Polymer Gels pp 97-126 | Cite as

Polysaccharide-Based Polymer Gels and Their Potential Applications

  • Nabil A. IbrahimEmail author
  • Ahmed A. Nada
  • Basma M. Eid
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Utilization of polysaccharides as precursors to develop new polymer gels has been growing recently due to their superior inherent properties such as biodegradability, chemical activity, biocompatibility, non-toxicity, abundance, and affordable price. This chapter discusses polymer gels in terms of chemical structures, modifications, the main properties of promising polysaccharide precursors, the most common crosslinkers, and methods of crosslinking either by physical or chemical methods along with mode of interactions. It also highlights the different techniques used to characterize and evaluate the performance and functional properties of the fabricated gels as well as their potential applications in different fields. Finally, recent developments and future trends are considered to cope with the growing demands for engineering novel polymer gels for further ecofriendly successful applications.


Carbohydrates Reversible and irreversible hydrogel Chemical and physical crosslinking Mechanisms of gel formation Potential applications 


  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121PubMedCrossRefGoogle Scholar
  2. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43:401–414PubMedCrossRefGoogle Scholar
  3. Ashton RS, Banerjee A, Punyani S, Schaffer DV, Kane RS (2007) Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture. Biomaterials 28:5518–5525PubMedCrossRefGoogle Scholar
  4. Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633PubMedCrossRefGoogle Scholar
  5. Azlan K, Wan Saime WN, Lai Ken L (2009) Chitosan and chemically modified chitosan beads for acid dyes sorption. J Environ Sci 21:296–302CrossRefGoogle Scholar
  6. Bacaita ES, Ciobanu BC, Popa M, Agop M, Desbrieres J (2014) Phases in the temporal multiscale evolution of the drug release mechanism in IPN-type chitosan based hydrogels. Phys Chem Chem Phys 16:25896–25905PubMedCrossRefGoogle Scholar
  7. Bhattacharyya S, Guillot S, Dabboue H, Tranchant J-F, Salvetat J (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9:505–509PubMedCrossRefGoogle Scholar
  8. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99PubMedCrossRefGoogle Scholar
  9. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:41–56CrossRefGoogle Scholar
  10. Chan AW, Whitney RA, Neufeld RJ (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 10:609–616PubMedCrossRefGoogle Scholar
  11. Chang C, Zhang L (2011) Cellulose-based hydrogels: Present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  12. Chang P-C, Liu B-Y, Liu C-M, Chou H-H, Ho M-H, Liu H-C, Wang D-M, Hou L-T (2007) Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J Biomed Mater Res A 81:771–780PubMedCrossRefGoogle Scholar
  13. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100CrossRefGoogle Scholar
  14. Chang C, He M, Zhou J, Zhang L (2011) Swelling behaviors of pH- and salt-responsive cellulose-based hydrogels. Macromolecules 44:1642–1648CrossRefGoogle Scholar
  15. Chatterjee S, Lee DS, Lee MW, Woo SH (2009a) Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with nonionic or anionic surfactant. Bioresour Technol 100:3862–3868PubMedCrossRefGoogle Scholar
  16. Chatterjee S, Lee DS, Lee MW, Woo SH (2009b) Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour Technol 100:2803–2809PubMedCrossRefGoogle Scholar
  17. Chatterjee S, Chatterjee T, Woo SH (2010a) A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresour Technol 101:3853–3858PubMedCrossRefGoogle Scholar
  18. Chatterjee S, Lee MW, Wooa SH (2010b) Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. Bioresour Technol 101:1800–1806PubMedCrossRefGoogle Scholar
  19. Cheng Y-H, Yang S-H, Su W-Y, Chen Y-C, Yang K-C, Cheng WT-K, Wu S, Lin F (2010) Thermosensitive Chitosan–Gelatin–Glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A 16:695–703PubMedCrossRefGoogle Scholar
  20. Cheng Y, Nada AA, Valmikinathan CM, Lee P, Liang D, Yu X, Kumbar SG (2014) In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering. J Appl Polym Sci. Scholar
