Advertisement

Polymer Gels pp 141-184 | Cite as

Polymeric Hydrogel: A Flexible Carrier System for Drug Delivery

  • Surbhi DubeyEmail author
  • Rajeev Sharma
  • Nishi Mody
  • S. P. Vyas
Chapter
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)

Abstract

Hydrogels are promising and innovative drug delivery system that plays a vital role by addressing the problems associated with old and modern therapeutics such as nonspecific effects and poor stability. Hydrogels are extensively being explored as drug delivery systems due to ease of their modifications and ability to efficiently encapsulate therapeutics of diverse nature through simple mechanisms. These are essentially based on hydrophilic polymer networks, with a tendency to imbibe water when placed in an aqueous environment. The affinity to aqueous solutions, superior colloidal properties, inertness in the biological system and the internal aqueous environment, make them suitable for incorporation of bulky drugs for delivery of chemotherapeutics and proteins. Present chapter presents introduction to hydrogel based drug delivery including types of hydrogel, their composition, types of polymerization techniques used for formulation of hydrogel and characterization of hydrogel. Furthermore, stimuli responsive hydrogels and their biomedical applications will be summarized.

Keywords

Polymeric gel Hydrogel Drug delivery Stimuli-sensitive 

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedCrossRefGoogle Scholar
  2. Alsarra IA, Hamed AY, Mahrous GM, El Maghraby GM, Al-Robayan AA, Alanazi FK (2009) Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm 35(3):352–362 PubMedCrossRefGoogle Scholar
  3. Amin MCIM (2012) Synthesis and characterization of thermo and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473CrossRefGoogle Scholar
  4. Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Rel 57:107–113CrossRefGoogle Scholar
  5. Anumolu SNS, DeSantis AS, Menjoge AR, Hahn RA, Beloni JA, Gordon MK, Sinko PJ (2010) Doxycycline loaded poly(ethylene glycol) hydrogels for healing vesicant-induced ocular wounds. Biomaterials 31(5):964–974PubMedCrossRefGoogle Scholar
  6. Bai XY, Yan Y, Wang L, Zhao LG, Wang K (2016) Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv 23(6):1926–1932PubMedGoogle Scholar
  7. Bajpai AK, Shrivastava J (2005) In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polym Int 54(11):1524–1536CrossRefGoogle Scholar
  8. Bos GW, Jacobs JJL, Koten JW, Van Tomme S, Veldhuis T, van Nostrum CF (2004) In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 21(4):561–567PubMedCrossRefGoogle Scholar
  9. Brazel CS, Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide–co-methacrylic acid) hydrogels. J Control Rel 39:57–64CrossRefGoogle Scholar
  10. Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31:197–221PubMedCrossRefGoogle Scholar
  11. Cai S, Suo Z (2011) Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J Mech Phys Solid 59:2259–2278CrossRefGoogle Scholar
  12. Caliceti P, Salmaso S, Lante A, Yoshida M, Katakai R, Martellini F, Mei LHI, Carenza M (2001) Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerization. J Control Release 75:173–181PubMedCrossRefGoogle Scholar
  13. Calixto G, Yoshii AC, Rocha e Silva H, Stringhetti Ferreira Cury B, Chorilli M (2015) Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization. Pharm Dev Technol 20(4):490–496PubMedCrossRefGoogle Scholar
  14. Chan Y-P, Meyrueix R, Rivail C, Chatellier J (2011) Medusa: an innovative formulation. Approach to improve pharmacoinetic & safety profiles of biotherapeutics, www.ondrugdelivery, pp 4–6
  15. Chauhan S, Harikumar SL, Kanupriya (2012) Hydrogels: a smart drug delivery system. IJRPC 2(3):603–614Google Scholar
