Skip to main content
Book cover

Polymer Gels pp 127–140Cite as

Silica-Based Polymeric Gels as Platforms for Delivery of Phosphonate Pharmaceutics

  • Chapter
  • First Online:

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

This chapter focuses on polymeric gel drug delivery systems used for initial immobilization and subsequent controlled release of active pharmaceutical ingredients. The primary focus is on phosphonate-based drugs, which are extensively used for a variety of medicinal applications and pathological conditions. Their most recognizable use is for osteoporosis drugs with the common names: medronate, chlodronate, etidronate, alendronate, zoledronate, obadronate, ibandronate, neridronate, etc. Herein, we present a concise literature overview of this research field, presenting research results on immobilization of phosphonates onto silica-based polymeric gels, with the goal to achieve controlled release of these ingredients into biological fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Balas F, Manzano M, Horcajada P, Vallet-Regí M (2006) Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 128:8116–8117

    Article  CAS  PubMed  Google Scholar 

  • Belton DJ, Patwardhan SV, Perry CC (2005) Spermine, spermidine and their analogues generate tailored silicas. J Mater Chem 15:4629–4638

    Article  CAS  Google Scholar 

  • Belton DJ, Patwardhan SV, Annenkov VV, Danilovtseva EN, Perry CC (2008) From biosilicification to tailored materials: optimizing hydrophobic domains and resistance to protonation of polyamines. Proc Natl Acad Sci USA 105:5963–5968

    Article  PubMed  PubMed Central  Google Scholar 

  • Binauld S, Stenzel MH (2013) Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun 49:2082–2102

    Article  CAS  Google Scholar 

  • Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, LoRusso P, Ma P, Ravera C, Deckert F, Schran H, Seaman J, Skerjanec A (2002) Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 42:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Chong ASM, Zhao XS (2003) Functionalization of SBA-15 with APTES and characterization of functionalized materials. J Phys Chem B 107:12650–12657

    Article  CAS  Google Scholar 

  • Coradin T, Eglin D, Livage J (2004) The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy 18:567–576

    Article  CAS  Google Scholar 

  • Cremers SC, Pillai G, Papapoulos SE (2005) Pharmacokinetics/pharmacodynamics of bisphosphonates: use for optimisation of intermittent therapy for osteoporosis. Clin Pharmacokinet 44:551–570

    Article  CAS  PubMed  Google Scholar 

  • Demadis KD (2008) Silica scale inhibition relevant to desalination technologies: progress and recent developments. In: Delgado DJ, Moreno P (eds) Desalination research progress. Nova Science Publishers, Inc., New York, pp 249–259

    Google Scholar 

  • Dunford JE, Thomspson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, Ebetino FH, Rogers MJ (2001) Structure-activity relationships for inhibition of farnesyl disphosphate syntase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharm Exp Ther 296:235–242

    CAS  Google Scholar 

  • Ehrlich H, Demadis KD, Koutsoukos PG, Pokrovsky O (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689

    Article  CAS  PubMed  Google Scholar 

  • Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA (1999) Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption and kinase activation in vitro. Proc Natl Acad Sci USA 96:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleisch H, Reszka A, Rodan G, Rogers G (2002) Bisphosphonates: mechanisms of action. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 1361–1385

    Google Scholar 

  • Francis MD, Fogelman I (1987) 99 mTc diphosphonate uptake mechanism on bone. In: Fogelman I (ed) Bone scanning in clinical practice. Springer, New York, pp 7–17

    Chapter  Google Scholar 

  • Francis MD, Graham R, Russell RGG, Fleisch H (1969) Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165:1264–1266

    Article  CAS  PubMed  Google Scholar 

  • Frith JC, Mönkkönen J, Blackburn GM, Russell RGG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(β, γ-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki J, Tokunaga Y, Takahashi T, Hirose T, Shimojo F, Kagayama A, Hata T (1995) Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. I: synthesis and in vivo characterization of osteotropic carboxyfluorescein. J Drug Target 3:273–282

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki J, Tokunaga Y, Sawamoto T, Takahashi T, Kimura S, Shimojo F, Hata T (1996a) Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. III: pharmacokinetics and targeting characteristics of osteotropic carboxyfluorescein. J Drug Target 4:117–123

    Article  CAS  PubMed  Google Scholar 

  • Fujisaki J, Tokunaga Y, Takahashi T, Murata S, Shimojo F, Hata T (1996b) Physicochemical characterization of bisphosphonic carboxyfluorescein for osteotropic drug delivery. J Pharm Pharmacol 48:798–800

