Skip to main content

Nanogels of Natural Polymers

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

Abstract

Over the past few decades, a considerable interest was shown in developing nanogels (NGs) based on natural polymers or their derivatives to serve as generally regarded as safe (GRAS) biomedical devices that fuse the properties of both hydrogels and nanoparticles. This chapter presents different strategies to synthesize NGs via physical self-assembly or covalent crosslinking and their applications in therapeutic/biomedical fields, such as drug delivery systems, tissue engineering, artificial chaperone, imaging probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Rai SM, Mahmood A (2016) Hydrogel microparticles as an emerging tool in pharmaceutical field: a review. Adv Polym Tech 35(2):121–128

    Article  Google Scholar 

  • Akiyoshi K, Nishikawa T, Shichibe S, Sunamoto J (1995) Stabilization of insulin upon supramolecular complexation with hydrophobized polysaccharide nanoparticle. Chem Lett 24:707–708

    Article  Google Scholar 

  • Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J (1998) Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J Control Release 54:313–320

    Article  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmacol 5:505–515

    Article  Google Scholar 

  • Alhaique F, Matricardi P, Di Meo C, Coviello T, Montanari E (2015) Polysaccharide-based self-assembling nanohydrogels: an overview on 25-years research on pullulan. J Drug Deliv Sci Technol 30:300–309

    Article  Google Scholar 

  • Alhaique F, Casadei MA, Cencetti C, Coviello T, Di Meo C, Matricardi P, Montanari E, Pacelli S, Paolicelli P (2016) From macro to nano polysaccharide hydrogels: an opportunity for the delivery of drugs. J Drug Deliv Sci Technol 32:88–99

    Article  Google Scholar 

  • Asadi H, Khoee S (2016) Dual responsive nanogels for intracellular doxorubicin delivery. Int J Pharm 511:424–435

    Article  Google Scholar 

  • Ashrafi H, Azadi A (2016) Chitosan-based hydrogel nanoparticle amazing behaviors during transmission electron microscopy. Int J Biol Macromol 84:31–34

    Article  Google Scholar 

  • Avadi MR, Sadeghi AMM, Mohammadpour N, Abedin S, Atyab F, Dinarvand R, Rafiee-Tehrani M (2010) Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 6:58–63

    Article  Google Scholar 

  • Bae KH, Mok H, Park TG (2008) Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials 29(23):3376–3383

    Article  Google Scholar 

  • Baker M (2010) Whole-animal imaging: the whole picture. Nature 463:977–980

    Article  Google Scholar 

  • Bazban-Shotorbani S, Dashtimoghadam E, Karkhaneh A, Hasani-Sadrabadi MM, Jacob KI (2016) Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery. Langmuir 32(19):4996–5003

    Article  Google Scholar 

  • Bencherif SA, Washburn NR, Matyjaszewski K (2009) Synthesis by AGET ATRP of degradable nanogel precursors for in situ formation of nanostructured hyaluronic acid hydrogel. Biomacromolecules 10:2499–2507

    Article  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34

    Article  Google Scholar 

  • Biewenga GP, Haenen G, Bast A (1997) The pharmacology of the antioxidant lipoic acid. Gen Pharmacol 29(3):315–331

    Article  Google Scholar 

  • Binh D, Hong PTT, Duy NN, Duoc NT, Dieu NN (2012) A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation. Radiat Phys Chem 81:906–912

    Article  Google Scholar 

  • Boddohi S, Moore N, Johnson PA, Kipper MJ (2009) Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules 10:1402–1409

    Article  Google Scholar 

  • Bode F, da Silva MA, Drake AF, Ross-Murphy SB, Dreiss CA (2011) Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks. Biomacromolecules 12:3741–3752

    Article  Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  Google Scholar 

  • Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Top Curr Chem 304:27–68

    Article  Google Scholar 

  • Chen X, Lv G, Zhang J, Tang S, Yan Y, Wu Z, Su J, Wei J (2014) Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. Int J Nanomed 9:1957–1965

    Article  Google Scholar 

  • Cheng L, Wang C, Ma X, Wang Q, Cheng Y, Wang H, Li Y, Liu Z (2013) Multifunctional upconversion nanoparticles for dual-modal imaging-guided stem cell therapy under remote magnetic control. Adv Funct Mater 23:272–280

