Sefti MV, Jarrahian K, Rafipoor M, Ghorashi SS (2014) Preparation and investigation of the physical and chemical properties of clay-based polyacrylamide/Cr (III) hydrogels as a water shut-off agent in oil reservoirs. Korean J Chem Eng 31:986–993CrossRefGoogle Scholar
  164. Santiago F, Mucientes AE, Osorio M, Poblete FJ (2006) Synthesis and swelling behaviour of poly(sodium acrylate)/sepiolite superabsorbent composites and nanocomposites. Polym Int 55:843–848CrossRefGoogle Scholar
  165. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRefGoogle Scholar
  166. Schulze DG (2005) Clay minerals, vol 1. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Academic Press, Boston, pp 246–254Google Scholar
  167. Shen M, Sun Y, Xu J, Guo X, Prud’homme RK (2014) Rheology and adhesion of poly(acrylic acid)/Laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30:1636–1642PubMedCrossRefPubMedCentralGoogle Scholar
  168. Shen J, Li N, Ye M (2015) Preparation and characterization of dual-sensitive double network hydrogels with clay as a physical crosslinker. Appl Clay Sci 103:40–45CrossRefGoogle Scholar
  169. Shi Y, Xue Z, Wang X, Wang L, Wang A (2013) Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly(acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym Bull 70:1163–1179CrossRefGoogle Scholar
  170. Shirsath SR, Hage AP, Zhou M, Sonawane SH, Ashokkumar M (2011) Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination 281:429–437CrossRefGoogle Scholar
  171. Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason Sonochem 20:914–923PubMedCrossRefPubMedCentralGoogle Scholar
  172. Shirsath SR, Patil AP, Bhanvase BA, Sonawane SH (2015) Ultrasonically prepared poly(acrylamide)-kaolin composite hydrogel for removal of crystal violet dye from wastewater. J Environ Chem Eng 3:1152–1162CrossRefGoogle Scholar
  173. Shivashankar M, Mandal BK (2012) A review on interpenetrating polymer network. Int J Pharm Pharm Sci 4:1–7Google Scholar
  174. Silva SS, Luna SM, Gomes ME, Benesch J, Pashkuleva I, Mano JF, Reis RL (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8:568–576PubMedCrossRefPubMedCentralGoogle Scholar
  175. Silvestre J, Silvestre N, de Brito J (2016) Polymer nanocomposites for structural applications: recent trends and new perspectives. Mech Adv Mater Struct 23:1263–1277CrossRefGoogle Scholar
  176. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposite: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  177. Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2011a) Dehydration kinetics of polyvinyl alcohol nanocomposite hydrogels containing Na-montmorillonite nanoclay. Sci Iran 18:780–784Google Scholar
  178. Sirousazar M, Kokabi M, Zuhair MH (2011b) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22:1023–1033PubMedCrossRefPubMedCentralGoogle Scholar
  179. Song L, Zhu M, Chen Y, Haraguchi K (2008) Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks. Macromol Chem Phys 209:1564–1575CrossRefGoogle Scholar
  180. Song F, Zhang LM, Shi JF, Li NN (2010) Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles. Colloids Surf B 81:486–491CrossRefGoogle Scholar
  181. Song G, Zhang L, He C, Fang D-C, Whitten PG, Wang H (2013) Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding. Macromolecules 46:7423–7435CrossRefGoogle Scholar
  182. Stempfle B, Große A, Ferse B, Arndt KF, Wöll D (2014) Anomalous diffusion in thermoresponsive polymer-clay composite hydrogels probed by wide-field fluorescence microscopy. Langmuir 30:14056–14061PubMedCrossRefPubMedCentralGoogle Scholar
  183. Su X, Zhang G, Xu K, Wang J, Song C, Wang P (2008) The effect of MMT/modified MMT on the structure and performance of the superabsorbent compos. Polym Bull 60:69–78CrossRefGoogle Scholar
  184. Swain SK, Shur B, Patra SK (2013) Poly(acrylamide-co-vinyl alcohol)-superabsorbent materials reinforced by modified clay. Polym Compos 34:1794–1800CrossRefGoogle Scholar
  185. Takeno H, Nakamura W (2013) Structural and mechanical properties of composite hydrogels composed of clay and a polyelectrolyte prepared by mixing. Colloid Polym Sci 291:1393–1399CrossRefGoogle Scholar
