Skip to main content

Polymeric Hydrogel: A Flexible Carrier System for Drug Delivery

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Hydrogels are promising and innovative drug delivery system that plays a vital role by addressing the problems associated with old and modern therapeutics such as nonspecific effects and poor stability. Hydrogels are extensively being explored as drug delivery systems due to ease of their modifications and ability to efficiently encapsulate therapeutics of diverse nature through simple mechanisms. These are essentially based on hydrophilic polymer networks, with a tendency to imbibe water when placed in an aqueous environment. The affinity to aqueous solutions, superior colloidal properties, inertness in the biological system and the internal aqueous environment, make them suitable for incorporation of bulky drugs for delivery of chemotherapeutics and proteins. Present chapter presents introduction to hydrogel based drug delivery including types of hydrogel, their composition, types of polymerization techniques used for formulation of hydrogel and characterization of hydrogel. Furthermore, stimuli responsive hydrogels and their biomedical applications will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  PubMed  CAS  Google Scholar 

  • Alsarra IA, Hamed AY, Mahrous GM, El Maghraby GM, Al-Robayan AA, Alanazi FK (2009) Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm 35(3):352–362

    Article  PubMed  CAS  Google Scholar 

  • Amin MCIM (2012) Synthesis and characterization of thermo and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  CAS  Google Scholar 

  • Anderson JM, Langone JJ (1999) Issues and perspectives on the biocompatibility and immunotoxicity evaluation of implanted controlled release systems. J Control Rel 57:107–113

    Article  CAS  Google Scholar 

  • Anumolu SNS, DeSantis AS, Menjoge AR, Hahn RA, Beloni JA, Gordon MK, Sinko PJ (2010) Doxycycline loaded poly(ethylene glycol) hydrogels for healing vesicant-induced ocular wounds. Biomaterials 31(5):964–974

    Article  PubMed  CAS  Google Scholar 

  • Bai XY, Yan Y, Wang L, Zhao LG, Wang K (2016) Novel pH-sensitive hydrogels for 5-aminosalicylic acid colon targeting delivery: in vivo study with ulcerative colitis targeting therapy in mice. Drug Deliv 23(6):1926–1932

    PubMed  CAS  Google Scholar 

  • Bajpai AK, Shrivastava J (2005) In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polym Int 54(11):1524–1536

    Article  CAS  Google Scholar 

  • Bos GW, Jacobs JJL, Koten JW, Van Tomme S, Veldhuis T, van Nostrum CF (2004) In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy. Eur J Pharm Sci 21(4):561–567

    Article  PubMed  CAS  Google Scholar 

  • Brazel CS, Peppas NA (1996) Pulsatile local delivery of thrombolytic and antithrombotic agents using poly(N-isopropylacrylamide–co-methacrylic acid) hydrogels. J Control Rel 39:57–64

    Article  CAS  Google Scholar 

  • Bromberg LE, Ron ES (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31:197–221

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Suo Z (2011) Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J Mech Phys Solid 59:2259–2278

    Article  CAS  Google Scholar 

  • Caliceti P, Salmaso S, Lante A, Yoshida M, Katakai R, Martellini F, Mei LHI, Carenza M (2001) Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerization. J Control Release 75:173–181

    Article  PubMed  CAS  Google Scholar 

  • Calixto G, Yoshii AC, Rocha e Silva H, Stringhetti Ferreira Cury B, Chorilli M (2015) Polyacrylic acid polymers hydrogels intended to topical drug delivery: preparation and characterization. Pharm Dev Technol 20(4):490–496

    Article  PubMed  CAS  Google Scholar 

  • Chan Y-P, Meyrueix R, Rivail C, Chatellier J (2011) Medusa: an innovative formulation. Approach to improve pharmacoinetic & safety profiles of biotherapeutics, www.ondrugdelivery, pp 4–6

  • Chauhan S, Harikumar SL, Kanupriya (2012) Hydrogels: a smart drug delivery system. IJRPC 2(3):603–614

    CAS  Google Scholar 

  • Chen P (2005) Physicochemical and engineering aspects. Colloids Surf A 257–258:1–554

