Skip to main content

New Aspects to Physicochemical Properties of Polymer Gels in Particularly the Coordination Biopolymeric Metal–Alginate Ionotropic Hydrogels

  • Chapter
  • First Online:
Polymer Gels

Abstract

Some coordination biopolymeric metal–alginate ionotropic hydrogel complexes were prepared by the replacement of the Na+ counter ions of alginate sol polysaccharide by monovalent silver(I) or polyvalent metal ions forming their corresponding complexes in either granule or hydrogel phases. The type of such phase and the capillary or non-capillary structures property were found to be dependent on the method of preparation and the direction of diffusion of the metal ion toward the alginate sol matrix whether is of upward or downward direction. The net process of exchange leads to the so-called sol-gel transformation to give its respective hydrogel complexes. This process takes place through formation of partially ionic and partially coordinate bonds between the metal ion and the carboxylate and hydroxyl functional groups of alginate, respectively. This kind of chelation forms a sort of bridges in an egg box-like structure. The anisotropic property of the hydrogels is owing to the orientation of the solvent molecules and macromolecular chains toward the chelated metal ions. The geometrical configuration and physicochemical properties of the hydrogel complexes depend on the nature of the metal ions such as the valence and its coordination number as well as on the strength of chelating of the bonds formed. The kinetics and mechanism of sol-gel transformation, electrical conductivity, and thermal decomposition with their evaluated kinetic parameters along with the other physicochemical properties such as FTIR, XRD, morphology, configuration geometry, and rheological properties have been investigated and discussed.

This Chapter Dedicated for My Family

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hamid MI, Khairou KS, Hassan RM (2003) Kinetics and mechanism of permanganate oxidation of pection polysaccharide in acid perchlorate media. Eur Polym J 39:381–387

    Article  CAS  Google Scholar 

  • Abd El-Wahab SM, Ahmed MA, Radwan FA, Hassan RM, El-Refae AM (1997) Relative permittivity and electrical conductivity of some divalent metal alginate complexes. Mater Lett 20:183–195

    Article  Google Scholar 

  • Ahmed MA, El-Refae AM, Radwan FA, Abd El-Wahab SM, Hassan RM (1997) Temperature and frequency dependence of the electrical properties of metal alginate complexes. Ind J Chem 71:395–407

    Google Scholar 

  • Anand SC, Kennedy JF, Miraftab M, Rajendran S (2006) Medial textiles and biomaterials for healthcare. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  • Andrews GP, Jones DS (2006) Rheological characterization of boiadhesive binary polymeric systems designed as platforms for drug delivery implants. Biomacrom 7:899–906

    Article  CAS  Google Scholar 

  • Aspinal CO (1982) The polysaccharides. Academic Press Inc, New York

    Google Scholar 

  • Awad A, El-Cheikh F (1980) Electric resistance and anisotropic properties of some metal alginate gels. J Coll Sci 80:107–110

    Article  Google Scholar 

  • Awad A, El-Cheikh F, Hassan RM (1979) Kinetics of sol-gel transformation especially ionotropic gels. Rev Roum Chim 24:563–568

    Google Scholar 

  • Awad A, El- Cheikh F, Shaker A (1980a) The diffusion control in sol-gel transformation. J Ind Chem Soc 57:728–732

    CAS  Google Scholar 

  • Awad A, El- Cheikh F, Shaker A (1980b) Kinetic studies of cobalt alginate gels. Coll Polym Sci 258:1244–1249

    Article  CAS  Google Scholar 

  • Bell SE, Conzalez JC, Garcia SI, Sognorella SR, Sala LF (2008) Kinetics and mechanism of oxidation of apple pectin by Cr(VI) in aqueous acid media. J Phys Org Chem 21:1–10

    Article  CAS  Google Scholar 

  • Bellamy LJ (1966) The infrared spectra of complex molecules, 2nd edn. p 354

    Google Scholar 

  • Bertoni FA, Bellu SE, Conzalez JC, Sala LF (2014) Reduction of hypervalent chromium in acidic media by alginic acid. Carbohyd Polym 114:1–11

    Article  CAS  Google Scholar 

  • Bouklas N, Huang R (2012) Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter 8:8194–8200

    Article  CAS  Google Scholar 

  • Braccini I, Grasso RP, Perez S (1999) Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: a molecular modeling investigation. Carbohyd Res 317:119–130

    Article  CAS  Google Scholar 

  • Braccini I, Prez S (2001) Molecular basis of induced gelation in alginates and pectins. the egg box model revisited. Biomacromolecules 2:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Capellos C, Bielski BHJ (1972) Kinetic systems. Wiley, New York

    Google Scholar 

  • Chanda SK, Hirst EL, Percival EG, Rees DA (1952) Structure of alginic acid. J Chem Soc, 1833–1937

    Google Scholar 

  • Chateriji S, Kwon IIK, ParK K (2007) Smart polymeric gels rodefining the limits of biomedical devices. Prog Polym Sci 32:1083–1112

    Article  CAS  Google Scholar 

  • Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Park K (2000) Synthesis and characterization of superporous hydrogel composites. J Controlled Release 65:73–82

    Article  CAS  Google Scholar 

  • Coats AW, Redferm JP (1964) Kinetic parameters from thermogravimetric data. Nature 20:68–69

    Article  Google Scholar 

  • Conway BE (1952) Electrochemical data. Elsevier, London

    Google Scholar 

  • Cotton FA, Wilkinson G (1972) Advanced inorganic chemistry, 3rd edn. New York

    Google Scholar 

  • Cozzi D, Desideri PG, Lepri L, Ciantell G (1968) Alginic acid. A new thin layer materil. Part I. J Chrom 35:396–404

    Article  CAS  Google Scholar 

  • Cozzi D, Desideri PG, Lepri L (1969a) The mechanism of ion exchange with alginic acid. Part II. J Chrom 40:130–137

    Article  CAS  Google Scholar 

  • Cozzi D, Desideri PG, Lepri L, Coas V (1969b) Ion-exchange thin layer chromatographic separation of amino acids on alginic acid. Part III. J Chrom 40:138–144