  21. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92:1262–1279PubMedCrossRefPubMedCentralGoogle Scholar
  22. Csaba N, Köping-Höggård M, Alonso MJ (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214PubMedCrossRefGoogle Scholar
  23. Dahou W, Ghemati D, Oudia A, Aliouche D (2010) Preparation and biological characterization of cellulose graft copolymers. Biochem Eng J 48:187–194CrossRefGoogle Scholar
  24. El-Hag Ali A, Abd El-Rehim H, Kamal H, Hegazy DE-S (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci Part A 45:628–634CrossRefGoogle Scholar
  25. Farag S, Al-Afaleq EI (2002) Preparation and characterization of saponified delignified cellulose polyacrylonitrile-graft copolymer. Carbohydr Polym 48:1–5CrossRefGoogle Scholar
  26. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114:1–14PubMedCrossRefGoogle Scholar
  27. George M, Abraham TE (2007) pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129PubMedCrossRefGoogle Scholar
  28. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456CrossRefGoogle Scholar
  29. Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J (2007) Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater 3:23–31PubMedCrossRefGoogle Scholar
  30. Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solids Struct 46:3282–3289CrossRefGoogle Scholar
  31. Hurtado PI, Berthier L, Kob W (2007) Heterogeneous diffusion in a reversible gel. Phys Rev Lett 98:98–101CrossRefGoogle Scholar
  32. Ibrahim NA, Abo‐Shosha MH, El‐Zairy EA, El‐Zairy EM (2006) New thickening agents for reactive printing of cellulosic fabrics. J Appl Poly Sci 101(6):4430–4439Google Scholar
  33. Ibrahim NA, Eid BM, El-Zairy ER (2011) Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex. Carbohydr Polym 86:1313–1319CrossRefGoogle Scholar
  34. Ibrahim NA, Eid BM, El-Aziz EA, Elmaaty TMA, Ramadan SM (2017) Loading of chitosan – Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions. Int J Biol Macromol 105: 769–776Google Scholar
  35. Ibrahim NA, Abou Elmaaty TM, Eid BM, Abd El-Aziz E (2013a) Combined antimicrobial finishing and pigment printing of cotton/polyester blends. Carbohydr Polym 95:379–388PubMedCrossRefGoogle Scholar
  36. Ibrahim NA, Eid BM, Elmaaty TMA, El-Aziz EA (2013b) A smart approach to add antibacterial functionality to cellulosic pigment prints. Carbohydr Polym 94:612–618PubMedCrossRefGoogle Scholar
  37. Ibrahim NA, Eid BM, Youssef MA, Ibrahim HM, Ameen HA, Salah AM (2013c) Multifunctional finishing of cellulosic/polyester blended fabrics. Carbohydr Polym 97:783–793PubMedCrossRefGoogle Scholar
  38. Ibrahim NA, El-Zairy EMR, Abdalla WA, Khalil HM (2013d) Combined UV-protecting and reactive printing of cellulosic/wool blends. Carbohydr Polym 92:1386–1394PubMedCrossRefGoogle Scholar
  39. Ibrahim NA, Khalil HM, El-Zairy EMR, Abdalla WA (2013e) Smart options for simultaneous functionalization and pigment coloration of cellulosic/wool blends. Carbohydr Polym 96:200–210PubMedCrossRefGoogle Scholar
  40. Ishihara M, Obara K, Nakamura S et al (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9:8–16PubMedCrossRefGoogle Scholar
  41. Ito K (2007) Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J 39:489–499CrossRefGoogle Scholar
  42. Jameela SR, Lakshmi S, James NR, Jayakrishnan A (2002) Preparation and evaluation of photocrosslinkable chitosan as a drug delivery matrix. J Appl Polym Sci 86:1873–1877CrossRefGoogle Scholar
  43. Jen AC, Wake MC, Mikos AG (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50:357–364PubMedCrossRefGoogle Scholar
  44. Jeon O, Bouhadir KH, Mansour JM, Alsberg E (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30:2724–2734PubMedCrossRefGoogle Scholar
  45. Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551PubMedCrossRefGoogle Scholar
  46. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289CrossRefGoogle Scholar
  47. Ki HB, Jun JY, Tae GP (2006) Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnol Prog 22:297–302CrossRefGoogle Scholar
  48. Kim M-S, Choi Y-J, Noh I, Tae G (2007) Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res, Part A 83A:674–682CrossRefGoogle Scholar
  49. Kitazono E, Kaneko H (2012) Hyaluronic acid compound, hydrogel thereof and joint treating material. 2Google Scholar