    Article  Google Scholar 

  • Chopra M, Bernela M, Kaur P, Manuja A, Kumar B, Thakur R (2015) Alginate/gum acacia bipolymeric nanohydrogels-promising carrier for Zinc oxide nanoparticles. Int J Biol Macromol 72:827–833

    Article  Google Scholar 

  • Chung BG, Lee KH, Khademhosseini A, Lee SH (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12:45–59

    Article  Google Scholar 

  • Curcioa M, Blanco-Fernández B, Costoya A, Concheiro A, Puoci F, Alvarez-Lorenzo C (2015) Glucose cryoprotectant affects glutathione-responsive antitumor drug release from polysaccharide nanoparticles. Eur J Pharm Biopharm 93:281–292

    Article  Google Scholar 

  • Daniel-da-Silva AL, Ferreira L, Gil AM, Trindade T (2011) Synthesis and swelling behavior of temperature responsive j-carrageenan nanogels. J Colloid Interface Sci 355:512–517

    Article  Google Scholar 

  • Daoud-Mahammed S, Couvreur P, Bouchemal K, Chéron M, Lebas G, Amiel C, Gref R (2009) Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromolecules 10:547–554

    Article  Google Scholar 

  • D’Arrigo G, Navarro G, Di Meo C, Matricardi P, Torchilin V (2014) Gellan Gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multidrug delivery system for a combination therapy in cancer treatment. Eur J Pharm Biopharm 87:208–216

    Article  Google Scholar 

  • de la Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ (2010) Chitosan-based nanostructures: a delivery platform for ocular therapeutics. Adv Drug Deliv Rev 62:100–117

    Article  Google Scholar 

  • de Souza Ferreira E, Silva MA, Demonte A, Neves VA (2010) β-Conglycinin (7S) and glycinin (11S) exert a hypocholesterolemic effect comparable to that of fenofibrate in rats fed a high-cholesterol diet. J Funct Foods 2:275–283

    Article  Google Scholar 

  • Debele TA, Mekuria SL, Tsai H-C (2016) Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater Sci Eng C Mater Biol Appl. https://doi.org/10.1016/j.msec.2016.05.121

    Google Scholar 

  • Dehghania H, Hashemi M, Entezari M, Mohsenifar A (2015) The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma. Iran J Pharm Res 14(2):539–546

    Google Scholar 

  • Ding X, Yao P (2013) Soy protein/soy polysaccharide complex nanogels: folic acid loading, protection, and controlled delivery. Langmuir 29:8636–8644

    Article  Google Scholar 

  • Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Article  Google Scholar 

  • Dispenza C, Grimaldi N, Sabatino MA, Soroka IL, Jonsson M (2015) Radiation-engineered functional nanoparticles in aqueous systems. J Nanosci Nanotechnol 15:3445–3467

    Article  Google Scholar 

  • Elzoghby AO (2013) Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 172:1075–1091

    Article  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161:38–49

    Article  Google Scholar 

  • Estévez MC, Huang YF, Kang H, O’Donoghue MB, Bamrungsap S, Yan J, Chen X, Tan W (2010) Nanoparticle-aptamer conjugates for cancer cell targeting and detection. Methods Mol Biol 624:235–248

    Article  Google Scholar 

  • Farag RK, EL-Saeed SM, Abdel-Raouf ME (2016) Synthesis and investigation of hydrogel nanoparticles based on natural polymer for removal of lead and copper(II) ions. Desalination Water Treat 57(34):16150–16160

    Article  Google Scholar 

  • Feng J-L, Qi J-R, Yin S-W, Wang J-M, Guo J, Weng J-Y, Liu Q-R, Yang X-Q (2015) Fabrication and characterization of stable soy β-conglycinin–dextran core–shell nanogels prepared via a self-assembly approach at the isoelectric point. J Agric Food Chem 63:6075–6083

    Article  Google Scholar 

  • Fredheim GE, Christensen BE (2003) Polyelectrolyte complexes: interactions between lignosulfonate and chitosan. Biomacromolecules 4:232–239

    Article  Google Scholar 

  • Fuchs S, Kutscher M, Hertel T, Winter G, Pietzsch M, Coester C (2010) Transglutaminase: new insights into gelatin nanoparticle crosslinking. J Microencapsul 27:747–754