  186. Tamesue S, Ohtani M, Yamada K, Ishida Y, Spruell JM, Lynd NA, Hawker CJ, Aida T (2013) Linear versus dendritic molecular binders for hydrogel network formation with clay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants. J Am Chem Soc 135:15650–15655PubMedCrossRefPubMedCentralGoogle Scholar
  187. Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanism. Sep Purif Technol 150:229–242CrossRefGoogle Scholar
  188. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  189. Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  190. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefGoogle Scholar
  191. Thatiparti TR, Tammishetti S, Nivasu MV (2010) UV curable polyester polyol acrylate)/bentonite nanocomposites: synthesis, characterization, and drug release. J Biomed Mater Res B 92:111–119CrossRefGoogle Scholar
  192. Tu J, Cao Z, Jing Y, Fan C, Zhang C, Liao L, Liu L (2013) Halloysite nanotube nanocomposite hydrogels with tunable mechanical properties and drug release behavior. Compos Sci Technol 85:126–130CrossRefGoogle Scholar
  193. Urbano B, Rivas BL (2011) Poly(sodium 4-styrene sulfonate) and poly(2-acrylamidoglycolic acid) nanocomposite hydrogels: montmorillonite effect on water absorption, thermal, and rheological properties. Polym Bull 67:1823–1836CrossRefGoogle Scholar
  194. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14:161–198CrossRefGoogle Scholar
  195. Vanamudan A, Bandwala K, Pamidimukkala P (2014) Adsorption property of Rhodamine 6G onto chitosan-g-(N-vinyl pyrrolidone)/montmorillonite composite. Int J Biol Macromol 69:506–513PubMedCrossRefPubMedCentralGoogle Scholar
  196. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93CrossRefGoogle Scholar
  197. Wan T, Cheng W, Zhou Z, Xu M, Zou C, Li R (2015a) Influence of crosslinker amount on swelling and gel properties of hectorite/poly(acrylamide/itaconic acid) nanocomposite hydrogels. Korean J Chem Eng 32:1434–1439CrossRefGoogle Scholar
  198. Wan T, Zou C, Wang L, Wu D, Cheng W, Li R, Xu M (2015b) Hectorite effects on swelling and gel properties of hectorite/poly(AM/IA) nanocomposite hydrogels. Polym Bull 72:1113–1125CrossRefGoogle Scholar
  199. Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456CrossRefGoogle Scholar
  200. Wang Y, Chen D (2012) Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J Colloid Interface Sci 372:245–251PubMedCrossRefGoogle Scholar
  201. Wang YH, Siu WK (2006) Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations. Can Geotech J 43:587–600CrossRefGoogle Scholar
  202. Wang L, Zhang JP, Wang AQ (2008a) Removal of methylene blue from aqueous solution using chitosan-g-poly (acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A 322:47–53CrossRefGoogle Scholar
  203. Wang X, Du Y, Luo J (2008b) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19:1–7Google Scholar
  204. Wang Q, Zhang J, Wang A (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737CrossRefGoogle Scholar
  205. Wang T, Liu D, Lian C, Zheng S, Liu X, Wang C, Tong Z (2011a) Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay. React Funct Polym 71:447–454CrossRefGoogle Scholar
  206. Wang Y, Ma J, Yang S, Xu J (2011b) PDMAA/clay nanocomposite hydrogels based on two different initiations. Colloids Surf A 390:20–24CrossRefGoogle Scholar
  207. Wang T, Sun W, Liu X, Wang C, Fu S, Tong Z (2013a) Promoted cell proliferation and mechanical relaxation of nanocomposite hydrogels prepared in cell culture medium. React Funct Polym 73:683–689CrossRefGoogle Scholar
  208. Wang Y, Wang W, Wang A (2013b) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139CrossRefGoogle Scholar
  209. Weian Z, Wei L, Yue EF (2005) Synthesis and properties of a novel hydrogel nanocomposites. Mater Lett 59:2876–2880CrossRefGoogle Scholar
  210. Xia M, Cheng Y, Meng Z, Jiang X, Chen Z, Theato P, Zhu M (2015) A novel nanocomposite hydrogel with precisely tunable UCST and LCST. Macromol Rapid Commun 36:477–482PubMedCrossRefGoogle Scholar
  211. Xiang Y, Peng Z, Chen D (2006) A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties. Eur Polym J 42:2125–2132CrossRefGoogle Scholar