  50. Koschella A, Hartlieb M, Heinze T (2011) A “click-chemistry” approach to cellulose-based hydrogels. Carbohydr Polym 86:154–161CrossRefGoogle Scholar
  51. Kriegel R (2004) Divinyl sulfone crosslinking agents and methods of use in subterranean applicationsGoogle Scholar
  52. Kulkarni RV, Sa B (2008) Evaluation of pH-sensitivity and drug release characteristics of (polyacrylamide-grafted-xanthan)-carboxymethyl cellulose-based pH-sensitive interpenetrating network hydrogel beads. Drug Dev Ind Pharm 34:1406–1414PubMedCrossRefGoogle Scholar
  53. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50:1475–1486CrossRefGoogle Scholar
  54. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541PubMedCrossRefGoogle Scholar
  55. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee KY, Bouhadir KH, Mooney DJ (2004) Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials 25:2461–2466PubMedCrossRefGoogle Scholar
  57. Lee F, Chung JE, Kurisawa M (2008a) An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 4:880–887CrossRefGoogle Scholar
  58. Lee HS, Singh P, Thomason WH, Fogler HS (2008b) Waxy oil gel breaking mechanisms: adhesive versus cohesive failure. Energy Fuels 22:480–487CrossRefGoogle Scholar
  59. Li X, Xu S, Wang J, Chen X, Feng S (2009) Structure and characterization of amphoteric semi-IPN hydrogel based on cationic starch. Carbohydr Polym 75:688–693CrossRefGoogle Scholar
  60. Lim S-H, Hudson SM (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 339:313–319PubMedCrossRefGoogle Scholar
  61. Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8:439–444CrossRefGoogle Scholar
  62. Marsano E, Bianchi E, Sciutto L (2003) Microporous thermally sensitive hydrogels based on hydroxypropyl cellulose crosslinked with poly-ethyleneglicol diglycidyl ether. Polymer (Guildf) 44:6835–6841CrossRefGoogle Scholar
  63. Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C Polym Rev 36:405–430CrossRefGoogle Scholar
  64. Mirzaei BE, Ramazani SAA, Shafiee M, Danaei M (2013) Studies on glutaraldehyde crosslinked chitosan hydrogel properties for drug delivery systems. Int J Polym Mater 62:605–611CrossRefGoogle Scholar
  65. Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963PubMedCrossRefGoogle Scholar
  66. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9CrossRefGoogle Scholar
  67. Nada AA, Hauser P, Hudson SM (2011) The grafting of per-(2,3,6-O-allyl)-β cyclodextrin onto derivatized cotton cellulose via thermal and atmospheric plasma techniques. Plasma Chem Plasma Process 31:605–621CrossRefGoogle Scholar
  68. Nada AA, James R, Shelke NB, Harmon MD, Awad HM, Nagarale RK, Kumbar SG (2014) A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. Polym Adv Technol 25:507–515CrossRefGoogle Scholar
  69. Nimmo CM, Owen SC, Shoichet MS (2011) Diels–Alder click cross-linked hyaluronic acid hydrogels for tissue engineering. Biomacromolecules 12:824–830PubMedCrossRefGoogle Scholar
  70. Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO, Novikov LN (2006) Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. J Biomed Mater Res - Part A 77:242–252CrossRefGoogle Scholar
  71. Pal K, Singh VK, Anis A, Thakur G, Bhattacharya MK (2013) Hydrogel-based controlled release formulations: designing considerations, characterization techniques and applications. Polym Plast Technol Eng 52:1391–1422CrossRefGoogle Scholar
  72. Park S, Okada T, Takeuchi D, Osakada K (2010) Cyclopolymerization and copolymerization of functionalized 1,6-heptadienes catalyzed by pd complexes: Mechanism and application to physical-gel formation. Chem A Eur J 16:8662–8678CrossRefGoogle Scholar
  73. Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31:6772–6781PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305PubMedCrossRefGoogle Scholar
  75. Prabaharan M (2008) Review paper: chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl 23:5–36PubMedCrossRefGoogle Scholar
  76. Qi H, Liebert T, Meister F, Heinze T (2009) Homogenous carboxymethylation of cellulose in the NaOH/urea aqueous solution. React Funct Polym 69:779–784CrossRefGoogle Scholar
  77. Qin X, Lu A, Cai J, Zhang L (2013) Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature. Carbohydr Polym 92:1315–1320PubMedCrossRefGoogle Scholar
  78. Reis AV, Guilherme MR, Moia TA, Mattoso LHC, Muniz EC, Tambourgi EB (2008) Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. J Polym Sci Part A: Polym Chem 46:2567–2574CrossRefGoogle Scholar
  79. Ribeiro MP, Espiga A, Silva D et al (2009) Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen 17:817–824PubMedCrossRefGoogle Scholar
  80. Rickett TA, Amoozgar Z, Tuchek CA, Park J, Yeo Y, Shi R (2011) Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules 12:57–65PubMedCrossRefGoogle Scholar
  81. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53PubMedCrossRefGoogle Scholar
  82. Ruel-Gariépy E, Leroux JC (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426PubMedCrossRefGoogle Scholar
  83. Sannino A, Madaghiele M, Lionetto MG, Schettino T, Maffezzoli A (2006) A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: an in vitro biocompatibility study on rat intestine. J Appl Polym Sci 102:1524–1530CrossRefGoogle Scholar
  84. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials (Basel) 2:353–373CrossRefGoogle Scholar
  85. Singh A, Sharma PK, Garg VK, Garg G (2010) Hydrogels: a review. Int J Pharm Sci Rev Res 4:97–105Google Scholar
  86. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26CrossRefGoogle Scholar
  87. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008a) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264PubMedCrossRefGoogle Scholar
  88. Song Y, Zhou J, Zhang L, Wu X (2008b) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25CrossRefGoogle Scholar
  89. Sudheesh Kumar PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4:2618–2629CrossRefGoogle Scholar
  90. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696–2701CrossRefGoogle Scholar
  91. Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6853PubMedPubMedCentralCrossRefGoogle Scholar
  92. Teng D, Wu Z, Zhang X, Wang Y, Zheng C, Wang Z, Li C (2010) Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer (Guildf) 51:639–646CrossRefGoogle Scholar
  93. Thakur VK, Thakur MK (2014a) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652CrossRefGoogle Scholar
  94. Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  95. Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847PubMedCrossRefGoogle Scholar
  96. Thakur VK, Thakur MK, Gupta RK (2014) Graft copolymers of natural fibers for green composites. Carbohydr Polym 104:87–93PubMedCrossRefGoogle Scholar
  97. Van Beek M, Jones L, Sheardown H (2008) Hyaluronic acid containing hydrogels for the reduction of protein adsorption. Biomaterials 29:780–789PubMedCrossRefGoogle Scholar
  98. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408PubMedCrossRefGoogle Scholar
  99. Vinatier C, Gauthier O, Fatimi A et al (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102:1259–1267PubMedCrossRefGoogle Scholar
  100. Wakhet S, Singh VK, Sahoo S et al (2015) Characterization of gelatin-agar based phase separated hydrogel, emulgel and bigel: a comparative study. J Mater Sci Mater Med 26:118PubMedCrossRefGoogle Scholar
  101. West ER, Xu M, Woodruff TK, Shea LD (2007) Physical properties of alginate hydrogels and their effects on in vitro follicle development. Biomaterials 28:4439–4448PubMedPubMedCentralCrossRefGoogle Scholar
  102. Xu L, Huang Y-A, Zhu Q-J, Ye C (2015) Chitosan in molecularly-imprinted polymers: current and future prospects. Int J Mol Sci 16:18328–18347PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39CrossRefGoogle Scholar
  104. Zhao L, Weir MD, Xu HHK (2010) An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 31:6502–6510PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhou J, Zhang L, Cai J, Shu H (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. J Memb Sci 210:77–90CrossRefGoogle Scholar
  106. Zhou J, Zhang L, Deng Q, Wu X (2004) Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. J Polym Sci Part A: Polym Chem 42:5911–5920CrossRefGoogle Scholar
  107. Zhou Q, Zhang L, Li M, Wu X, Cheng G (2005) Homogeneous hydroxyethylation of cellulose in NaOH/urea aqueous solution. Polym Bull 53:243–248CrossRefGoogle Scholar
  108. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nabil A. Ibrahim
    • 1
    Email author
  • Ahmed A. Nada
    • 1
  • Basma M. Eid
    • 1
  1. 1.Textile Research DivisionNational Research CenterGizaEgypt

Personalised recommendations