    Google Scholar 

  • Cheng X, Jinc Y, Suna T, Qia R, Lic H (2016a) An injectable, dual pH and oxidation-responsive supramolecular hydrogel for controlled dual drug delivery. Colloid Surf B 141:44–52

    Article  CAS  Google Scholar 

  • Cheng Y-H, Tung-Hu Tsa, Jhan Y-Y, Chiu AW-H, Tsai K-L, Chien C-S, Chiou S-H, Liu CJL (2016b) Thermosensitive chitosan-based hydrogel as a topical ocular drug delivery system of latanoprost for glaucoma treatment. Carbohyd Polym 144:390–399

    Article  CAS  Google Scholar 

  • Chun SW, Kim JD (1996) A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetamidophen. J Control Release 38:39–47

    Article  CAS  Google Scholar 

  • Das A, Wadhwa S, Srivastava AK (2006) Cross-linked guargum hydrogels discs for colon-specific delivery of ibuprofen, formulation and in-vitro evaluation. Drug Del 13:139–142

    Article  CAS  Google Scholar 

  • Das D, Das R, Ghosh P, Dhara S, Panda AB, Pal S (2013) Dextrin cross linked with poly(HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Adv 3:25340–25350

    Article  CAS  Google Scholar 

  • De Groot CJ, Van Luyn MJA, Van Dijk-Woltheris WNE, Cadee JA, Plantinga JA, Otter WD, Hennink WE (2001) In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22:1197–1203

    Article  PubMed  Google Scholar 

  • de Nooy AEJ, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259–267

    Article  PubMed  CAS  Google Scholar 

  • Deo N, Ruetsch S, Ramaprasad K, Kamath Y (2010) Stable environmentally sensitive cationic hydrogels for controlled delivery applications. J Cosmet Sci 61:421

    PubMed  Google Scholar 

  • Dinarvand RD, Emanuele A (1995) Use of thermoresponsive hydrogels for on–off release of molecules. J Control Release 36:221–227

    Article  CAS  Google Scholar 

  • Dolman MEM, Harmsen S, Storm G, Hennink WE, Kok RJ (2010) Drug targeting to the kidney: advances in the active targeting of therapeutics to proximal tubular cells. Adv Drug Deliv Rev 62:1344–1357

    Article  PubMed  CAS  Google Scholar 

  • Eagland D, Crowther NJ, Butler CJ (1994) Complexation between polyoxyethylene and polymethacrylic acid—the importance of the molar mass of polyoxyethylene. Eur Polym J 30:767–773

    Article  CAS  Google Scholar 

  • Enas M, Awad AM, Ahmed MA (2008) Development of a multicomponent fertilizing hydrogel with relevant techno-economicindicators. Am-Euras J Agric Environ Sci 3(5):764–770

    Google Scholar 

  • Fei L, Jinlin H, Mingzu Z, Kam CT, Peihong N (2015) Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and α-cyclodextrin for pH-triggered drug delivery. RSC Adv 5:54658–54666

    Article  CAS  Google Scholar 

  • Fu C, Lin X, Wang J, Zheng X, Li X, Lin Z, Lin G (2016) Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. J Mater Sci Mater Med 27(4):735682–735689

    Article  CAS  Google Scholar 

  • Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishimari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21:617–629

    Article  CAS  Google Scholar 

  • Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Article  CAS  Google Scholar 

  • Ganji F, Farahan EV (2009) Hydrogels in controlled drug delivery systems Iranian. Polym J 18(1):63–88

    CAS  Google Scholar 

  • Gaoa Y, Sunb Y, Renc F, Shen Gao (2010) PLGA–PEG–PLGA hydrogel for ocular drug delivery of dexamethasone acetate. Drug Dev Ind Pharm 30(10):1131–1138

    Article  CAS  Google Scholar 

  • Goosen MFA, O’Shea GM, Gharapetian HM, Chou S, Sun AM (1985) Optimization of microencapsulation parameters: semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 27:146–150

    Article  PubMed  CAS  Google Scholar 

  • Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11):2370–2379

    Article  PubMed  CAS  Google Scholar 

  • Gutowska A, Bark JS, Kwon IC, Bae YH, Kim SW (1997) Squeezing hydrogels for controlled oral drug delivery. J Control Release 48:141–148