    Article  CAS  PubMed  Google Scholar 

  • Giger EV, Castagner B, Leroux J-C (2013) Biomedical applications of bisphosphonates. J Control Release 167:175–188

    Article  CAS  PubMed  Google Scholar 

  • Gil L, Han Y, Opas EE, Rodan GA, Ruel R, Seedor JG, Tyler PC, Young RN (1999) Prostaglandin E2–bisphosphonate conjugates: potential agents for treatment of osteoporosis. Bioorg Med Chem 7:901–919

    Article  CAS  PubMed  Google Scholar 

  • Gittens SA, Bansal G, Zernicke RF, Uludag H (2005) Designing proteins for bone targeting. Adv Drug Deliv Rev 57:1011–1036

    Article  CAS  PubMed  Google Scholar 

  • Golomb G, Dixon M, Smith MS, Schoen FJ, Levy RJ (1987) Controlled-release drug delivery of diphosphonates to inhibit bioprosthetic heart valve calcification: release rate modulation with silicone matrices via drug solubility and membrane coating. J Pharm Sci 76:271–276

    Article  CAS  PubMed  Google Scholar 

  • Gommes C, Blacher S, Goderis B, Pirard R, Heinrichs B, Alie C, Pirard JP (2004) In situ SAXS analysis of silica gel formation with an additive. J Phys Chem B 108:8983–8991

    Article  CAS  Google Scholar 

  • Hengst V, Oussoren C, Kissel T, Storm G (2007) Bone targeting potential of bisphosphonate-targeted liposomes. Preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm 331:224–227

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi H, Takahashi T, Fujisaki J, Masunaga T, Sato S, Hiroi J, Tokunaga Y, Kimura S, Hata T (2001) Bone specific delivery and sustained release of diclofenac, a non- steroidal anti-inflammatory drug, via bisphosphonic prodrug based on osteotropic drug delivery system (ODDS). J Control Release 70:183–191

    Article  CAS  PubMed  Google Scholar 

  • Hosain F, Spencer RP, Couthon HM, Sturtz GL (1996) Targeted delivery of antineoplastic agent to bone: biodistribution studies of technetium-99m-labeled gembisphosphonate conjugate of methotrexate. J Nucl Med 37:105–107

    PubMed  CAS  Google Scholar 

  • Hughes LG, Vick TA, Wang JH (2004) Coated Implants. European Patent 1250164

    Google Scholar 

  • Kennedy JH (1997) HPLC purification of pergolide using silica gel. Org Process Res Dev 1:68–71

    Article  CAS  Google Scholar 

  • Lamb HM, Faulds D (1997) Samarium 153Sm lexidronam. Drugs Aging 11:413–418

    Article  CAS  PubMed  Google Scholar 

  • Lehenkari PP, Kellinsalmi M, Näpänkangas JP, Ylitalo KV, Mönkkönen J, Rogers MJ, Azhayev A, Väänänen HK, Hassinen IE (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Levy RJ, Wolfrum J, Schoen FJ, Hawley MA, Lund SA, Langer R (1985) Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science 228:190–192

    Article  CAS  PubMed  Google Scholar 

  • Levy RJ, Johnson TP, Sintov A, Golomb G (1990) Controlled release implants for cardiovascular disease. J Control Release 11:245–254

    Article  CAS  Google Scholar 

  • Levy RJ, Qu X, Underwood T, Trachy J, Schoen FJ (1995) Calcification of valved aortic allografts in rats: effects of age, crosslinking, and inhibitors. J Biomed Mater Res 29:217–226

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wiswall AT, Rutledge JE, Akhter MP, Cullen DM, Reinhardt RA, Wang D (2008) Osteotropic β-cyclodextrin for local bone regeneration. Biomaterials 29:1686–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez PJ, Gautier C, Livage J, Coradin T (2005) Mimicking biogenic silica nanostructures formation. Curr Nanosci 1:73–83

    Article  CAS  Google Scholar 

  • Luckman SP, Hughes DE, Coxon FP, Graham R, Russell RG, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13:581–589

    Article  CAS  PubMed  Google Scholar 

  • Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) The characterisation of the nature of silica in biological systems. J Chem Soc Chem Commun 4:168–170

    Article  Google Scholar 

  • Martin del Valle EM, Galan MA, Carbonell RG (2009) Drug delivery technologies: the way forward in the new decade. Ind Eng Chem Res 48:2475–2486