    Article  CAS  Google Scholar 

  • Cozzi D, Desideri PG, Lepri L, Coas V (1969c) Thin-layer chromatographic and electrophoretic behavior of primary aromatic amines on week ion exchangers. J Chrom 43:463–472

    Article  CAS  Google Scholar 

  • Creton C, Papon E (2003) Advances in polymer science. Polymer Therapeutics I, pp 1–8

    Google Scholar 

  • Davidson RL (1980) Handbook of water soluble gums and resins. McGraw Hill Book Company, New York

    Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • Dentini M, Rinaldi G, Barbelta A, Risica D, Skjak-Break G (2006) Acid gel formation in (pseudo) alginates with and without G-blocks produced by epimerizing mannuronan with C5 epimerases. Carbohyd Polym 63:519–526

    Article  CAS  Google Scholar 

  • Despang F, Borner A, Dittrich R, Tomandl G, Pompe W, Gelinsky M (2005) Alginate/calcium phosphate scaffolds with oriented tube-like pores. Materialwissenschaft und Werkstoffteechink 36:761–767

    Article  CAS  Google Scholar 

  • Dickel G, Meyer A (1953) Kinetics of ion exchange on resin exchanges. Z Electrochem 57:901–908

    Google Scholar 

  • Dittrich R, Despang F, Bernhardt A, Mannschatz A, Hanke Th, Tomandl G, Pompe W, Gelinsky M (2006) Mineralized Scaffolds for hard tissue engineering by ionotropic gelation of alginate, In: Vincenzini P (ed) Advances in science and technology, vol 49, pp 159–164, Trans Tech Publication Inc

    Google Scholar 

  • Delbow J, Fried E, Jia HD (2004) Chemically induced swelling of hydrogels. J Mech Phys Solids 52:51–84

    Article  CAS  Google Scholar 

  • Delbow J, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput Methods Appl Mech Eng 194:4474–4485

    Google Scholar 

  • Draget KI, Smidsrod O, Skjaak –Barak G (2005) Alginates from algae. In: Steinbuchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry, properties, production, and patents. Wiley, Wein

    Google Scholar 

  • Draget KI, Moe ST, Skjajak-Barak G, Smidsrod O (2006) Food polysaccharides and their applications. In: Slephan A, Philips CO, Williams PA (eds). CRC Press, Boca Raton, pp 289–234

    Google Scholar 

  • Draget KI (2009). In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids, 2nd edn. Norwegien University of Science and Technology, Woodhead Publishing Limited, Chapter 29, pp 807–828

    Google Scholar 

  • Drummnd DW, Hirst EL, Percival E (1962) The structure of alginic acid. Part IV. Partial hydrolysis of the reduced polysaccharides. J Chem Soc 1493–1499

    Google Scholar 

  • During CJ, Moorman KN (1993) Nonlinear swelling of polmer gel. J Chem Phys 98:4275–4293

    Article  Google Scholar 

  • Dumitriu S (2002) Polymeric biomaterials, 2nd edn. Marcel Dekker Publisher, New York

    Google Scholar 

  • Dyhurst D (1970) Periodate oxidation of diols and other functional groups. Analytical and structural application. Pergamon Press, Oxford

    Google Scholar 

  • El-Dessouky MM, Hegazy EA, Dessouki AM, El-Sawy NM (1986) Electrical conductivity of anionic graft copolymers obtained by radiation grafting of 4-vinylpyridine onto poly (Vinyl chloride). Radiat Phys Chem 27:443–446

    CAS  Google Scholar 

  • EL-Cheikh F, Issa IM, Awad A (1974) About the electric conductance and relaxation effects in metal alginate gels. Bull Fac Sci, Assiut, Egypt 3:199–210

    CAS  Google Scholar 

  • El-Gahami MA, Khairou KS, Hassan RM (2003) Thermal decomposition of Sn(II), Pb(II), Cd(II) and Hg(II) cross-linked metal-alginate complexes. Bull Polish Acad Sci 51:105–113

    CAS  Google Scholar 

  • Fawzy A (2016) Oxidation of alginate and pectate biopolymers by cerium (IV) in perchloric and sulfuric acid solutions: a comparative kinetic and mechanistic study. Carbohyd Polym 138:356–364

    Article  CAS  Google Scholar 

  • Fisher FG, Dorfel M (1955) The polyuronic acid in brown algae. Zeitschrift Fur Physiologische Chemie 302:186–194

    Article  Google Scholar 

  • Freeman ES, Caroll B (1958) The Application of thermoanalytical techniques to reaction kinetics. The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem 62:394–397

    Article  CAS  Google Scholar 

  • Frost AA, Pearson RG (1965) Kinetics and mechanisms, 2nd edn. Willey, New York

    Google Scholar 

  • Gemeiner P, Kurillova L, Malovikova A, Toth D, Tomasovicova D (1989) Properties of spherical calcium pectate and alginate gels and their use in diffusion chromatography, solids separations and immobilization of enzymes and cells. Folia Microbiol 34:214–227

    Article  CAS  Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes, 2nd edn. Wiley, New York

    Google Scholar 

  • Glasstone S, Lewis D (1960) Elements of physical chemistry. 2nd edn. Van Nostrand

    Google Scholar 

  • Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohyd Polym 67:296–304

    Article  CAS  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith JC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. Fed Eur Biochem Soc (FEBS) 32:195–198

    Article  CAS  Google Scholar 

  • Grillet AM, Wyatt NB, Gloe LM (2012). In; Vicente JD (ed) Rheoly, polymer gel rheology and adhesions, 1 st edn. Intech Publisher, Chapter 3, pp 59–80 (www.Intechopen.com)

  • Hassan RM, El-Shatoury SA, Mousa MA, Hassan A (1988a) Kinetics and mechanism of sol-gel transformation for polyelectrolytes of capillary cupper alginate ionotropic membranes. Eur Polym J 24:1173–1175

