Polymer Gels: Molecular Design and Practical Application

  • Vicente de Oliveira Sousa NetoEmail author
  • Raimundo Nonato Pereira Teixeira
  • Gilberto Dantas Saraiva
  • Ronaldo Ferreira do NascimentoEmail author
Part of the Gels Horizons: From Science to Smart Materials book series (GHFSSM)


Polymer gels are worn in our steadily lives for extended wear lenses, superabsorbent polymers, etc., and more fancy applications are in development. They are among the most interesting and functional materials. Gels are characterized as polymers and their swollen matters with three-dimensional chain structures that are insoluble in any solvents. The capacity of polymer gels to experience considerable swelling and crumpling as an element of their surroundings is a standout among the most admirable properties of these materials. Polymer gels ordinarily contain a lot of portion of solvent, which gives them a singular quality started from a fluid nature. Additionally, they can keep up shape like strong materials, unless extra stress is applied. Subsequently, the mix of flexibility and shape maintenance capacity gives special properties, especially mechanical properties. Gels are wet and moldable and resemble a strong material yet are set up for experiencing considerable distortion. This property is as opposed to most modern materials, for example metals, earthenware production, and plastics, which are dry and hard. This chapter focuses on polymer gels in terms of molecular design, assembly, crosslink formations, and practical application.


Surface science Gels Thermoresponsive properties 


  1. Adams N, Schuber US (2007) Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev 59:1504–1520CrossRefPubMedGoogle Scholar
  2. Ahn SK, Kasi RM, Kim S-C, Sharmaa N, Zhoub Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151–1157CrossRefGoogle Scholar
  3. An Y, Solis FJ, Jiang H (2010) A thermodynamic model of physical gels. J Mech Phys Solids 58:2083–2099CrossRefGoogle Scholar
  4. Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical application. Prog Polym Sci 39(9):1644–1667CrossRefGoogle Scholar
  5. Arguinzoniz AG, Ruggiero E, Habtemariam A, Hernandez-Gil J, Salassa L, Mareque-Rivas JC (2014) Light harvesting and photoemission by nanoparticles for photodynamic therapy. Part Part Syst Charact 31(1):46–75CrossRefGoogle Scholar
  6. Baumgaertel A, Altuntaş E, Kempe K, Crecelius A, Schubert US (2010) Characterization of different poly (2‐oxazoline) block copolymers by MALDI‐TOF MS/MS and ESI‐Q‐TOF MS/MS. J Polym Sci Part A: Polym Chem 48:5533–5540CrossRefGoogle Scholar
  7. Baumgaertel A, Weber C, Fritz N, Festag G, Altuntaş E, Kempe K, Hoogenboom R, SchubertU S (2011) Characterization of poly (2-oxazoline) homo-and copolymers by liquid chromatography at critical conditions. J Chromatogr A 1218:8370–8378CrossRefPubMedGoogle Scholar
  8. Bhattarai N, Gunn J, Zhang MQ (2010) Chitosan-based hydrogels for controlled localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRefPubMedGoogle Scholar
  9. Bütün V, Armes SP, Billingham NC (2001) Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer 42:5993–6008CrossRefGoogle Scholar
  10. Buwalda SJ, Boere KWM, Dijkstra PJD, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273CrossRefPubMedGoogle Scholar
  11. Chen CJ, Liu GY, Liu XS, Pang SP, Zhu CS, Lv LP et al (2011) Photo-responsive, biocompatible polymeric micelles self-assembled from hyperbranched polyphosphate-based polymers. Polym Chem 2(6):1389–1397CrossRefGoogle Scholar