  16. Chen P (2005) Physicochemical and engineering aspects. Colloids Surf A 257–258:1–554Google Scholar
  17. Cheng X, Jinc Y, Suna T, Qia R, Lic H (2016a) An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery. Colloid Surf B 141:44–52CrossRefGoogle Scholar
  18. Cheng Y-H, Tung-Hu Tsa, Jhan Y-Y, Chiu AW-H, Tsai K-L, Chien C-S, Chiou S-H, Liu CJL (2016b) Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohyd Polym 144:390–399CrossRefGoogle Scholar
  19. Chun SW, Kim JD (1996) A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetamidophen. J Control Release 38:39–47CrossRefGoogle Scholar
  20. Das A, Wadhwa S, Srivastava AK (2006) Cross-linked guargum hydrogels discs for colon-specific delivery of ibuprofen, formulation and in-vitro evaluation. Drug Del 13:139–142CrossRefGoogle Scholar
  21. Das D, Das R, Ghosh P, Dhara S, Panda AB, Pal S (2013) Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Adv 3:25340–25350CrossRefGoogle Scholar
  22. De Groot CJ, Van Luyn MJA, Van Dijk-Woltheris WNE, Cadee JA, Plantinga JA, Otter WD, Hennink WE (2001) In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22:1197–1203PubMedCrossRefGoogle Scholar
  23. de Nooy AEJ, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259–267PubMedCrossRefGoogle Scholar
  24. Deo N, Ruetsch S, Ramaprasad K, Kamath Y (2010) Stable environmentally sensitive cationic hydrogels for controlled delivery applications. J Cosmet Sci 61:421PubMedGoogle Scholar
  25. Dinarvand RD, Emanuele A (1995) Use of thermoresponsive hydrogels for on–off release of molecules. J Control Release 36:221–227CrossRefGoogle Scholar
  26. Dolman MEM, Harmsen S, Storm G, Hennink WE, Kok RJ (2010) Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv Drug Deliv Rev 62:1344–1357PubMedCrossRefGoogle Scholar
  27. Eagland D, Crowther NJ, Butler CJ (1994) Complexation between polyoxyethylene and polymethacrylic acid—the importance of the molar mass of polyoxyethylene. Eur Polym J 30:767–773CrossRefGoogle Scholar
  28. Enas M, Awad AM, Ahmed MA (2008) Development of a multicomponent fertilizing hydrogel with relevant techno-economicindicators. Am-Euras J Agric Environ Sci 3(5):764–770Google Scholar
  29. Fei L, Jinlin H, Mingzu Z, Kam CT, Peihong N (2015) Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 5:54658–54666CrossRefGoogle Scholar
  30. Fu C, Lin X, Wang J, Zheng X, Li X, Lin Z, Lin G (2016) Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. J Mater Sci Mater Med 27(4):735682–735689CrossRefGoogle Scholar
  31. Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishimari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21:617–629CrossRefGoogle Scholar
  32. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182CrossRefGoogle Scholar
  33. Ganji F, Farahan EV (2009) Hydrogels in controlled drug delivery systems Iranian. Polym J 18(1):63–88Google Scholar
  34. Gaoa Y, Sunb Y, Renc F, Shen Gao (2010) PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm 30(10):1131–1138CrossRefGoogle Scholar
  35. Goosen MFA, O’Shea GM, Gharapetian HM, Chou S, Sun AM (1985) Optimization of microencapsulation parameters: semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 27:146–150PubMedCrossRefGoogle Scholar
  36. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11):2370–2379PubMedCrossRefGoogle Scholar
  37. Gutowska A, Bark JS, Kwon IC, Bae YH, Kim SW (1997) Squeezing hydrogels for controlled oral drug delivery. J Control Release 48:141–148CrossRefGoogle Scholar
  38. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479CrossRefGoogle Scholar
  39. Hennink WE, De Jong SJ, Bos GW, Veldhuis TFJ, van Nostrum CF (2004) Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 277(1–2):99–104PubMedCrossRefGoogle Scholar