    Article  CAS  Google Scholar 

  • Hassan RM, Wahdan MH, Hassan A (1988b) Kinetics and mechanism of sol-gel transformation on polyelectrolytes of nickel alginate ionotropic membranes. Eur Polym J 24:281–283

    Article  CAS  Google Scholar 

  • Hassan RM, Summan AM, Hassan MK, El-Shatoury SA (1989a) Kinetics and mechanism of sol-gel transformation on polyelectrolytes of some transition metal ions especially cobalt alginate ionotropic membranes. Eur Polym J 25:1209–12012

    Article  CAS  Google Scholar 

  • Hassan RM (1989) Influence of frequency on electrical properties of acid and trivalent metal alginate ionotropic gels. A correlation between strength of chelation and stability of polye1ectrolyre gels. High Perform Polym 1:275–284

    Article  CAS  Google Scholar 

  • Hassan RM, Makhlouf MTh, Summan AM, Awad A (1989b) Influence of frequency on specific conductance of polyelectrolyte gels with special correlation between strength of chelation and stability of divalent metal alginate ionotropic gels. Eur Polym J 25:993–996

    Article  CAS  Google Scholar 

  • Hassan RM, Abd-All MA (1991) Ionotropic gels of alginate polyelectrolyte. I. Potentiometric determination of the ionization constant of alginic acid polyelectrolyte in relation to sol-gel transformation mechanism. Acta Polym 42:447–450

    Article  CAS  Google Scholar 

  • Hassan RM (1991a) Alginate polyelectrolyte ionotropic gels. III. Kinetics of exchange of chelated divalent transition metal ions especially cobalt (II) and copper (II) by hydrogen ions in capillary ionotropic metal alginate polymembrane gels. J Mater Sci 26:5806–5810

    Article  CAS  Google Scholar 

  • Hassan RM (1991b) Alginate polyelectrolyte ionotropic Ggels. VII. Physicochemical studies on silver (I) alginate complex with special correlation to the electrical properties and geometrical structure. Coll Surf 60:203–212

    Article  CAS  Google Scholar 

  • Hassan RM, Awad A, Hassan A (1991) Separation of metal alginate ionotropic gels to polymembranes with special evidence on the position of chelation in copper alginate complex. J Polym Sci 29:1645

    Article  CAS  Google Scholar 

  • Hassan RM, El-Shatoury SA, Makhlouf MTh (1992a) Alginate polyelectrolyte ionotropic gels. IX. Diffusion control effects on the relaxation time of sol-gel transformation of divalent metal alginate ionotropic gel complexes. Coll Polym Sci 12:1237–1242

    Article  Google Scholar 

  • Hassan RM, El-Shatoury SA, Makhlouf MTh (1992b) Alginate polyelectrolyte ionotropic gels. XII. Chromatographic separation of metal ions in mixture solutions. High Perform Polym 4:49–54

    Article  CAS  Google Scholar 

  • Hassan RM, El-Shatoury SA, Said AA (1992c) Alginate polyelectrolyte ionotropic gels. XVI. Kinetics and chemical equilibria studies for heterogeneous ion exchange of polyvalent metal ions in alginate gel complexes. High Perform Polym 4:173–179

    Article  Google Scholar 

  • Hassan RM, Farid T, El-Bellihi (1992d) Kinetics of thermal decomposition of gamma—irradiated and unirradiated of mandelhydroxamic acid. J Radioanal Nucl Chem Lett 165:277–286

    Article  CAS  Google Scholar 

  • Hassan RM (1993a) Alginate polyelectrolyte ionotropic gels. XIII. Geometrical aspects for chelation in metal alginate complexes related to their physicochemical properties. Polym Inter 31:81–86

    Article  CAS  Google Scholar 

  • Hassan RM (1993b) Alginate polyelectrolyte ionotropic gels. XIV. Kinetics and mechanism of formation of intermediate complex during the oxidation of alginate polysaccharide by alkaline permanganate with a spectrophotometric evidence of manganite (VI) transient species 31:51–59; 31:1147–1151

    Google Scholar 

  • Hassan RM (1993c) Alginate polyelectrolyte ionotropic gels. II. Kinetics and mechanism of exchange of chelated nickel (II) by hydrogen ions in capillary ionotropic nickel alginate polymembrane gel complex. J Mater Sci 28:384–388

    Article  CAS  Google Scholar 

  • Hassan RM, Ikeda Y, Tomiyasu H (1993a) Alginate polyelectrolyte ionotropic gels. XV. Physicochemical properties of uranyl alginate complex especially the chemical equilibrium and electrical conductivity related to the coordination geometry. J Mater Sci 28:5143–5147

    Article  CAS  Google Scholar 

  • Hassan RM, Abd-Alla MA, El-Zohary MF (1993b) Alginate polyelectrolyte ionotropic gels. VI. Novel synthesis of diketoalginate as bipolymer precursor. J Appl Polym Sci 47:1649–1652

    Article  CAS  Google Scholar 

  • Hassan RM, El-Shatoury SA, Azab HA (1995a) Alginate polyelectrolyte ionotropic gels. XVII. Influence of diffusion controls on relaxation time of gelation between alginate polyelectrolyte and polyvalent metal ions. Asw Sc Tech Bull 16:62–73

    CAS  Google Scholar 

  • Hassan RM, El-Shatoury SA, Osman MA, El-Korashy A (1995b) Alginate polyelectrolyte ionotropic gels. VIII. Electrical properties of di- and trivalent metal alginate complexes specially iron (IIl) and chromium (IIl) alginate resins. Bull Fac Sci Assiut Univ Egypt 24:141–153

    CAS  Google Scholar 

  • Hassan RM, Dahy A, Ibrahim SM, Zaafrany IA, Fawzy A (2012a) Oxidation of some macromolecules. Kinetics and mechanism of oxidation of methyl cellulose polysaccharide by permanganate ion in acid perchlorate solutions. Indust Eng Chem Res 51:5424–5432