    Article  CAS  Google Scholar 

  • Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479

    Article  CAS  Google Scholar 

  • Hennink WE, De Jong SJ, Bos GW, Veldhuis TFJ, van Nostrum CF (2004) Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm 277(1–2):99–104

    Article  PubMed  CAS  Google Scholar 

  • Hiemstra C, Zhong ZY, Li LB, Dijkstra PJ, Jan FJ (2006) In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA) and PEG-(PDLA) star block copolymers. Biomacromolecules 7(10):2790–2795

    Article  PubMed  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  • Hunkeler D (1992) Synthesis and characterization of high molecular weight water-soluble polymers. Polym Int 27:23–33

    Article  CAS  Google Scholar 

  • Ichikawa H, Fukumori Y (2000) Novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63:107–119

    Article  PubMed  CAS  Google Scholar 

  • Iizawa T, Taketa H, Maruta M, Ishido T, Gotoh T, Sakohara S (2007) Synthesis of porous poly (N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842–850

    Article  CAS  Google Scholar 

  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73:255–267

    Article  PubMed  CAS  Google Scholar 

  • Jeong B, Choi YK, Bae YH, Zentner G, Kim SW (1999) New biodegradable polymers for injectable drug delivery systems. J Control Release 62:109–114

    Article  PubMed  CAS  Google Scholar 

  • Jeong B, Bae YH, Kim SW (2000) Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J Control Release 63:155–163

    Article  PubMed  CAS  Google Scholar 

  • Jhan MS, Andrade JD (1973) Water and hydrogels. J Biomed Mater Res 7(6):509–522

    Article  Google Scholar 

  • Katono H, Maruyama A, Sanui K, Okano T, Sakurai Y (1991) Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide–co-butyl methacrylate) and poly(acrylic acid). J Control Release 16:215–227

    Article  CAS  Google Scholar 

  • Kesavan K, Kant S, Pandit JK (2015) Therapeutic effectiveness in the treatment of experimental bacterial keratitis with ion-activated mucoadhesive hydrogel. Ocul Immunol Inflamm 19:1–4

    Article  CAS  Google Scholar 

  • Khare AR, Peppas NA (1993) Release behavior of bioactive agents from pH-sensitive hydrogels. J Biomater Sci Polym 4:275–289

    Article  CAS  Google Scholar 

  • Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymers gels. Biomaterials 16:559–567

    Article  PubMed  CAS  Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications—a review. Eur J Pharm Biopharm 68(1):34–45

    Article  PubMed  CAS  Google Scholar 

  • Kubinova S, Horak D, Kozubenko N, Vanecek V, Proks V, Price J (2010) The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors. Biomaterials 31:5966–5975

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers AJ, van Wachum PB, van Luyn MJA, Engbers GHM, Krijsveld J, Zaat SAJ, Dankert J, Feijen J (2000) In vivo and in vitro release of lysozyme from crosslinked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336

    Article  PubMed  CAS  Google Scholar 

  • Leda K (2015) Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharmac Biopharma 97(B):338–349

    Google Scholar 

  • Lim DW, Park TG (2000) Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: characterization and use as protein delivery microparticulate carriers. J Appl Polym Sci 75:1615–1623

    Article  CAS  Google Scholar 

  • Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromol 8(5):1463–1470

    Article  CAS  Google Scholar 

  • Limón D, Amirthalingam E, Rodrigues M, Halbaut L, Andrade B, Garduño-Ramírez ML, Amabilino DB, Pérez-García L, Calpena AC (2015) Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. Eur J Pharm Biopharm 96:421–436

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Lin SQ, Li L, Liu E (2005) Release of theophylline from polymer blend hydrogels. Int J Pharm 298(1):117–125

    Article  PubMed  CAS  Google Scholar 

  • Mansur HS, Orefice RL, Mansur AAP (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  • Mehvar R (2000) Dextran for the targeted and sustained delivery of therapeutic and imaging agents. J Controlled Release 69:1–25

    Article  CAS  Google Scholar 

  • Minhas M, Ahmad M, Ali L, Sohail M (2013) Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. DARU J Pharm Sci 21:44