  40. Hiemstra C, Zhong ZY, Li LB, Dijkstra PJ, Jan FJ (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA) and PEG-(PDLA) star block copolymers. Biomacromolecules 7(10):2790–2795PubMedCrossRefGoogle Scholar
  41. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007CrossRefGoogle Scholar
  42. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12CrossRefGoogle Scholar
  43. Hunkeler D (1992) Synthesis and characterization of high molecular weight water-soluble polymers. Polym Int 27:23–33CrossRefGoogle Scholar
  44. Ichikawa H, Fukumori Y (2000) Novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63:107–119PubMedCrossRefGoogle Scholar
  45. Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S (2007) Synthesis of porous poly (N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842–850CrossRefGoogle Scholar
  46. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267PubMedCrossRefGoogle Scholar
  47. Jeong B, Choi YK, Bae YH, Zentner G, Kim SW (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62:109–114PubMedCrossRefGoogle Scholar
  48. Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 63:155–163PubMedCrossRefGoogle Scholar
  49. Jhan MS, Andrade JD (1973) Water and hydrogels. J Biomed Mater Res 7(6):509–522CrossRefGoogle Scholar
  50. Katono H, Maruyama A, Sanui K, Okano T, Sakurai Y (1991) Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide–co-butyl methacrylate) and poly(acrylic acid). J Control Release 16:215–227CrossRefGoogle Scholar
  51. Kesavan K, Kant S, Pandit JK (2015) Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel. Ocul Immunol Inflamm 19:1–4CrossRefGoogle Scholar
  52. Khare AR, Peppas NA (1993) Release behavior of bioactive agents from pH-sensitive hydrogels. J Biomater Sci Polym 4:275–289CrossRefGoogle Scholar
  53. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymers gels. Biomaterials 16:559–567PubMedCrossRefGoogle Scholar
  54. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications—a review. Eur J Pharm Biopharm 68(1):34–45PubMedCrossRefGoogle Scholar
  55. Kubinova S, Horak D, Kozubenko N, Vanecek V, Proks V, Price J (2010) The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials 31:5966–5975PubMedCrossRefGoogle Scholar
  56. Kuijpers AJ, van Wachum PB, van Luyn MJA, Engbers GHM, Krijsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vivo and in vitro release of lysozyme from crosslinked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336PubMedCrossRefGoogle Scholar
  57. Leda K (2015) Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharmac Biopharma 97(B):338–349Google Scholar
  58. Lim DW, Park TG (2000) Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: characterization and use as protein delivery microparticulate carriers. J Appl Polym Sci 75:1615–1623CrossRefGoogle Scholar
  59. Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromol 8(5):1463–1470CrossRefGoogle Scholar
  60. Limón D, Amirthalingam E, Rodrigues M, Halbaut L, Andrade B, Garduño-Ramírez ML, Amabilino DB, Pérez-García L, Calpena AC (2015) Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. Eur J Pharm Biopharm 96:421–436PubMedCrossRefGoogle Scholar
  61. Liu JH, Lin SQ, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298(1):117–125PubMedCrossRefGoogle Scholar
  62. Mansur HS, Orefice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45:7193–7202CrossRefGoogle Scholar
  63. Mehvar R (2000) Dextran for the targeted and sustained delivery of therapeutic and imaging agents. J Controlled Release 69:1–25CrossRefGoogle Scholar
  64. Minhas M, Ahmad M, Ali L, Sohail M (2013) Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. DARU J Pharm Sci 21:44CrossRefGoogle Scholar