    Article  CAS  Google Scholar 

  • Hassan RM, Tirkistani FA, Zaafarany IA, Fawzy A, Khairy M, Iqbal S (2012b) Polymeric biomaterial hydrogels. I. Behavior of some ionotropic cross-linked metal-alginate hydrogels especially copper-alginate membranes in some organic solvents and buffer solutions. Advan Biosci Biotechnol 3:845–854

    Article  CAS  Google Scholar 

  • Hassan RM (2013). Recent development in carbohydrate research. In: Pandalai SG (ed) Transworld Research Network, vol 3, pp 27–63 (A Review Article)

    Google Scholar 

  • Hassan RM, Zaafarany IA, Gobouri A (2013a) Temperature-dependence of electrical conductivity of some natural coordination polymeric biomaterials especially cross-linked tetravalent metal-alginate complexes with correlation between the coordination geometry and complex stability. Advan Biosen Bioelectron 2:16–24

    Google Scholar 

  • Hassan RM, Gobouri A, Zaafarany IA (2013b) Kinetics and mechanism of sol-gel transformation between sodium alginate anionic polyelectrolyte and some alkaline earth metal ions with formation of coordination biopolymer ionotropic polymembrane hydrogels of capillary structures. Advan Biosen Bioelectron 2:47–56

    Google Scholar 

  • Hassan RM, Zaafarany IA, Gobouri AA, Fawzy A, Takagi HD (2014a) Polymeric biomaterial hydrogels: II. Behavior of some coordination biopolymeric metal-alginate ionotropic hydrogels in aqueous solutions. J Life Medcine 1:41–47

    Article  Google Scholar 

  • Hassan RM, Zaafarany IA, Gobouri AA (2014b) Base-catalyzed oxidation of some anionic polyelectrolytes: kinetic and mechanistics aspects to electron-transfer process into hexacyanoferrate (III) oxidation of alginate polysaccharide in alkaline media. J Mol Cat A 386:28–34

    Article  CAS  Google Scholar 

  • Hassan RM, Zaafarany IA, Tirkistani FA, Ashgar BH, Takagi HD (2014c) Physicochemical studies on some coordination biopolymeric thorium (IV)-complexes: Kinetics and mechanism of non-isothermal decomposition of cross-linked thorium (IV)-alginate complex with correlation between coordination geometry and thermal stability. Current Advan Chem Res 1:7–14

    Google Scholar 

  • Hassan RM (2016). In: Taylor JC (ed) Ädvances in chemistry research, vol 30, Chapter 8, Nova Science Publishers, USA

    Google Scholar 

  • Haug A (1961) The affinity of some divalent metals on the properties of alginate. Acta Chem Scand 15:1794–1799

    Article  CAS  Google Scholar 

  • Haug A, Larsen B (1962) Quantitative of the uronic acid composition of alginates. Acta Chem Scand 16:1908–1918

    Article  CAS  Google Scholar 

  • Haug A (1964) Composition and properties of alginate. Thesis. Norwegian Institute of Technology, Trondheim, Norway, p 123

    Google Scholar 

  • Haug A, Smidsrod O (1965) The effect of divalent metals on the properties of alginate solutions II. Comparison of different metal ions. Acta Chem Scand 19:341–351

    Article  CAS  Google Scholar 

  • Haug A, Larsen B, Smidsrod O (1966a) Astudy of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  • Haug A, Larsen B, Smidsrod O (1966b) Astudy of the constitution of alginic acid by partial acid hydrolysis. Proc Int Seaweed Symp 5:271–277

    Google Scholar 

  • Haug A, Simidsrod O (1967) Strontium-calcium selectivity of alginate. Nature 215:757–759

    Article  PubMed  CAS  Google Scholar 

  • Haug A, Myklestad S, Larsen B, Smidsrod O (1967) Correlation between chemical structure and physical properties of alginates. Acta Chem Scand 21:768–778

    Article  CAS  Google Scholar 

  • Hellferich (1962) Ion exchange. Mc-Graw Hill, New York

    Google Scholar 

  • Higdon WT (1958) Studies of ionotropy: a special case of gelation. J Phys Chem 62:1277–1281

    Article  CAS  Google Scholar 

  • Higgins HG, Cm Stewart, Harrington KJ (1961) Infrared spectra of cellulose and related polysaccharides. J Polm Sci 51:59–84

    Article  CAS  Google Scholar 

  • Hirst EL, Percival E, Wold JK (1964) The structure of alginic acid Part IV. Partial hydrolysis of the reduced polysaccharide. J Chem Soc 1493–1499

    Google Scholar 

  • Hirst E, Rees DA (1965) The structure of alginic acid. Part V. Isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharides. J Chem Soc 1182–1187

    Google Scholar 

  • Hong W, Zhao X, Zhou J, Suo Z (2008) A theory of couled diffusion and large deformation in polymeric gels. J Mechan Phys Solid 56:1779–1793

    Article  CAS  Google Scholar 

  • Kara S, Tambler C, Bermek H, Pekean O (2003) Cation effects on sol-gel and gel-sol phase transitions of k-carrageenan—water system. Inter J Biolog Macromol 31:177–185

    Article  CAS  Google Scholar 

  • Kasahara F (1954) Formation of free acid radicals and depolymerization mechanism in heating of sodium alginate. Kimitsu Kagaku Kogyo 62:551–594

    Google Scholar 

  • Katchalsky A, Michael I (1955) Polyelectrolyte gels in salt solutions. J Polm Sci 15:69–86

    Article  CAS  Google Scholar 

  • Kavanagh GM, Ross-Murphy SB (1998) Rheological characterization of polymer gels. Prog Polym Sci 23:533–562

    Article  CAS  Google Scholar 

  • Kerchove AJ, Elimelech M (2007) Formation of polysaccharide gel layers in the presence of Ca2 + and K + ions. Measurements and mechanisms. Biomacromol 8:113–121

    Article  CAS  Google Scholar 

  • Khairou KS, Hassan RM (2002) Temperature-dependence of electrical conductivity for cross-linked mono- and divalent metal alginate complexes. High Perform Polym 14:93–102

    Article  CAS  Google Scholar 

  • Khairou KS, Al-Gethami WM, Hassan RM (2002a) Kinetics and mechanism of sol-gel transformation between sodium alginate polyelectrolyte and some heavy divalent metal ions with formation of capillary structure polymembrane ionotropic gels. J Memb Sci 209:445–456

    Article  CAS  Google Scholar 

  • Khairou KS, Al-Gethami WM, Hassan RM (2002b) Kinetics and mechanism of sol-gel transformation on polyelectrolyte of divalent metal ions alginate complexes with formation of capillary ionotropic polymembrane. Bull Polish Acad Sci 49:299–305

    Google Scholar 

  • Khairou KS (2002) Kinetics and mechanism of the non-isothermal decomposition 1. Some divalent cross-linked metal-alginate ionotropic gels. J Therm Analy Calor 69:583–588

    Article  CAS  Google Scholar 

  • Khairou KS, Al-Gethami WM, Hassan RM (2003) Diffusion controls relaxation time and acceleration of velocity of sol-gel transformation for cross-linked metal alginate ionotropic gel complexes. Bull Polish Acad Sci 51:207–220

    CAS  Google Scholar 

  • Kondawar S, Mahore R, Dahegaonkar A, Agrawal S (2011) Electrical conductivity of cadmium oxide nanoparticles embedded polyaniline nanocomposites. Advanc Appl Sci Res 2:401–406

    CAS  Google Scholar 

  • Kristiansen KA, Potthast A, Christensen E (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohyd Res 345:1264–1271

    Article  CAS  Google Scholar 

  • Larson RG (1988) Constitutive equations for polymer melts and solutions, Butterworths, Boston, ISBN 0909901199

    Google Scholar 

  • Li L, Fang Y, Vreeker R, Appelqvist I (2007a) Reexamining the egg-box model in calcium-alginate gels with X-ray diffraction. Biomacromol 8:464–468

    Article  CAS  Google Scholar 

  • Leffler L, Grunwald E (1963) Rates and equilibria of organic reactions. Wiley, New York

    Google Scholar 

  • Lepri L, Desideri PG, Coas V, Cozzi D (1970) Seperation of primary amine on alginic acid and carboxymethyl cellulose columns. J Chrom 49:239–248

    Article  CAS  Google Scholar 

  • Lepri L, Desideri PG, Coas V (1972) Chromatographic and electrophpretic behavior of purines and pyrimdines on layers of weak and strong cation exchangers. J Chrom 64:271–284

    Article  CAS  Google Scholar 

  • Li L, Fang Y, Vreeker R, Appelvist I (2007b) Reaxamining the egg-box model in calcium—alginate gels with X-ray diffraction. Biomacromolecules 8:464–468

    Article  PubMed  CAS  Google Scholar 

  • Lin YC, Wang SL (2012) Chromium (VI) reactions of polysaccharide biopolymers. Chem Enj J 181–182:479–485

    Article  CAS  Google Scholar 

  • Makhlouf MTh, El-Shatoury SA, Hassan RM (1992) Alginate polyelectrolyte ionotropic gels. XIX. Spectrophotometric detection of short-lived intermediate in alkaline permanganate oxidation of alginate polysaccharide. High Perform Polym 4:89–91

    Article  CAS  Google Scholar 

  • Mimura H, Ohta H, Hoshi H, Akiba K, Wakui Y, Onedera Y (2001) Uptake behavior of americium on alginic acid and alginate polymer gel. J Radioanal Nucl Chem 247:33–40

    Article  CAS  Google Scholar 

  • Moll G (1963) Application of Al-alginate gels with channel-like pores as reversible filter for bacteria and viruses. Zeitschrift Fur Hygiene 149:297–314

    Article  PubMed  CAS  Google Scholar 

  • Mongar JL, Wassermann A (1952) Influence of ion exchange on optical properties. Shape and elasticity of fully-swollen alginate fibers. J Chem Soc 500–510

    Google Scholar 

  • Morris ER, Rees DA, Thom D, Boyl J (1978) Chiroptical and stoichiometric evidence of aspecific primary dimerization process in alginate gelation. Carbohyd Res 66:145–154

    Article  CAS  Google Scholar 

  • Mousa MA, Summan AM, Al-Sousi GN (1990) Kinetics of isothermal decomposition of gamma-irradiated and unirradiated cobalt (II) malonato complex. Thermochim Acta 165:23–29

    Article  CAS  Google Scholar 

  • Mrozek RA, Cole PJ, Qtim KJ, Shull KR, Lenhart JL (2011) Influence of solvent size on the mechanical properties and rheology of polydimethylsiloxane-based polymeric gels. Polymer 52:3422–3430

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (1973) Natural chelating polymers, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  • Navarette RC, Seheult JU, Coffey MD (2001) New biopolymer for drilling, drill-in, completions, spacer, and coil-tubing fluids. Part II SPE inter-symposium on oilfield chemistry, Houston, Texas, USA

    Google Scholar 

  • Nishima Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1b from synchroton, X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Obolonkova ES, Belavtseva EM, Braudo EE, Tolstoguzov VB (1974) Formation of structures of anisotropic gels. II. Electron-microscope investigation of anisotropic calcium alginate gels. Coll Polym Sci 252:526–529

    Article  CAS  Google Scholar 

  • Osada Y, Gong JP, Uchida M, Isogi N (1955). J Appl Phys Jpn 34: l–511

    Google Scholar 

  • Outokesh M, Mimura H, Niboroi Y, Tanaka K (2006) Equilibrium and kinetics of silver uptake by multinuclear alginate microcapsules comprising an ion exchanger matrix and cyanex organophosphonic acid extractant. Indus Eng Chem Res 50:487–493

    Google Scholar 

  • Park H, Park K (1996) In: Ottenbrite RM, Huang SJ, Park K (eds) Hydrogels and biodegradable polymers for bioapplications, Chapter 1, ACS Symposium Series 627, Libarary of Congress Cataloging, Washington, USA

    Google Scholar 

  • Panteleeva AP, Dolmatova MYU, Dolmatov Yu (1972) Ion exchange interaction of some divalent cations with alginate. Radiokhimiya 14:741–743