    Article  CAS  Google Scholar 

  • Misra GP, Singh RS, Aleman TS, Jacobson SG, Gardner TW, Lowe TL (2009) Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 30(33):6541–6547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mocanu G, Mihaï D, Dulong V, Picton L, Le Cerf D (2012) New anionic crosslinked multi-responsive pullulan hydrogels. Carbohyd Polym 87:1440–1446

    Article  CAS  Google Scholar 

  • Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22:342–356

    Article  CAS  Google Scholar 

  • Okuyama Y, Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J Biomater Sci Polym 4:545–556

    Article  CAS  Google Scholar 

  • Owens DE, Jian Y, Fang JE, Slaughter BV, Chen Y-H, Peppas NA (2007) Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 40(20):7306–7310

    Article  CAS  Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan–poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593

    Article  PubMed  CAS  Google Scholar 

  • Peppas NA, Mikos AG (1986) Preparation methods and structure of hydrogels. In: Peppas NA (ed) Hydrogels in medicine and pharmacy, vol I. CRC Press, Boca Raton

    Google Scholar 

  • Percec V, Bera TK, Butera RJ (2002) A new strategy for the preparation of supramolecular neutral hydrogels. Biomacromolecules 23:272–279

    Article  CAS  Google Scholar 

  • Qiu Y, Park K (2012) Poly (ethylene oxide) (PEO) and poly(propylene oxide) (PPO) Pluronics® (or Poloxamers®) and Tetronics® environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  • Rowley J, Madlambayan G, Faulkner J, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  PubMed  CAS  Google Scholar 

  • Ruixin L, Chang S, Wei W, Xiaoliang W, Hui L, Danke X, Wenying Z (2015) Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system. J Pharm Sci 104(7):2266–2275

    Article  CAS  Google Scholar 

  • Saboktakin RM, Tabatabaei RM (2015) Supramolecular hydrogels as drug delivery systems. Int J Biol Macromol 75:426–436

    Article  PubMed  CAS  Google Scholar 

  • Sahu NK, Gils PS, Ray D, Sahoo PK (2012) Hydrogels: Rev Adv Polym Sci Tech: Int J 2(4):43–50

    Google Scholar 

  • Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beamirradiation. React Funct Polym 61:397–404

    Article  CAS  Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  • Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel of chitosan. Eur J pharmBiopharm 68:19–25

    Article  CAS  Google Scholar 

  • Shin B-K, Baek EJ, Choi SG, Davaaa E, Nhoc Y-C, Limc Y-M, Parkc J-S, Huh KM, Park J-S (2013) Preparation and irradiation of Pluronic F127-based thermoreversible and mucoadhesive hydrogel for local delivery of naproxen. Drug Dev Ind Pharm 39(12):1874–1880

    Article  PubMed  CAS  Google Scholar 

  • Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1998) pH-controlled release from hydrophobic/polyelectrolyte copolymer hydrogels. J Control Release 8:179–182

    Article  Google Scholar 

  • Smetana K (1993) Cell biology of hydrogels. Biomaterials 14:1046–1050

    Article  PubMed  CAS  Google Scholar 

  • Starodoubtsev SG, Khokhlov AR, Sokolov EL, Chu B (1995) Evidence for polyelectrolyte/ionomer behavior in the collapse of polycationic gels. Macromolecules 28:3930–3936

    Article  CAS  Google Scholar 

  • Stringer JL, Peppas NA (1996) Diffusion in radiationcrosslinked poly(ethyleneoxide) hydrogels. J Control Release 42:195–202

    Article  CAS  Google Scholar 

  • Suda K (2007) Superabsorbent polymers and superabsorbent polymer composites. Sci Asia 33(Suppl):139–143

    Google Scholar 

  • Szepes A, Makai Z, Blumer C, Mader K, Kasa P, Revesz PS (2008) Characterization and drug delivery behaviour of starch based hydrogels prepared via isostatic ultrahigh pressure. Carbohyd Polym 72:571–575

    Article  CAS  Google Scholar 

  • Takashima Y, Yuting Y, Otsubo M, Yamaguchi M, Harada A, Beilstein (2012) J Org Chem 8:1594–1600

    CAS  Google Scholar 

  • Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32(32):713–716

    CAS  Google Scholar 

  • Tan HL, Tan LS, Wong YY, Muniyandy S, Hashim K, Pushpamalar J (2016) Dual crosslinked carboxymethyl pulp/pectin hydrogel beads as potential carrier for colon-targeted drug delivery. J Appl Polym Sci 133(19)