  65. Misra GP, Singh RS, Aleman TS, Jacobson SG, Gardner TW, Lowe TL (2009) Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 30(33):6541–6547PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mocanu G, Mihaï D, Dulong V, Picton L, Le Cerf D (2012) New anionic crosslinked multi-responsive pullulan hydrogels. Carbohyd Polym 87:1440–1446CrossRefGoogle Scholar
  67. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22:342–356CrossRefGoogle Scholar
  68. Okuyama Y, Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J Biomater Sci Polym 4:545–556CrossRefGoogle Scholar
  69. Owens DE, Jian Y, Fang JE, Slaughter BV, Chen Y-H, Peppas NA (2007) Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40(20):7306–7310CrossRefGoogle Scholar
  70. Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan–poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593PubMedCrossRefGoogle Scholar
  71. Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol I. CRC Press, Boca RatonGoogle Scholar
  72. Percec V, Bera TK, Butera RJ (2002) A new strategy for the preparation of supramolecular neutral hydrogels. Biomacromolecules 23:272–279CrossRefGoogle Scholar
  73. Qiu Y, Park K (2012) Poly (ethylene oxide) (PEO) and poly(propylene oxide) (PPO) Pluronics® (or Poloxamers®) and Tetronics® environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRefGoogle Scholar
  74. Rowley J, Madlambayan G, Faulkner J, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53PubMedCrossRefGoogle Scholar
  75. Ruixin L, Chang S, Wei W, Xiaoliang W, Hui L, Danke X, Wenying Z (2015) Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system. J Pharm Sci 104(7):2266–2275CrossRefGoogle Scholar
  76. Saboktakin RM, Tabatabaei RM (2015) Supramolecular hydrogels as drug delivery systems. Int J Biol Macromol 75:426–436PubMedCrossRefGoogle Scholar
  77. Sahu NK, Gils PS, Ray D, Sahoo PK (2012) Hydrogels: Rev Adv Polym Sci Tech: Int J 2(4):43–50Google Scholar
  78. Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beamirradiation. React Funct Polym 61:397–404CrossRefGoogle Scholar
  79. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  80. Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel of chitosan. Eur J pharmBiopharm 68:19–25CrossRefGoogle Scholar
  81. Shin B-K, Baek EJ, Choi SG, Davaaa E, Nhoc Y-C, Limc Y-M, Parkc J-S, Huh KM, Park J-S (2013) Preparation and irradiation of Pluronic F127-based thermoreversible and mucoadhesive hydrogel for local delivery of naproxen. Drug Dev Ind Pharm 39(12):1874–1880PubMedCrossRefGoogle Scholar
  82. Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1998) pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Control Release 8:179–182CrossRefGoogle Scholar
  83. Smetana K (1993) Cell biology of hydrogels. Biomaterials 14:1046–1050PubMedCrossRefGoogle Scholar
  84. Starodoubtsev SG, Khokhlov AR, Sokolov EL, Chu B (1995) Evidence for polyelectrolyte/ionomer behavior in the collapse of polycationic gels. Macromolecules 28:3930–3936CrossRefGoogle Scholar
  85. Stringer JL, Peppas NA (1996) Diffusion in radiationcrosslinked poly(ethyleneoxide) hydrogels. J Control Release 42:195–202CrossRefGoogle Scholar
  86. Suda K (2007) Superabsorbent polymers and superabsorbent polymer composites. Sci Asia 33(Suppl):139–143Google Scholar
  87. Szepes A, Makai Z, Blumer C, Mader K, Kasa P, Revesz PS (2008) Characterization and drug delivery behaviour of starch based hydrogels prepared via isostatic ultrahigh pressure. Carbohyd Polym 72:571–575CrossRefGoogle Scholar
  88. Takashima Y, Yuting Y, Otsubo M, Yamaguchi M, Harada A, Beilstein (2012) J Org Chem 8:1594–1600Google Scholar
  89. Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32(32):713–716Google Scholar
  90. Tan HL, Tan LS, Wong YY, Muniyandy S, Hashim K, Pushpamalar J (2016) Dual crosslinked carboxymethyl pulp/pectin hydrogel beads as potential carrier for colon-targeted drug delivery. J Appl Polym Sci 133(19)Google Scholar
  91. Telitel S, Dumur F, Faury T, Graff B, Tehfe M-A, Gigmes D, Fouassier J-P, Lalevée J (2013) New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators. Beilstein J Org Chem 9:877–890PubMedPubMedCentralCrossRefGoogle Scholar
  92. Tong Q, Zhang G (2005) Rapid synthesis of a superabsorbent from a saponified starch and acrylonitrile/AMPS graft copolymers. Carbohyd Polym 62:74–79CrossRefGoogle Scholar
  93. Toshikazu T, Hisahiko K, Kenji U, Toshiro M (1992) Structure and mechanical properties of poly (vinyl alcohol) gels swollen by various solvents. Polymer 33(11):2334–2339CrossRefGoogle Scholar
  94. Vakkalanka SK, Brazel CS, Peppas NA (1996) Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Polym 8:119–129CrossRefGoogle Scholar
  95. Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE (2005) Biomaterials 26(14):2129–2135PubMedCrossRefGoogle Scholar
  96. Vemula PK, Li J, George J, Am J (2006) Chem Soc 128:8932–8938CrossRefGoogle Scholar
  97. Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420PubMedCrossRefGoogle Scholar
  98. Watanabe N, Hosoya Y, Tamura A, Kosuge H (1993) Characteristics of water-absorbent polymer emulsions. Polym Int 30:525–531CrossRefGoogle Scholar
  99. Watanabe T, Ohtsuka A, Murase N, Barth P, Gersonde K (1996) NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magn Reson Med 35:697–705PubMedCrossRefGoogle Scholar
  100. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118CrossRefGoogle Scholar
  101. Wu J, Su ZG, Ma GH (2006) A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 315(1–2):1–11PubMedCrossRefGoogle Scholar
  102. Wu X, He C, Wu Y, Chen X (2016) Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials 75:148–162PubMedCrossRefGoogle Scholar
  103. Xu X, Weng Y, Xu L, Chen H (2013) Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Macromolecules 60:272–276CrossRefGoogle Scholar
  104. Yin Y, Yang Y, Xu H (2002) Swelling behavior of hydrogels for colon-site drug delivery. J Appl Polym Sci 83:2835–2842CrossRefGoogle Scholar
  105. Yin Y, Ji X, Dang H, Ying Y, Zhing H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acylic acid. Carbohyd Polym 71:682–689CrossRefGoogle Scholar
  106. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly-(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264Google Scholar
  107. Yoshida M, Asano M, Kumakura M, Kataki R, Mashimo T, Yuasa H, Yamanaka H (1991) Thermo-responsive hydrogels based on acryloyl-l-proline methyl ester and their use as long-acting testosterone delivery systems. Drug Des Deliv 7:159–174PubMedGoogle Scholar
  108. Yu H, Xiao C (2008) Synthesis and properties of novel hydrogels from oxidized Konjac glucomannan cross linked gelation for in-vitro drug delivery. Carbohyd Polym 72:479–489CrossRefGoogle Scholar
  109. Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomat 5(1):488–497CrossRefGoogle Scholar
  110. Zhang Z, He Z, Liang R, Ma Y, Huang W, Jiang R, Shi S, Chen H, Li X (2016) Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules 17(3):798–807PubMedCrossRefGoogle Scholar
  111. Zheng X, Li X, Lin Z, Lin G (2016) Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. J Mater Sci Mater Med 27(4):73PubMedCrossRefGoogle Scholar
  112. Zu Y, Zhang Y, Zhao X, Shan C, Zu S, Wang K, Li Y, Ge Y (2012) Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50(1):82–87Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Surbhi Dubey
    • 1
    Email author
  • Rajeev Sharma
    • 1
  • Nishi Mody
    • 1
  • S. P. Vyas
    • 1
  1. 1.Drug Delivery Research Laboratory, Department of Pharmaceutical SciencesDr. H.S. Gour University SagarSagarIndia

Personalised recommendations