    Article  Google Scholar 

  • Fujioka-Kobayashi M, Ota MS, Shimoda A, Nakahama K, Akiyoshi K, Miyamoto Y, Iseki S (2012) Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials 33:7613–7620

    Article  Google Scholar 

  • Gandhi SS, Yan H, Kim C (2014) Thermoresponsive gelatin nanogels. ACS Macro Lett 3:1210–1214

    Article  Google Scholar 

  • Gao W, Vecchio D, Li J, Zhu J, Zhang Q, Fu V, Thamphiwatana S, Lu D, Zhang L (2014a) Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 8:2900–2907

    Article  Google Scholar 

  • Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, Jia L (2014b) Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 32:761–777

    Article  Google Scholar 

  • Garcia M, Torre M, Marina M, Laborda F, Rodriquez AR (1997) Composition and characterization of soyabean and related products. Crit Rev Food Sci 37:361–391

    Article  Google Scholar 

  • Garg T, Goyal AK (2014) Biomaterial-based scaffolds—current status and future directions. Expert Opin Drug Deliv 11:767–789

    Article  Google Scholar 

  • Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S (2009) Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc 131:2766–2767

    Article  Google Scholar 

  • Gurav DD, Kulkarni AS, Khan A, Shinde VS (2016) pH-responsive targeted and controlled doxorubicin delivery using hyaluronic acid nanocarriers. Colloids Surf B Biointerfaces 143:352–358

    Article  Google Scholar 

  • Guzman V, El-Sherbiny IM, Herrera D, Smyth HD (2013) Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed Res Int 2013:724763

    Article  Google Scholar 

  • Hamidi M, Ashrafi H, Azadi A (2012) Surface functionalized hydrogel nanoparticles. In: Tiwari A, Ramalingam M, Kobayashi H, Turner APF (eds) Biomedical materials and diagnostic devices. Wiley, Hoboken, NJ, USA, pp 191–213

    Chapter  Google Scholar 

  • Hashimoto Y, Mukai S, Sawada S, Sasaki Y, Akiyoshi K (2016) Advanced artificial extracellular matrices using amphiphilic nanogel-crosslinked thin films to anchor adhesion proteins and cytokines. ACS Biomater Sci Eng 2(3):375–384

    Article  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666

    Article  Google Scholar 

  • Helgeson ME, Chapin SC, Doyle PS (2011) Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr Opin Colloid Interface Sci 16:106–117

    Article  Google Scholar 

  • Hirakura T, Nomura Y, Aoyama Y, Akiyoshi K (2004) Photoresponsive nanogels formed by the self-assembly of spiropyrane-bearing pullulan that act as artificial molecular chaperones. Biomacromolecules 5:1804–1809

    Article  Google Scholar 

  • Hofland GW, de Rijke A, Thiering R, van der Wielen LA, Witkamp G-J (2000) Isoelectric precipitation of soybean protein using carbon dioxide as a volatile acid. J Chromatogr B 743:357–368

    Article  Google Scholar 

  • Ischakov R, Adler-Abramovich L, Buzhansky L, Shekhter T, Gazit E (2013) Peptide-based hydrogel nanoparticles as effective drug delivery agents. Bioorg Med Chem 21:3517–3522

    Article  Google Scholar 

  • Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M (2008) Preparation of nanoparticles by continuous-flow microfluidics. J Nanopart Res 10(6):925–934

    Article  Google Scholar 

  • Jaiswal MK, Pradhan A, Banerjee R, Bahadur D (2014) Dual pH and temperature stimuli-responsive magnetic nanohydrogels for thermo-chemotherapy. J Nanosci Nanotechnol 14:4082–4089

    Article  Google Scholar 

  • Jovanovic Z, Krkljes A, Stojkovska J, Tomic S, Obradovic B, Iskovic- Stankovic V (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nano composite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1211

    Article  Google Scholar 

  • Juby KA, Dwivedia C, Kumara M, Kotab S, Misrab HS, Bajaj PN (2012) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohyd Polym 89:906–913

    Article  Google Scholar 

  • Jung S, Yi H (2015) Facile micromolding-based fabrication of biopolymeric–synthetic hydrogel microspheres with controlled structures for improved protein conjugation. Chem Mater 27:3988–3998