    Google Scholar 

  • Telitel S, Dumur F, Faury T, Graff B, Tehfe M-A, Gigmes D, Fouassier J-P, Lalevée J (2013) New core-pyrene Ï€ structure organophotocatalysts usable as highly efficient photoinitiators. Beilstein J Org Chem 9:877–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tong Q, Zhang G (2005) Rapid synthesis of a superabsorbent from a saponified starch and acrylonitrile/AMPS graft copolymers. Carbohyd Polym 62:74–79

    Article  CAS  Google Scholar 

  • Toshikazu T, Hisahiko K, Kenji U, Toshiro M (1992) Structure and mechanical properties of poly (vinyl alcohol) gels swollen by various solvents. Polymer 33(11):2334–2339

    Article  Google Scholar 

  • Vakkalanka SK, Brazel CS, Peppas NA (1996) Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Polym 8:119–129

    Article  CAS  Google Scholar 

  • Van Tomme SR, van Steenbergen MJ, De Smedt SC, van Nostrum CF, Hennink WE (2005) Biomaterials 26(14):2129–2135

    Article  PubMed  CAS  Google Scholar 

  • Vemula PK, Li J, George J, Am J (2006) Chem Soc 128:8932–8938

    Article  CAS  Google Scholar 

  • Wang C, Stewart RJ, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417–420

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Hosoya Y, Tamura A, Kosuge H (1993) Characteristics of water-absorbent polymer emulsions. Polym Int 30:525–531

    Article  CAS  Google Scholar 

  • Watanabe T, Ohtsuka A, Murase N, Barth P, Gersonde K (1996) NMR studies on water and polymer diffusion in dextran gels. Influence of potassium ions on microstructure formation and gelation mechanism. Magn Reson Med 35:697–705

    Article  PubMed  CAS  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Wu J, Su ZG, Ma GH (2006) A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 315(1–2):1–11

    Article  PubMed  CAS  Google Scholar 

  • Wu X, He C, Wu Y, Chen X (2016) Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials 75:148–162

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Weng Y, Xu L, Chen H (2013) Sustained release of avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Macromolecules 60:272–276

    Article  CAS  Google Scholar 

  • Yin Y, Yang Y, Xu H (2002) Swelling behavior of hydrogels for colon-site drug delivery. J Appl Polym Sci 83:2835–2842

    Article  CAS  Google Scholar 

  • Yin Y, Ji X, Dang H, Ying Y, Zhing H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acylic acid. Carbohyd Polym 71:682–689

    Article  CAS  Google Scholar 

  • Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K (1986) Morphology and structure of highly elastic poly-(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci 264

    Google Scholar 

  • Yoshida M, Asano M, Kumakura M, Kataki R, Mashimo T, Yuasa H, Yamanaka H (1991) Thermo-responsive hydrogels based on acryloyl-l-proline methyl ester and their use as long-acting testosterone delivery systems. Drug Des Deliv 7:159–174

    PubMed  CAS  Google Scholar 

  • Yu H, Xiao C (2008) Synthesis and properties of novel hydrogels from oxidized Konjac glucomannan cross linked gelation for in-vitro drug delivery. Carbohyd Polym 72:479–489

    Article  CAS  Google Scholar 

  • Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomat 5(1):488–497

    Article  CAS  Google Scholar 

  • Zhang Z, He Z, Liang R, Ma Y, Huang W, Jiang R, Shi S, Chen H, Li X (2016) Fabrication of a micellar supramolecular hydrogel for ocular drug delivery. Biomacromolecules 17(3):798–807

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Li X, Lin Z, Lin G (2016) Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs. J Mater Sci Mater Med 27(4):73

    Article  PubMed  CAS  Google Scholar 

  • Zu Y, Zhang Y, Zhao X, Shan C, Zu S, Wang K, Li Y, Ge Y (2012) Preparation and characterization of chitosan-polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50(1):82–87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surbhi Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubey, S., Sharma, R., Mody, N., Vyas, S.P. (2018). Polymeric Hydrogel: A Flexible Carrier System for Drug Delivery. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_6

Download citation

Publish with us

Policies and ethics