  212. Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer 49:5064–5071CrossRefGoogle Scholar
  213. Xu K, Wang J, Xiang S, Chen Q, Yue Y, Su X, Song C, Wang P (2007a) Polyampholytes superabsorbent nanocomposites with excellent gel strength. Compos Sci Technol 67:3480–3486CrossRefGoogle Scholar
  214. Xu K, Wang J, Xiang S, Chen Q, Zhang W, Wang P (2007b) Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite. Appl Clay Sci 38:139–145CrossRefGoogle Scholar
  215. Yavari-Gohar MR, Kabiri K, Zohuriaan-Mehr MJ, Hashemi SA (2010) Thermo-hydrolytic stability of swelling capacity of superabsorbing composite hydrogels based on AMPS and acrylamide. J Polym Res 17:151–159CrossRefGoogle Scholar
  216. Yi JZ, Zhang LM (2007) Studies of sodium humate/polyacrylamide/clay hybrid hydrogels. I. Swelling and rheological properties of hydrogels. Eur Polym J 43:3215–3221CrossRefGoogle Scholar
  217. Yi JZ, Zhang LM (2008) Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresour Technol 99:2182–2186PubMedCrossRefGoogle Scholar
  218. Yuan Q, Shah J, Hein S, Misra RDK (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6:1140–1148PubMedCrossRefGoogle Scholar
  219. Zhang FQ, Guo ZJ, Gao H, Li YC, Ren L, Shi L, Wang LX (2005a) Synthesis and properties of sepiolite/poly(acrylic acid-co-acrylamide) nanocomposites. Polym Bull 55:419–428CrossRefGoogle Scholar
  220. Zhang J, Chen H, Wang A (2005b) Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Eur Polym J 41:2434–2442CrossRefGoogle Scholar
  221. Zhang LM, Zhou YJ, Wang Y (2006) Novel hydrogel composite for the removal of water-soluble cationic dye. J Chem Technol Biotechnol 81:799–804CrossRefGoogle Scholar
  222. Zhang Q, Li X, Zhao Y, Chen L (2009) Preparation and performance of nanocomposite hydrogels based on different clay. Appl Clay Sci 46:346–350CrossRefGoogle Scholar
  223. Zhang Q, Chen L, Dong Y, Lu S (2013) Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV. Mater Sci Eng C 33:1616–1622CrossRefGoogle Scholar
  224. Zhang Q, Zhang T, He T, Chen L (2014a) Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl Clay Sci 90:1–5Google Scholar
  225. Zhang S, Guan Y, Fu GQ, Chen BY, Peng F, Yao CL, Sun RC (2014b) Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite. J Nanomater. Article ID 675035Google Scholar
  226. Zhang Y, Gu Q, Yin J, Wang Z, He P (2014c) Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites. Adv Polym Technol 33:21400Google Scholar
  227. Zhao M, Xu Y, Zhang C, Rong H, Zeng G (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100:6509–6518PubMedCrossRefGoogle Scholar
  228. Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171:671–677PubMedCrossRefGoogle Scholar
  229. Zheng Y, Li P, Zhang J, Wang A (2007) Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites. Eur Polym J 43:1691–1698CrossRefGoogle Scholar
  230. Zheng Y, Xie Y, Wang A (2012) Rapid and wide pH-independent ammonium-nitrogen removal using a composite hydrogel with three-dimensional networks. Chem Eng J 179:90–98CrossRefGoogle Scholar
  231. Zheng X, Wu D, Su T, Bao S, Liao C, Wang Q (2014) Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption. ACS Appl Mater Inter 6:19840–19849CrossRefGoogle Scholar
  232. Zhu M, Liu Y, Sun B, Zhang W, Liu X, Yu H, Zhang Y, Kuckling D, Adler HJP (2006) A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation. Macromol Rapid Commun 27:1023–1028CrossRefGoogle Scholar
  233. Zhu M, Xiong L, Wang T, Liu X, Wang C, Tong Z (2010) High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer. React Funct Polym 70:267–271CrossRefGoogle Scholar
  234. Zhu L, Liu P, Wang A (2014) High clay-content attapulgite/poly(acrylic acid) nanocomposite hydrogel via surface-initiated redox radical polymerization with modified attapulgite nanorods as initiator and cross-linker. Ind Eng Chem Res 53:2067–2071CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Piotr Kuśtrowski
    • 1
    Email author
  • Piotr Natkański
    • 1
  • Anna Rokicińska
    • 1
  • Ewa Witek
    • 1
  1. 1.Department of Chemical Technology, Faculty of ChemistryJagiellonian UniversityKrakowPoland

Personalised recommendations