    Article  Google Scholar 

  • Kabanov AV, Alakhov VY (2002) Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 19:1–72

    Article  Google Scholar 

  • Kabanov AV, Vinogradov SV (2008) Nanogels as pharmaceutical carriers, chapter 3. In: Torchilin V (ed) Multifunctional pharmaceutical nanocarriers. Springer, pp 67–81

    Google Scholar 

  • Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48:5418–5429

    Article  Google Scholar 

  • Kato A, Minaki K, Kobayashi K (1993) Improvement of emulsifying properties of egg white proteins by the attachment of polysaccharide through Maillard reaction in a dry state. J Agric Food Chem 41:540–543

    Article  Google Scholar 

  • Kettel MJ, Hildebrandt H, Schaefer K, Moeller M, Groll J (2012) Tenside-free preparation of nanogels with high functional β-cyclodextrin content. ACS Nano 6:8087–8093

    Article  Google Scholar 

  • Kettel MJ, Schaefer K, Pich A, Moeller M (2016) Functional PMMA nanogels by cross-linking with cyclodextrin methacrylate. Polymer 86:176–188

    Article  Google Scholar 

  • Kharlampieva E, Ankner JF, Rubinstein M, Sukhishvili SA (2008) pH-Induced release of polyanions from multilayer films. Phys Rev Lett 100:128303

    Article  Google Scholar 

  • Kim KS, Park W, Na K (2015) Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis. Biomaterials 36:90–97

    Article  Google Scholar 

  • Koul V, Mohamed R, Kuckling D, Adler H-JP, Choudhary V (2011) Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf B Biointerfaces 83:204–213

    Article  Google Scholar 

  • Kunjachan S, Jose S, Lammers T (2010) Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J Pharm 4:148–153

    Article  Google Scholar 

  • Lee IS, Akiyoshi K (2004) Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces. Biomaterials 25:2911–2918

    Article  Google Scholar 

  • Lee H, Mok H, Lee S, Oh Y-K, Park TG (2007) Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release 119:245–252

    Article  Google Scholar 

  • Lee J, Lee C, Kim TH, Lee ES, Shin BS, Chi SC, Park ES, Lee KC, Youn YS (2012) Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J Control Release 161:728–734

    Article  Google Scholar 

  • Lee DY, Choe K, Jeong YJ, Yoo J, Lee SM, Park J-H, Kim P, Kim Y-C (2015) Establishment of a controlled insulin delivery system using a glucose-responsive double-layered nanogel. RSC Adv 5:14482–14491

    Article  Google Scholar 

  • Li Y-L, Zhu L, Liu Z, Cheng R, Meng F, Cui J-H, Ji S-J, Zhong Z (2009) Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed 48:9914–9918

    Article  Google Scholar 

  • Lim HJ, Ghim HD, Choi JH, Chung HY, Lim JO (2010) Controlled release of BMP-2 from alginate nanohydrogels enhanced osteogenic differentiation of human bone marrow stromal cells. Macromol Res 18:787–792

    Article  Google Scholar 

  • Liu AL, Garcia AJ (2016) Methods for generating hydrogel particles for protein delivery. Ann Biomed Eng 44(6):1946–1958

    Article  Google Scholar 

  • Liu G, Shao L, Gea F, Chena J (2007a) Preparation of ultrafine chitosan particles by reverse microemulsion. China Particuol 5:384–390

    Article  Google Scholar 

  • Liu Y-Y, Yu Y, Zhang G-B, Tang M-F (2007b) Preparation, characterization, and controlled release of novel nanoparticles based on MMA/β-CD copolymers. Macromol Biosci 7:1250–1257

    Article  Google Scholar 

  • Liu QR, Qi J-R, Yin S-W, Wang J-M, Guo J, Feng J-L, Cheng M, Cao J, Weng J-Y, Yang X-Q (2016) The influence of heat treatment on acid-tolerant emulsions prepared from acid soluble soy protein and soy soluble polysaccharide complexes. Food Res Int. https://doi.org/10.1016/j.foodres.2016.07.001

  • Lu Y, Sun W, Gu Z (2014) Stimuli-responsive nanomaterials for therapeutic protein delivery. J Controll Release 194:1–19