    CAS  Google Scholar 

  • Parnter T, Larsen B (1970) Formation of hemiacetals between neighbouring hexauronic acid residues during the periodate oxidation of alginate. 24:813–833

    Google Scholar 

  • Pearson FG, Marchesault CY, Liang CY (1960) Infrared spectra of crystalline polysaccharides V. Chitin. J Polym Sci 43:101–116

    Article  Google Scholar 

  • Plazinski W (2011) Molecular basis of calcium binding by polyguluronate chains. Revising the egg-box model. J Comput Chem 32:2988–2995

    Article  PubMed  CAS  Google Scholar 

  • Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anistropic capillary hydrogels. Biomaterials 27:3560–3569

    PubMed  CAS  Google Scholar 

  • Pratt AB, Weber FE, Schmoekel HG, Muller R, Hubbel JA (2004) Sysetic extracellular matrices for in situ tissue engineering. Biotec Bioeng 86:27–36

    Article  CAS  Google Scholar 

  • Purz HJ (1972) Morphological investigations of ordered gel formation in polyelectrolytes. J Polym Sci 78:405–409

    Google Scholar 

  • Putnam AJ, Mooney DJ (1996) Tissue engineering using synthetic extracellular matrices. Nat Med 2:824–826

    Article  PubMed  CAS  Google Scholar 

  • Rees DA, Samuel JWB (1967) The structure of alginic acid. Part VI. Minor features and structural variation. J Chem Soc C 2295–2297

    Google Scholar 

  • Rees DA (1972a) Polysaccharide gels. A molecular view. Chem Indust 16:630–636

    Google Scholar 

  • Rees DA (1972) Shapely Polysaccharide; The eighth colworth medal lecture. Biochem J 126:257–273

    Google Scholar 

  • Rees DA, Walesh EJ (1977) Secondary ans teriary structure of polysaccharides in solution gels. Angew Chem Int Ed English 16:214–224

    Google Scholar 

  • Ricka J, Tanaka T (1984) Swelling of ionic gels:quantitative performance of the Donnan theory. Macromolecules 17:2916–2921

    Article  CAS  Google Scholar 

  • Richman D, Thomas H (1956) Self diffusion of sodium ion in cation exchange resin. J Phys Chem 60:237–239

    Article  CAS  Google Scholar 

  • Rigter PI, Peppas NA (1987) Simple equation for description of solute release. II. Ficikian and analogous release from swellable devices. J Contr Rel 5:37–42

    Article  Google Scholar 

  • Ross-Murphy SB (1995) Structure property relationships in food biopolymer gels and-solutions. J Rhelogy 39:1451–1463

    Article  CAS  Google Scholar 

  • Roy N, Saha N, Kitano T, Saha P (2010a) Development and characterization of novel medicated hydrogel wound dressing. Soft Materials 8:130–148

    Article  CAS  Google Scholar 

  • Roy N, Saha N, Humpolicek P, Saha P (2010b) Permeability and biocompatibility of novel medicated hydrogel wound dressing. Soft Materials 8:338–357

    Article  CAS  Google Scholar 

  • Saarai A, Saha N, Kitano T, Saha P (2009) Natural resource based medicated hydrogel for health care. In: Proceedings frontiers in polymer science, international symposium celebrating the 50th anniversary of the Journal Polymer, Mainz, Germany

    Google Scholar 

  • Saha N, Roy N, Saha P (2008) Allicin containing novel anti-microbial hydrogel. In: Proceedings fifth international conference on polymer modification, degradation and stabilization, Liege, Belgium, September

    Google Scholar 

  • Saha N, Sarrai A, Roy N, Kilano T, Shasaho P (2011) Polymeric biomaterials based hydrogels for biomedical application. J Biomed Nanotech 85:85–90

    Google Scholar 

  • Said AA, Hassan RM (1993) Thermal decomposition of some divalent metal alginate gel compounds. J Polym Degrad Stabil 39:393–397

    Article  CAS  Google Scholar 

  • Said AA, Abd El-Wahab MM, Hassan RM (1994) Thermal and electrical studies on some metal alginate compounds. Therm Chem Acta 233:13–24

    Article  CAS  Google Scholar 

  • Sakamot N, Kano N, Imaizumi H (2008) Bisorption of uranium and rare earth elements using biomass of algae. Biorg Chem Appl 2008:1–8. https://doi.org/10.1155/2008/706240

  • Sapozhnikov YuA, Kalmykov SN, Efimov IP, Remez VP (1996) The sorption of Sr-90 from waters by alginates. Appl Radiat Isot 47:887–888

    Article  CAS  Google Scholar 

  • Satava V (1971) MMechanism and kinetics from non-isothermal TG traces. Thermochem Acta 2:423–428

    Article  CAS  Google Scholar 

  • Schweiger RG (1962) Acetylation of alginic acid. I. Preparation and viscosities of align acetate. J Org Chem 27:1786–1789; II. Reaction of align acetates with calcium and other divalent ions. J Org Chem 27:1786–1791

    Google Scholar 

  • Schweiger RG (1964) Complexing of alginic acid with metal ions. Kolloid Z Z Polym 196:47–53

    Article  CAS  Google Scholar 

  • Segeren AJM, Boskamp JV, Tempel MVD (1974) Rheological and swelling properties of alginate gels. Fard Dissc Chem 57:255–262

    Article  CAS  Google Scholar 

  • Sestak JL, Bergenn G (1971) Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimi Acta 3:42–47

    Google Scholar 

  • Sestak JK (1966) Errors of kinetic data obtained from thermogravimetric curves at increasing temperature. Talanta 13:567–572

    Article  PubMed  CAS  Google Scholar 

  • Sharp JP, Brindely GW, Achar BNN (1966) Numerical data for some commonly used solid state reaction equations. Am Chem Soc 49:379–382

    CAS  Google Scholar 

  • Sharma VP. Mahto V (2006) Studies of less-expensive environmentally safe polymers for development of water based drilling fluids. SPE Asia Pacific oil and gas conference and exhibition, Adelaide, Australia

    Google Scholar 

  • Sharon N (1975) Complex carbohydrates. Their chemistry, biosynthesis and functions. Addison-Wesley Publishing Company, Reading Mass

    Google Scholar 

  • Shi D (2004) Biomaterials and tissues engineering. Springer, Berlin

    Book  Google Scholar 

  • Skvara F, Satava V (1970) Kinetic data from DTA measurements. J Therm Anal 2:325–335

    Article  CAS  Google Scholar 

  • Smidsrod O, Haug A, Larsen B (1963) Degradation of alginic acid in the presence of reducing compounds. Acta Chem Scand 17:2628–2637

    Article  Google Scholar 

  • Smidsrod O, Haug A, Larsen B (1965) Kinetic studies of the degradation of alginic acid by hydrogen peroxide in the presence of iron salts. Acta Chem Scan 19:143–152

    Article  Google Scholar 

  • Smidsrod O, Haug A (1968) Dependence upon uronic acid composition of some ion exchange properties of alginates. Acta Chem Scand 22:1989–1997

    Article  Google Scholar 

  • Smidsrod O, Haug A (1972) Dependence uponthe sol-gel state of the ion exchange properties of alginates. Acta Chem Scand 26:2063–2074

    Article  PubMed  CAS  Google Scholar 

  • Smidsrod O (1973) Some physical properties of alginates in solution and in the gel state. Thesis. Norwegian Institute of Technology, Trondheim

    Google Scholar 

  • Smidsrod O (1974) Molecular basis for some physical properties of alginates in the gel State. Farad Disc Chem Soc 57:263–274

    Article  Google Scholar 

  • Solmon MJ, Speicer PT (2010) Microstructural regimes of colloidal rod suspensions, Gels and glasses. Soft Matter 6:1391–1400

    Article  CAS  Google Scholar 

  • Sulaneck WR, Clark DT, Samuelson EJ (1990) Science and application of conducting polymers. IOP Pubishing Ltd, UK

    Google Scholar 

  • Sutherland IW (1991) In: Byron D (ed) Biomaterials: novel materials from biological sources. Stockton Press, New York, pp 39–311

    Google Scholar 

  • Takahashi E, Emura E (1960) Ion exchange of alginic acid. II. Selective ion exchange properties of alginate for metallic ions. Kogyo Kawagaku Zasshi JPH 63:1025–1030

    Article  CAS  Google Scholar 

  • Takahashi E, Ishiwatari Y, Shirai H (1963) Selective ion exchange properties of alginate in mixed solutions of metal ions. Kogyo Kawagaku Zasshi Jpn 63(66):1458–1465

    Article  Google Scholar 

  • Tanaka T, Filmore DJ (1999) Kinetics of swelling gels. J Chem Phys 76:1214–1218

    Google Scholar 

  • Tentenboum M, Greger HP (1956) Self diffusion of cations, non-exchange anions and solvent in a cation exchange resin system. J Phys Chem 21:150–162

    Google Scholar 

  • Thiele H, Anderson G (1955a) Iontropic gels of polyuronic gels. Part III. Degree of order. Koll Z 76:140–145

    Google Scholar 

  • Thiele H, Anderson G (1955) Iontropic gels. Part II. Orders. Colloid and Polymer Science 142:5–24; Part III. Order of Ionotropic Gels. Coll Polym Sci 142:5–24

    Google Scholar 

  • Thiele H, Anderson G (1953) Identical structure and pattern of deca classified collagen and ionotropic gel. Naturwissenschaften 40:366–366

    Article  CAS  Google Scholar 

  • Thiele H, Longmaack (1957a) Structure formation by ion diffuse, simplex ionotropism. Z Naturforsch 12B:14–23

    Google Scholar 

  • Thiele H, Longmaack (1957b) Structure formation by ion diffuse, Simplex ionotropism. Z Naturforsch 12:14B–23B

    Article  Google Scholar 

  • Thiele H, Hallich K (1957) Capillary structure in ionotropic gels. Koll Z 151:1–12

    Article  CAS  Google Scholar 

  • Thiele H, Hallich K (1959) Application of capillary structure of ionotropic alginate gels as filters. Coll Polym Sci 163:115–122

    CAS  Google Scholar 

  • Thiele VH, Plohnke K, Brandt E, Moll G (1962) Order of polyelectrolyte for ion diffusion. Kolloid Z Poly 182:24–34

    CAS  Google Scholar 

  • Thiele H, Awad A (1966) Ions and their biological effects. Investigation on ionotropic gels. Biotechnology 3:63–75

    CAS  Google Scholar 

  • Thiele H (1967) Histalyse and Histogenese. Gewebe und ionotrope gele. Prinzip einer Strturbildung, Frankfurt

    Google Scholar 

  • Thiele H, Awad A (1969) Nucleation ans oriented crystallization apatite in ionotropic gels. J Biomed Mater Res 3:431–432

    Article  PubMed  CAS  Google Scholar 

  • Thomas DP, Randal TC, Ralph M (2006) Molecular models of alginic acid interaction with calcium ions and calcite surface. Geochim et Cosmochim Acta 70:3508–3532

    Article  CAS  Google Scholar 

  • Tirkistani FAA, Hassan RM (2012) Kinetics and mechanisms of non-isothermal decompositionof some cross-linked metal-alginate complexes especially trivalent-metal-alginate complexes. Orient J Chem 28:913–920

    Article  CAS  Google Scholar 

  • Tiwari A, Dewangean T, Bajpai AK (2008) Removal of toxic As(V) ions onto alginate and carboxmethyl cellulose beads. J Chin Chem Soc 55:952–961

    Article  CAS  Google Scholar 

  • Tolstoguzov VB (1975) Formation and structure of anisotropic gels. 1. Anisotropic gels of alaminated structure. Coll Polym Scii 253:109–116

    Article  CAS  Google Scholar 

  • Torres LG, de Sanchez LV, Beltran NA, Jimenez BE (1998) Production and characterization of Ca-akginate biocatalyst for removal of phenol and chlorophenol from water. Process Biochem 33:625–634

    Article  CAS  Google Scholar 

  • Torres LG, Velasquez A, Mrito-Arias MA (2011) Ca-alginate spheres behavior in presence of some solvents and water-solvent mixturs. Advanc Biosci Biotech 2:8–12

    Article  CAS  Google Scholar 

  • Tsi H, Pence TJ, Kirkinis E (2004) Swelling induced finite strain flexure in a rectangular block of an istropic elastic material. J Elasticity 75:69–89

    Article  Google Scholar 

  • Tunic MH (2010) Small-strain dynamic rheology of food protein networks. J Agric Food Chem 59:1481–1486

    Article  CAS  Google Scholar 

  • Yonese M, Baba K, Kishimoto H (1988) Stress relaxation of alginate gels crosslinked by various divalent metal ions. Bull Chem Soc Jpn 61:1857–1862

    Article  CAS  Google Scholar 

  • Yashihito O, Gong JP (1998) Soft and wet materials polymer gels. Adv Mater 10:827–837

    Article  Google Scholar 

  • Welch AJE (1955) In: Carner WE (ed) Chemistry of the solid state. Butterworth, London, p 318

    Google Scholar 

  • Whistler RL, Kirby KW (1952) Polysaccharides of marine algae. Compounds and behavior of polysaccharides. Z Physiol Chem 314:46–51

    Article  Google Scholar 

  • Whistler RL, Schweiger R (1958) Oxidation of alginic acid with hypochlorite at different hydrogen ion concentrations. J Am Chem Soc 80:57015704

    Google Scholar 

  • White RE, Bockris JOM, Conway BE, Yeager E (1984) Comprehensive treatise of electrochemistry. Plenum Press, New York

    Book  Google Scholar 

  • Woelki S, Kohler HH (2003) Orientation of chain molecules in ionotropic gels. A Brownian dynamic model. Chem Phys 293:323–340

    Article  CAS  Google Scholar 

  • Wu Y, Mimura H, Niibori (2009) Selective uptake of plutonium (IV) on calcium alginate gel polymer. TBP microcapsule J Radioanal Nucl Chem 281:513–517

    Article  CAS  Google Scholar 

  • Wu Y, Outokesh M, Mimura H, Nibori Y (2008) Selective uptake properties of metal ions by hybrid microcapsules enclosed with TBP. Prog Nucl Energ 50:487–493

    Article  CAS  Google Scholar 

  • Zaafarany IA, Khairou KS, Hassan RM (2009a) Physicochemical studies on cross-linked thorium (IV)-alginate complex especially the electrical conductivity and chemical equilibrium related to the coordination geometry. Arab Saudi J 2:1–10

    Article  CAS  Google Scholar 

  • Zaafarany IA, Khairou KS, Hassan RM, Ikeda Y (2009b) Physicochemical studies on some natural polymeric complexes of quadrivalent metal cations. Electrical conductivity and chemical equilibrium of cross-linked selenium (IV)-alginate complex with correlation between the complex stability and geometrical structure. Saudi Chem Soc 13:49–80

    CAS  Google Scholar 

  • Zaafarany IA (2010) Non-isothermal decomposition of Al, Cr and Fe cross-linked trivalent metal-alginate complexes. JKAU Sci 22:193–202. https://doi.org/10.4197/sci.22-1.13

  • Zaafarany IA, Khairou KS, Hassan RM (2010) Physicochemical studies on some cross-linked trivalent metal-alginate complexes especially the electrical conductivity and chemical equilibrium related to the coordination geometry. High Perform Polym 22:69–81

    Article  CAS  Google Scholar 

  • Zaafarany IA (2010b) Non-isothermal decomposition of Al, Cr and Fe cross-linked trivalent metal-alginate complexes. Bulletin JKAU 22:193–201

    Article  Google Scholar 

  • Zaafarany IA, Khairou KS, Tirkistani FA, Iqbal S, Khairy M, Hassan RM (2012) Kinetics and mechanisms of non-isothermal decomposition of Ca(II)-, Sr(II)- and Ba(II)-cross-linked divalent metal-alginate complexes. Inter J Chem 4:7–14

    Article  CAS  Google Scholar 

  • Zaafarany IA (2013) Kinetics and mechanism of sol-gel transformation between some trivalent- and tetravalent- metal ions and sodium alginate anionic polyelectrolyte with formation of coordination biopolymeric structure polymembrane hydrogels of capillary structures. Exner-correlation for some gelation processes. J Advanc Chem 3:133–142

    Article  Google Scholar 

  • Zaafarany IA (2014) Temperature dependence of electrical conductivity for some natural coordination polymeric biomaterials especially cross-linked trivalent metal—alginate complexes with correlation between the coordination geometry and complex stability. Advanc Chem Eng 4:1–7

    Google Scholar 

  • Zaafarany IA, Altass H, Alfahemi J, Khairou KS, Hassan RM (2015) Electrical conductivity and chemical equilibria of coordination biopolymeric cerium (IV) alginate complex with correlation between the structure and complex stability. Int J Chem 7:57–67

    Article  CAS  Google Scholar 

  • Zhang I, Shung KK, Edwards DA (1996) Hydrogels with enhanced mass transfer for transdermal drug delivery. J Pharm Sci 85:1312–1313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to present their grateful acknowledgement with thanks to Dr. Samia M. Ibrahim, Assistant Professor, Faculty of Science, Assiut University, New-Valley Branch, and Egypt and—Dr. Ishaq A. Zaafarany, Faculty of Applied Sciences, Umm Al-Qura University, Kingdom of Saudi Arabia, for their valuable help during the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refat M. Hassan (El-Moushy) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan (El-Moushy), R.M., Khairou, K.S., Awad, A.M. (2018). New Aspects to Physicochemical Properties of Polymer Gels in Particularly the Coordination Biopolymeric Metal–Alginate Ionotropic Hydrogels. In: Thakur, V., Thakur, M. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6083-0_10

Download citation

Publish with us

Policies and ethics