  12. Constantinou AP, Georgiou TK (2016) Tuning the gelation of thermoresponsive gels. Eur Polymer J 78:366–375CrossRefGoogle Scholar
  13. Cortez-Lemus NA, Licea-Claverie A (2016) Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog Polym Sci 53:1–51CrossRefGoogle Scholar
  14. Dai S, Ravi P, Tam KC (2009) Thermo- and photo-responsive polymeric systems. Soft Matter 5:2513–2533CrossRefGoogle Scholar
  15. EI-Kamel AH, Ashri LY, Alsarra LA (2007) Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases. AAPS PharmSciTech 8(3):184–194CrossRefGoogle Scholar
  16. Eisele M, Burchard W (1990) Hydrophobic water-soluble polymers, 1. Dilute solution properties of poly(1-vinyl-2-piperidone) and poly(N-vinylcaprolactam). Makromol Chem 191:169–184CrossRefGoogle Scholar
  17. El-Ejmi AAS, Huglin MB (1996) Characterization of N, N-dimethylacrylamide/2-methoxyethylacrylate copolymers and phase behaviour of their thermotropic aqueous solutions. Polym Int 39:113–119CrossRefGoogle Scholar
  18. Feil H, Bae YH, Feijen J et al (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500CrossRefGoogle Scholar
  19. Feng N, Han GX, Dong J, Wu H, Zheng YD, Wang GJ (2014) Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer. J Colloid Interface Sci 421:15–21CrossRefPubMedGoogle Scholar
  20. Feng M, Tian Y, Chang SY, Xu DQ, Shi HJ (2015) Polyethylene-oxide improves microcirculatory blood flow in a murine hemorrhagic shock model. Int J Clin Exp Med 8(4):5931–5936PubMedPubMedCentralGoogle Scholar
  21. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313CrossRefGoogle Scholar
  22. Gandhi A, Paul A, Sen Q, Sen KK (2015) Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10:99–107CrossRefGoogle Scholar
  23. Guenet JM (2000) Structure versus rheological properties in fibrillar thermoreversible gels from polymers and biopolymers. J Rheol 44:947–960CrossRefGoogle Scholar
  24. Halperin A, Kröger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367CrossRefGoogle Scholar
  25. Han M, Ishikawa D, Honda T, Ito E, Hara M (2010) Light-driven molecular switches in azobenzene self-assembled monolayers: effect of molecular structure on reversible photoisomerization and stable cis state. Chem Commun 46:3598–3600CrossRefGoogle Scholar
  26. Hartlieb M, Pretzel D, Kempe K, Fritzsche C, Paulus RM, Gottschaldt M, Schubert US (2013) Cationic poly(2-oxazoline) hydrogels for reversible DNA binding. Soft Matter 9:4693–4704CrossRefGoogle Scholar
  27. Hoogenboom R (2009) Poly(2-oxazoline)s: a polymer class with numerous potential applications. Angew Chem Int Ed 48:7978–7994CrossRefGoogle Scholar
  28. Hoogenboom R, Thijs HML, Jochems MJHC, van Lankvelt BM, Fijten MWM, Schuber US (2008) Tuning the LCST of poly(2-oxazolines) by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide). Chem Commun 5758–5760Google Scholar
  29. Jheng PR, Lu KY, Yu SH, Mi FL (2015) Free DOX and chitosan-N-arginine conjugate stabilized indocyanine green nanoparticles for combined chemophotothermal therapy. Colloids Surf B: Biointerfaces 136:402–412CrossRefPubMedGoogle Scholar
  30. Jiang JQ, Tong X, Morris D, Zhao Y (2006) Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules 39(13):4633–4640CrossRefGoogle Scholar
  31. Jochum FD, Theato P (2009) Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction. Polymer 50:3079–3085CrossRefGoogle Scholar
  32. Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42(17):7468–7483CrossRefPubMedGoogle Scholar
  33. Kirsh YE, Yanul NA, Kalninsh KK (1999) Structural transformation of water associate interactions in poly-N-vinylcaprolactam-water system. Eur Polym J 35:305–316CrossRefGoogle Scholar
  34. Klajn R (2010) Immobilized azobenzenes for the construction of photoresponsive materials. Pure Appl Chem 82:2247–2279CrossRefGoogle Scholar
  35. Knoben W, Besseling NAM, Stuart MAC (2007) Rheology of a reversible supramolecular polymer studied by comparison of the effects of temperature and chain stoppers. J Chem Phys 126:024907CrossRefPubMedGoogle Scholar
  36. Kobayashi S, Masuda E, Shoda S, Shimano Y (1989) Synthesis of acryl- and methacryl-type macromonomers and telechelics by utilizing living polymerization of 2-oxazolines. Macromolecules 22:2878–2884CrossRefGoogle Scholar
  37. Kuang HH, He HY, Hou J, Xie ZG, Jing XB, Huang YB (2013) Thymine modified amphiphilic biodegradable copolymers for photo-cross-linked micelles as stable drug carriers. Macromol Biosci 13(11):1593–1600CrossRefPubMedGoogle Scholar
  38. Kujawa P, Segui F, Shaban S, Diab C, Okada Y, Tanaka F, Winnik FM (2006) Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules 39:341–348CrossRefGoogle Scholar
  39. Kumar S, Allard JF, Morris D, Dory YL, Lepage M, Zhao Y (2012) Near-infrared light sensitive polypeptide block copolymer micelles for drug delivery. J Mater Chem 22(15):7252–7257CrossRefGoogle Scholar
  40. Lau ACW, Wu C (1999) Thermally sensitive and biocompatible poly(N-vinylcaprolactam): synthesis and characterization of high molar mass linear chains. Macromolecules 32:581–584CrossRefGoogle Scholar
  41. Li L, Aoki Y (1997) Rheological images of poly(vinyl chloride) Gels. 1. The dependence of Sol–Gel transition on concentation. Macromolecules 30:7835–7841CrossRefGoogle Scholar
  42. Lim CK, Heo J, Shin S, Jeong K, Seo YH, Jang HD (2013) Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett 334(2):176–187CrossRefPubMedGoogle Scholar
  43. Lin CP, Sung YC, Hsiue GH (2012) Non-viral pH-sensitive gene carriers based on poly ((2-ethyl-2-oxazoline)-co-ethylenimine)-block-Poly(2-ethyl -2-oxazoline): a study of gene release behavior. J Med Biol Eng 32:365–372CrossRefGoogle Scholar
  44. Lin YH, Tsai SC, Lai CH, Lee CH, He ZS, Tseng GC (2013) Genipin-cross-linked fucose-chitosan/heparin nanoparticles for the eradication of Helicobacter pylori. Biomaterials 34:4466–4479CrossRefPubMedGoogle Scholar
  45. Liu F, Urban MW (2010) Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci 35:3–23CrossRefGoogle Scholar
  46. Liu G, Liu W, Dong CM (2013) UV- and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polym Chem 4(12):3431–3443CrossRefGoogle Scholar
  47. Lozinsky VI, Simenel IA, Kurskaya EA, Kulakova VK, Galaev IY, Mattiasson B, Grinberg VY, Girnberg NV, Khokhlov AR (2000) Synthesis of N-vinylcaprolactam polymers in water containing media. Polymer 41:6507–6518CrossRefGoogle Scholar
  48. Lu KY, Lin CW, Hsu CH, Ho YC, Chuang EY, Sung HW, Mi FL (2014) FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier. ACS Appl Mater Interfaces 6:18275–18289CrossRefPubMedGoogle Scholar
  49. Maeda Y, Nakamura T, Ikeda I (2001) Changes in the hydration states of poly(N-alkylacrylamide)s during their phase transitions in water observed by FTIR spectroscopy. Macromolecules 34:1391–1399CrossRefGoogle Scholar
  50. Makhaeva EE, Tenhu H, Khokhlov AR (1998) Conformational changes of poly(N-vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules 31:6112–6118CrossRefGoogle Scholar
  51. Matsusaki M, Kishida A, Stainton N, Ansell CWG, Akashi M (2001) Synthesis and characterization of novel biodegradable polymers composed of hydroxycinnamic acid and D, L-lactic acid. J Appl Polym Sci 82(10):2357–2364CrossRefGoogle Scholar
  52. Palczewski K (2012) Chemistry and biology of vision. J Biol Chem 287(3):1612–1619CrossRefPubMedGoogle Scholar
  53. Park JS, Akiyama Y, Winnik FM, Kataoka K (2004) Versatile synthesis of end-functionalized thermosensitive poly(2-isopropyl-2-oxazolines). Macromolecules 37:6786–6792CrossRefGoogle Scholar
  54. Paul JF, John RJ (1943) Statistical mechanics of cross-linked polymer networks II. Swelling J Chem Phys 11:521–526CrossRefGoogle Scholar
  55. Plate NA, Lebedeva TL, Valuev LI (1999) Lower critical solution temperature in aqueous solutions of N-Alkyl-substituted polyacrylamides. Polym J 31:21–27CrossRefGoogle Scholar
  56. Podual K, Doyle FJ, Peppas NA (2000) Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly (ethylene glycol) grafts. J Control Release 67:9–17CrossRefPubMedGoogle Scholar
  57. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339CrossRefPubMedGoogle Scholar
  58. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60CrossRefGoogle Scholar
  59. Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243CrossRefPubMedGoogle Scholar
  60. Rueda J, Zschoche S, Komber H, Schmaljohann D, Voit B (2005) Synthesis and characterization of thermoresponsive graft copolymers of NIPAAmand 2-alkyl-2-oxazolines by the “grafting from” method. Macromolecules 8:7330–7336CrossRefGoogle Scholar
  61. Saeki S, Kuwahara N, Nakata M, Kaneko M (1977) Phase separation of poly(ethylene glycol)-water-salt systems. Polymer 18:1027–1031CrossRefGoogle Scholar
  62. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  63. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670CrossRefPubMedGoogle Scholar
  64. Shibu ES, Hamada M, Murase N, Biju V (2013) Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J Photochem Photobiol C-Photochem Rev 15:53–72CrossRefGoogle Scholar
  65. Shostakovsky MF, Sidelkovskaya FP, Zelenskaya MG (1952) Synthesis and transformations of N-Vinylcaprolactam. Part 1: polymerization in presence of hydrogen peroxide. Bull Acad Sci USSR Div Chem Sci 4:633–636CrossRefGoogle Scholar
  66. Siegel RA (2014) Stimuli sensitive polymers and self regulated drug delivery systems: a very partial review. J Control Release 190:337–351CrossRefPubMedPubMedCentralGoogle Scholar
  67. Solomon OF, Corciovei M, Ciuta I, Boghina C (1968) Properties of solutions of poly(N-vinylcaprolactam). J Appl Polym Sci 12:1835–1842CrossRefGoogle Scholar
  68. Son S, Shin E, Kim BS (2014) Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromolecules 15(2):628–634CrossRefPubMedGoogle Scholar
  69. Su Y-R, Yu S-H, Chao A-C, Wu J-Y, Lin Y-F, Lu K-Y, Mi F-L (2016) Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery. Colloids Surf A 494:9–20CrossRefGoogle Scholar
  70. Susanto H, Samsudin AM, Rokhati N, Widiasa IN (2013) Immobilization of glucose oxidase on chitosan-based porous composite membranes and their potential use in biosensors. Enzyme Microb Technol 52:386–392CrossRefPubMedGoogle Scholar
  71. Takamatsu D, Fukui K, Aroua S, Yamakoshi Y (2010) Photoswitching tripodal single molecular tip for noncovalent AFM measurement: synthesis, immobilization and reversible configurational change on gold surface. Org Biomol Chem 8:3655–3664CrossRefPubMedGoogle Scholar
  72. Tamada K, Akiyama H, Wei TX, Kim SA (2003) Photoisomerization reaction of unsymmetrical azobenzene disulphide self-assembled monolayers: modification of azobenzene dyes to improve thermal endurance for photoreaction. Langmuir 19:2306–2312CrossRefGoogle Scholar
  73. Tang XD, Liang XC, Gao LC, Fan XH, Zhou QF (2010) Water-soluble triply-responsive homopolymers of N, N-dimethylaminoethyl methacrylate with a terminal azobenzene moiety. J Polym Sci Part A-Polym Chem 48(12):2564–2570CrossRefGoogle Scholar
  74. Tauhardt L, Frant M, Pretzel D, Hartlieb M, Bücher C, Hildebrand G, Schröter B, Weber C, Kempe K, Gottschaldt M, Liefeithc K, Schubert US (2014) Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications. J Mater Chem B 2:4883–4893CrossRefGoogle Scholar
  75. Theato P (2008) Synthesis of well-defined polymeric activated esters. J Polym Sci A: Polym Chem 46:6677–6687CrossRefGoogle Scholar
  76. Vihola H, Laukkanen A, Vihola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26(2005):3055–3064CrossRefPubMedGoogle Scholar
  77. Vihola H, Laukkanen A, Tenhu H, Hirvonen J (2008) Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. J Pharm Sci 97:4783–4793CrossRefPubMedGoogle Scholar
  78. Vogt AP, Sumerlin BS (2009) Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 5:2347–2351CrossRefGoogle Scholar
  79. Wang CH, Hsiue GH (2002) Synthesis and characterization of temperature- and pH-sensitive hydrogels based on poly(2-ethyl-2-oxazoline) and poly(D, L-lactide). J Polym Sci Part A: Polym Chem 40:1112–1121CrossRefGoogle Scholar
  80. Wang X, Qiu X, Wu C (1998) Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31:2972–2976CrossRefGoogle Scholar
  81. Wang B, Chen KF, Yang RD, Yang F, Liu J (2014) Stimulus-responsive polymeric micelles for the light-triggered release of drugs. Carbohydr Polym 103:510–519CrossRefGoogle Scholar
  82. Weber C, Becer CR, Hoogenboom R, Schuber UC (2009) Lower critical solution temperature behavior of comb and graft shaped poly[oligo(2-ethyl-2-oxazoline)methacrylates. Macromolecules 42:2965–2971CrossRefGoogle Scholar
  83. Xia Y, Burke NAD, Stoever DH (2006) End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules 39:2275–2283CrossRefGoogle Scholar
  84. Xiao Y, Gong T, Jiang Y, Wang Y, Wen ZT, Zhou S, Bao C, Xu X (2016) Fabrication and characterization of a glucose-sensitive antibacterial chitosan–polyethylene oxide hydrogel. Polymer 82:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yoshihito O, Jian-Ping G (1998) Soft and wet materials: polymer gels. Adv Mater 10:827–837CrossRefGoogle Scholar
  86. You J, Almeda D, Ye GJC, Auguste DT (2010a) Bioresponsive matrices in drug delivery. J Biol Eng 4(5):1–12Google Scholar
  87. You J, Shao RP, Wei X, Gupta S, Li A (2010b) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small 6:1022–1031CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481CrossRefPubMedGoogle Scholar
  89. Yu YY, Tian F, Wei C, Wang CC (2009) Facile synthesis of triple-stimuli (photo/pH/thermo) responsive copolymers of 2-diazo-1,2-naphthoquinone-mediated poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide). J Polym Sci Part A-PGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vicente de Oliveira Sousa Neto
    • 1
    Email author
  • Raimundo Nonato Pereira Teixeira
    • 2
  • Gilberto Dantas Saraiva
    • 3
  • Ronaldo Ferreira do Nascimento
    • 4
    Email author
  1. 1.Department of ChemistryState University of Ceará (UECE-FECLESC)QuixadáBrazil
  2. 2.Department of Biological ChemistryRegional University of Cariri (URCA)CratoBrazil
  3. 3.Department of PhysicalState University of Ceará (UECE-FECLESC)QuixadáBrazil
  4. 4.Department of Analytical Chemistry and Physical-ChemistryFederal University of CearaCearaBrazil

Personalised recommendations