    Article  Google Scholar 

  • Maitra A (1984) Determination of size parameters of water-Aerosol OT-oil reverse micelles from their nuclear magnetic resonance data. J Phys Chem 88:5122–5125

    Article  Google Scholar 

  • Manirujjaman FS, Imran-Ul-Haque Md, Arafat M, Sharmin S (2013) An overview of nanogel drug delivery system. JAPS 3:S95–S105

    Google Scholar 

  • Mather BD, Viswanathan K, Miller KM, Long TE (2006) Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 31:487–531

    Article  Google Scholar 

  • Maya S, Sarmento B, Nair A, Rejinold NS, Nair SV, Jayakumar R (2013) Smart stimuli-sensitive nanogels in cancer drug delivery and imaging: a review. Curr Pharm Des 19:7203–7218

    Article  Google Scholar 

  • Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:582–612

    Article  Google Scholar 

  • Michael A (1887) On the addition of sodium acetacetic ether and analogous sodium compounds to unsaturated organic ethers. Am Chem J 9:115

    Google Scholar 

  • Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M (2015) Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 44:6161–6186

    Article  Google Scholar 

  • Montanari E, D’Arrigo G, Di Meo C, Virga A, Coviello T, Passariello C, Matricardi P (2014) Chasing bacteria within the cells using levofloxacin-loaded hyaluronic acid nanohydrogels. Eur J Pharm Biopharm 87:518–523

    Article  Google Scholar 

  • Morimoto N, Qui XP, Winnik FM, Akiyoshi K (2008) Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly (N-isopropylacrylamide) chains. Macromolecules 41:5985–5987

    Article  Google Scholar 

  • Morimoto N, Hirano S, Takahashi H, Loethen S, Thompson DH, Akiyoshi K (2013) Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle. Biomacromolecules 14:56–63

    Article  Google Scholar 

  • Myrick JM, Vendra VK, Krishnan S (2014) Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnol Rev 3(4):319–346

    Article  Google Scholar 

  • Nakamoto M, Hoshino Y, Miura Y (2014) Effect of physical properties of nanogel particles on the kinetic constants of multipoint protein recognition process. Biomacromolecules 15(2):541–547

    Article  Google Scholar 

  • Narayanan D, Geena MG, Lakshmi H, Koyakutty M, Nair S, Menon D (2013) Poly-(ethylene glycol) modified gelatin nanoparticles for sustained delivery of the anti-inflammatory drug ibuprofen-sodium: an in vitro and in vivo analysis. Nanomedicine 9:818–828

    Article  Google Scholar 

  • Nayak S, Lyon LA (2005) Soft nanotechnology with soft nanoparticles. Angew Chem Int Ed Engl 44:7686–7708

    Article  Google Scholar 

  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  Google Scholar 

  • Oh NM, Oh KT, Youn YS, Lee D-K, Cha K-H, Lee DH, Lee ES (2013) Poly(l-aspartic acid) nanogels for lysosome-selective antitumor drug delivery. Colloids Surf B Biointerfaces 101:298–306

    Article  Google Scholar 

  • Oha JK, Leea DI, Park JM (2009) Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci 34:1261–1282

    Article  Google Scholar 

  • Onsoyen E, Skaugrud O (1990) Metal recovery using chitosan. J Chem Technol Biotechnol 49:395–404

    Article  Google Scholar 

  • Patil JS, Kamalapur MV, Marapur SC, Kadam DV (2010) Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Dig J Nanomater Bios 5(1):241–248

    Google Scholar 

  • Payet L, Terentjev EM (2008) Emulsification and stabilization mechanisms of o/w emulsions in the presence of chitosan. Langmuir 24:12247–12252

    Article  Google Scholar 

  • Peng J, Qi T, Liao J, Fan M, Luo F, Li H, Qian Z (2012) Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Nanoscale 4:2694

    Article  Google Scholar 

  • Petchthanasombat C, Tiensing T, Sunintaboon P (2012) Synthesis of zinc oxide encapsulated poly (methyl methacrylate)–chitosan core–shell hybrid particles and their electrochemical property. J Colloid Interface Sci 369:52–57

    Article  Google Scholar 

  • Pickering SU (1907) Emulsions. J Chem Soc 91:2001–2021

    Article  Google Scholar 

  • Platt VM, Szoka FC (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharmacol 5:474