    Article  CAS  Google Scholar 

  • Mashkevich BO (ed) (2007) Drug delivery research advances. Nova Science Publishers Inc., New York

    Google Scholar 

  • Mestiri M, Benoit JP, Hernigou P, Devissaguet JP, Puisieux F (1995) Cisplatin-loaded poly(methyl methacrylate) implants: a sustained drug delivery system. J Control Release 33:107–113

    Article  CAS  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    Article  CAS  Google Scholar 

  • Mundy GR (1997) Mechanisms of bone metastasis. Cancer 80:1546–1556

    Article  CAS  PubMed  Google Scholar 

  • Ning RY (2010) Reactive silica in natural waters—a review. Des Wat Treat 21:79–86

    Article  CAS  Google Scholar 

  • Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47:7567–7582

    Article  CAS  Google Scholar 

  • Patwardhan SV, Clarson SJ, Perry CC (2005) On the role(s) of additives in bioinspired silicification. Chem Commun 1113–1121

    Google Scholar 

  • Perry CC, Keeling-Tucker T (1998) Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. J Inorg Biochem 69:181–191

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  CAS  Google Scholar 

  • Rodan GA, Reszka AA (2002) Bisphophonate mechanism of action. Curr Mol Med 2:571–577

    Article  CAS  PubMed  Google Scholar 

  • Russell RGG, Watts N, Ebetino F, Rogers M (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759

    Article  CAS  PubMed  Google Scholar 

  • Shakespeare WC, Metcalf CA III, Wang Y, Sundaramoorthi R, Keenan T, Weigele M, Bohacek RS, Dalgarno DC, Sawyer TK (2003) Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr Opin Drug Discov Devel 6:729–741

    PubMed  CAS  Google Scholar 

  • Shane E (2010) Evolving data about subtrochanteric fractures and bisphosphonates. N Engl J Med 362:1825–1827

    Article  CAS  PubMed  Google Scholar 

  • Siegel RA, Rathbone MJ (2012) Overview of controlled release mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ (eds) Fundamentals and applications of controlled release drug delivery. Springer, New York, pp 19–43

    Chapter  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  • Steven CR, Busby GA, Mather C, Tariq B, Lucia Briuglia M, Lamprou DA, Urquhart AJ, Grant MH, Patwardhan SV (2014) Bioinspired silica as drug delivery systems and their biocompatibility. J Mater Chem B 2:5028–5042

    Article  CAS  PubMed  Google Scholar 

  • Szymura-Oleksiak J, Slosarczyk A, Cios A, Mycek B, Paszkiewicz Z, Szklarczyk S, Stankiewicz D (2001) The kinetics of pentoxifyllinerelease in vivo from drug-loaded hydroxyapatite implants. Ceram Int 27:767–772

    Article  CAS  Google Scholar 

  • Thomas JM, Johnson BFG, Raja R, Samkar G, Midgley PA (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20–30

    Article  CAS  PubMed  Google Scholar 

  • Thompson WJ, Thompson DD, Anderson PS, Rodan GA (1989) Polymalonic acids as bone affinity agents. European Patent 0341961

    Google Scholar 

  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  CAS  PubMed  Google Scholar 

  • Van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun 255:491–494

    Article  PubMed  Google Scholar 

  • Walcarius A, Etienne M, Lebeau B (2003) Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem Mater 15:2161–2173

    Article  CAS  Google Scholar 

  • Walter KA, Tamargo R, Olivi A, Burger PC, Brem H (1995) Intratumoral chemotherapy. Neurosurgery 37:1129–1145

    Article  Google Scholar 

  • Wang GH, Zhang LM (2007) Manipulating formation and drug-release behavior of new sol-gel silica matrix by hydroxypropyl guar gum. J Phys Chem B 111:10665–10670

    Article  CAS  PubMed  Google Scholar 

  • Weinstein RS, Robertson PK, Manolagas SC (2009) Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med 360:53–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z-G (1992) Adsorption of phenylalanine from aqueous solution onto active carbon and silica gel. Chin J Chem 10:325–330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K. E. Papathanasiou thanks the Onassis Foundation for a doctoral scholarship. K. D. Demadis thanks the EU for funding the Research Program SILICAMPS-153, under the ERA.NET-RUS Pilot Joint Call for Collaborative S&T projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos D. Demadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papathanasiou, K.E., Vassaki, M., Spinthaki, A., Moschona, A., Demadis, K.D. (2018). Silica-Based Polymeric Gels as Platforms for Delivery of Phosphonate Pharmaceutics. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_5

Download citation

Publish with us

Policies and ethics