    Article  Google Scholar 

  • Polexe RC, Delair T (2013) Elaboration of stable and antibody functionalized positively charged colloids by polyelectrolyte complexation between chitosan and hyaluronic acid. Molecules 18(7):8563–8578

    Article  Google Scholar 

  • Popović Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 49:8649–8652

    Article  Google Scholar 

  • Puig JE, Rabelero M (2016) Semicontinuous microemulsion polymerization. Curr Opin Colloid Interface Sci 25:83–88

    Article  Google Scholar 

  • Puig JE, Mendizábal E, López-Serrano F, López RG (2012) Surfactant-assisted polymerization processes. In: Somasundaram P (ed) Encyclopedia of surface and colloid science, 2nd edn. Taylor and Francis. https://doi.org/10.1081/eescs-120047407

  • Pujana MA, Perez-Alvarez L, Cesteros Iturbe LC, Katime I (2013) Biodegradable chitosan nanogels crosslinked with genipin. Carbohydr Polym 94(2):836–842

    Article  Google Scholar 

  • Purwada A, Tian YF, Huang W, Rohrbach KM, Deol S, August A, Singh A (2016) Self-assembly protein nanogels for safer cancer immunotherapy. Adv Healthcare Mater 5:1413–1419

    Article  Google Scholar 

  • Rao KM, Rao KSVK, Ramanjaneyulu G, Ha C-S (2015) Curcumin encapsulated pH sensitive gelatin based interpenetrating polymeric network nanogels for anti cancer drug delivery. Int J Pharm 478:788–795

    Article  Google Scholar 

  • Ravi H, Baskaran V (2015) Biodegradable chitosan-glycolipid hybrid nanogels: a novel approach to encapsulate fucoxanthin for improved stability and bioavailability. Food Hydrocol 43:717–725

    Article  Google Scholar 

  • Ray M, Rousseau R (2013) Stabilization of oil-in-water emulsions using mixtures of denatured soy whey proteins and soluble soybean polysaccharides. Food Res Int 52:298–307

    Article  Google Scholar 

  • Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA (2013) Engineering the regenerative microenvironment with biomaterials. Adv Healthcare Mater 2:57–71

    Article  Google Scholar 

  • Rinaudo M (2010) New way to crosslink chitosan in aqueous solution. Eur Polym J 46:1537–1544

    Article  Google Scholar 

  • Rocha N, Mendonça P, Góis JR, Cordeiro R, Fonesca A, Ferreira P, Guliashvili T, Matyjaszewski K, Serra A, Coehlo J (2013) The importance of controlled/living radical polymerization in the design of tailor made nanoparticles for drug delivery systems. In: Coelho J (ed) Drug delivery systems: advanced technologies potentially applicable in personalised treatment. Springer, Netherlands, pp 315–357

    Chapter  Google Scholar 

  • Rolland J, Guillet P, Schumers JM, Duhem N, Préat V, Gohy JF (2012) Polyelectrolyte complex nanoparticles from chitosan and poly (acrylic acid) and Polystyrene-block-poly (acrylic acid). J Polym Sci A Polym Chem 50:4484–4493

    Article  Google Scholar 

  • Rossetti H, Albizzati D, Alfano M (2002) Decomposition of formic acid in a water solution employing the photo-fenton reaction. Ind Eng Chem Res 41:1436–1444

    Article  Google Scholar 

  • Sali SS (2016) Natural calcium carbonate for biomedical applications, M. Tech (Biotechnology) dissertation thesis project, arXiv:1606.07779

  • Sarika PR, James NR (2015) Preparation and characterisation of gelatin–gum arabic aldehydenanogels via inverse miniemulsion technique. Int J Biol Macromol 76:181–187

    Article  Google Scholar 

  • Sarika PR, James NR (2016a) Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohyd Polym 148:354–361

    Article  Google Scholar 

  • Sarika PR, James RN (2016b) Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy. Mater Sci Eng C 65:331–337

    Article  Google Scholar 

  • Sarika PR, Anil Kumar PR, Raj DK, James NR (2015) Nanogels based on alginic aldehyde and gelatin by inverse mini emulsion technique: synthesis and characterization. Carbohydr Polym 119:118–125

    Article  Google Scholar 

  • Sarika PR, James NR, Anil Kumar PR, Raj DK (2016) Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels. Mater Sci Eng C Mater Biol Appl 68:251–257

    Article  Google Scholar 

  • Sasaki Y, Yamane S, Kurosu K, Sawada S-I, Akiyoshi K (2012) Templated formation of hydroxyapatite nanoparticles from self-assembled nanogels containing tricarboxylate groups. Polymers 4:1056–1064

    Article  Google Scholar 

  • Schatz C, Domard A, Viton C, Pichot C, Delair T (2004) Versatile and efficient formation of colloids of biopolymer-based polyelectrolyte complexes. Biomacromolecules 5:1882–1892

    Article  Google Scholar 

  • Seo S, Lee CS, Jung YS, Na K (2012) Thermo-sensitivity and triggered drug release of polysaccharide nanogels derived from pullulan-g-poly (L-lactide) copolymers. Carbohyd Polym 87:1105–1111

    Article  Google Scholar 

  • Shen JM, Xu L, Lu Y, Cao HM, Xu ZG, Chen T, Zhang HX (2012) Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and anti diabetic research of dietary supplements. Int J Pharm 427:400–409

    Article  Google Scholar 

  • Shimoda A, Sawada S, Akiyoshi K (2011) Cell specific peptide conjugated polysaccharide nanogels for protein delivery. Macromol Biosci 11:882–888

    Article  Google Scholar 

  • Singh N, Nisha Gill V, Gill P (2013) Nanogel based artificial chaperone technology: an overview. Am J Adv Drug Deliv 1:271–276

    Google Scholar 

  • Singh A, Agarwal R, Diaz-Ruiz CA, Willett NJ, Wang P, Lee LA, Wang Q, Guldberg RE, García AJ (2014) Nanoengineered particles for enhanced intra-articular retention and delivery of proteins. Adv Healthcare Mater 3:1562–1567

    Article  Google Scholar 

  • Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M (2015) Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:509–533

    Article  Google Scholar 

  • Soni KS, Desale SS, Bronich TK (2015) Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Controll Release S0168–3659(15):30233–30239

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices review. J Controll Release 70:1–20

    Article  Google Scholar 

  • Sui ZJ, Schlenoff JB (2004) Phase separations in pH-responsive polyelectrolyte multilayers: charge extrusion versus charge expulsion. Langmuir 20:6026–6031

    Article  Google Scholar 

  • Tai H, Kenji Y, Takayuki N, Mika S, Tsuyoshi S, Yoshinori A, Nobuyuki M, Kazunari A (2010) Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function. J Controll Release 142:483–489

    Article  Google Scholar 

  • Tan JPK, Tan MBH, Tam MKC (2010) Application of nanogel systems in the administration of local anesthetics. Local Reg Anesth 3:93–100

    Google Scholar 

  • Tang J, Quinlan PJ, Tam KC (2015) Stimuli-responsive pickering emulsions: recent advances and potential applications. Soft Matter 11:3512–3529

    Article  Google Scholar 

  • Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X (2016) Polymeric nanostructured materials for biomedical applications. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2016.05.005

    Google Scholar 

  • Thampanchira D, Krishnakumar K, Dineshkumar B, John A (2016) Hydrogel and nanohydrogel—a review. Int J Pharm 6(2):78–81

    Google Scholar 

  • Tian R, Xian L, Li Y, Zheng X (2016) Silica modified chitosan/polyethylenimine nanogel for improved stability and gene carrier ability. J Nanosci Nanotechnol 16(5):5426–5431

    Article  Google Scholar 

  • Tiyaboonchai W (2013) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J Sci Technol 11:51–66

    Google Scholar 

  • Uthaman S, Maya S, Jayakumar R, Cho C-S, Park I-K (2014) Carbohydrate-based nanogels as drug and gene delivery systems. J Nanosci Nanotechnol 14:694–704

    Article  Google Scholar 

  • Uthaman S, Lee SJ, Cherukula K, Cho C-S, Park I-K (2015) Polysaccharide-coated magnetic nanoparticles for imaging and gene therapy. Biomed Res Int 2015:959175

    Article  Google Scholar 

  • van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175

    Article  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147

    Article  Google Scholar 

  • Wang NX, von Recum HA (2011) Affinity-based drug delivery. Macromol Biosci 11:321–332

    Article  Google Scholar 

  • Wang Y, Liu Y, Liu Y, Wang Y, Wu J, Li R, Yanga J, Zhang N (2014) pH-sensitive pullulan-based nanoparticles for intracellular drug delivery. Polym Chem 5:423–432

    Article  Google Scholar 

  • Wei X, Senanayake TH, Warren G, Vinogradov SV (2013) Hyaluronic acid-based nanogeldrug conjugates with enhanced anticancer activity designed for targeting of CD44-positive and drug-resistant tumors. Bioconjugate Chem 24:658–668

    Article  Google Scholar 

  • Wenling C, Mingyu C, Qiang A, Yandao G, Nanming Z, Xiufang Z (2005) Physical, mechanical and degradation properties, and Schwann cell affinity of cross-linked chitosan films. J Biomater Sci Polym Ed 16:791–807

    Article  Google Scholar 

  • Whitesides GM, Mathias JP, Seto CT (1991) Molecular self assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 29:1312–1319

    Article  Google Scholar 

  • Wu D, Wan M (2008) A novel fluoride anion modified gelatin nanogel system for ultrasound-triggered drug release. J Pharm Pharmaceut Sci 11(4):32–45

    Article  Google Scholar 

  • Wu H-Q, Wang C (2016) Biodegradable smart nanogels: a new platform for targeting drug delivery and biomedical diagnostics. Langmuir 32:6211–6225

    Article  Google Scholar 

  • Wu W, Zhou S (2010) Hybrid micro-/nanogels for optical sensing and intracellular imaging. Nano Reviews 1:5730

    Article  Google Scholar 

  • Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou SQ (2010a) In situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31:3023–3031

    Article  Google Scholar 

  • Wu W, Shen J, Banerjee P, Zhou S (2010b) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31(32):8371–8381

    Article  Google Scholar 

  • Xu D, Hong J, Yao S, Dong L, Sheng K (2007) Preparation of polyethyleneimine nanogels via photo-Fenton reaction. Radiat Phys Chem 76:1606–1611

    Article  Google Scholar 

  • Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X (2015) Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release 205:206–217

    Article  Google Scholar 

  • Yeh J, Ling Y, Karp JM, Gantz J, Chandawarkar A, Eng G, Blumling J, Langer R, Khademhosseini A (2006) Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials 27:5391–5398

    Article  Google Scholar 

  • Yin B, Deng W, Xu K, Huang L, Yao P (2012) Stable nano-sized emulsions produced from soy protein and soy polysaccharide complexes. J Colloid Interface Sci 380:51–59

    Article  Google Scholar 

  • Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352

    Article  Google Scholar 

  • Zhang X, Achazi K, Steinhilber D, Kratz F, Dernedde J, Haag R (2014) A facile approach for dual-responsive prodrug nanogels based on dendritic polyglycerols with minimal leaching. J Controll Release 174:209–216

    Article  Google Scholar 

  • Zhang X, Malhotra S, Molina M, Haag R (2015) Micro- and nanogels with labile crosslinks—from synthesis to biomedical applications. Chem Soc Rev 44:1948–1973

    Article  Google Scholar 

  • Zhang H, Zhai Y, Wang J, Zhai G (2016) New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng C 60:560–568

    Article  Google Scholar 

  • Zhou Y, Briand V, Sharma N, Ahn S, Kasi R (2009) Polymers comprising cholesterol: synthesis, self-assembly, and applications. Materials 2:636

    Article  Google Scholar 

  • Zhou M, Wang T, Hu Q, Luo Y (2016) Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocoll 57:20–29

    Article  Google Scholar 

  • Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1:4199–4211

    Article  Google Scholar 

  • Zhu X-N, Gao L-N, Cui Y-L (2015) A Novel Ca-Alginate Nanogel mediated by glycyrrhizic acid. In: 5th international conference on information engineering for mechanics and materials (ICIMM 2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank to Romanian UEFISCDI for the financial support given through the research project 164/2012 BIO-NANOMED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Vasile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pamfil, D., Vasile, C. (2018). Nanogels of Natural Polymers. In: Thakur, V., Thakur, M., Voicu, S. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6080-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6080-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6079-3

  • Online ISBN: 978-981-10-6080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics