Skip to main content

Design and Application of Injectable Gels in Tissue Engineering and Drug Delivery

  • Chapter
  • First Online:
Polymer Gels

Part of the book series: Gels Horizons: From Science to Smart Materials ((GHFSSM))

  • 1266 Accesses

Abstract

Injectable gels offer several advantages such as minimally invasive, targeted delivery, regenerate damaged tissues and organs, support cell proliferation and differentiation, and facilitate tissue growth. They are prepared from carbon-based biomaterials such as carbon nanotubes and graphene oxide, natural and synthetic polymers. In the design of injectable gels, the properties of the material used influence their application. Injectable gels have been investigated for delivery of bioactive agents such as anticancer, antimalarials, antihyperglycemic, antiviral, anti-inflammatory, antimicrobial. They are also used for wound dressing and regenerative medicine such as bone regeneration. This chapter will focus on the design and therapeutic efficacy of the currently developed injectable gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed TA, Alharby YA, El-Helw ARM, Hosny KM, El-Say KM (2016) Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation. Drug Des Devel Ther 10:405–415

    Article  Google Scholar 

  • AmeriHealth Caritas Pennsylvania Clinical Policy Title: Injectable bulking agents for fecal incontinence Clinical policy number: 08.02.04 Effective Date: October 1, 2015

    Google Scholar 

  • Anand O, Almoazen H, Mehrotra N, Johnson J, Shukla A (2012) Controlled release of modified insulin glargine from novel biodegradable injectable gels. AAPS PharmSciTech 13:313–322

    Article  Google Scholar 

  • Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  Google Scholar 

  • Bell DSH (2002) Current status of diabetes treatment. South Med J, vol 95. http://www.medscape.com/viewarticle/426918_6. Accessed 24 Dec 2015

  • Bharucha AE, Dunivan G, Goode PS, Hamilton FA (2015) Epidemiology, pathophysiology, and classification of fecal incontinence: state of the science summary for the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) workshop. Am J Gastroenterol 110:127–136

    Article  Google Scholar 

  • Bloland PB (2001). Drug resistance in malaria. WHO, Geneva

    Google Scholar 

  • Cakmak O, Babakurban ST, Akkuzu HG, Bilgi S, Ovalı E, Kongur M, Altintas H, Yilmaz B, Bilezikçi B, Celik ZY, Yakicier MC, Sahin FI (2013) Injectable tissue-engineered cartilage using commercially available fibrin glue. Laryngoscope 123:2986–2992

    Article  Google Scholar 

  • Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, Marques AP (2014) Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl Mater Interfaces 6:19668–19679

    Article  Google Scholar 

  • Chang J, Woon C, Pham H, Farnebo S (2014) Injectable composition for in-situ repair and regeneration of an injured ligament or tendon and methods of use. WO 2014144215 A1. 18 Sept 18 2014

    Google Scholar 

  • Chen X, Li X, Zhou Y, Wang X, Zhang Y, Fan Y, Huang Y, Liu Y (2011) Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation. J Biomater Appl 27:391–402

    Article  Google Scholar 

  • Chen F, Yu S, Liu B, Ni Y, Yu C, Su Y, Zhu X, Yu X, Zhou Y, Yan D (2016) An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 6(20014):1–12

    Google Scholar 

  • Cho J-K, Park JW, Song S-C (2012) Injectable and biodegradable poly(organophosphazene) gel containing silibinin: its physicochemical properties and anticancer activity. J Pharm Sci 101:2382–2391

    Article  Google Scholar 

  • Chou HS, Larsson M, Hsiao MH, Chen YC, Röding M, Nydén M, Liu DM (2016) Injectable insulin-lysozyme-loaded nanogels with enzymatically-controlled degradation and release for basal insulin treatment: In vitro characterization and in vivo observation. J Control Release 224:33–42

    Article  Google Scholar 

  • Ci T, Chen L, Yu L, Ding J (2014) Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Sci Rep 4:5473, 13 p

    Google Scholar 

  • Crowe CS, Chattopadhyay A, McGoldrick R, Chiou G, Pham H, Chang J (2016) Characteristics of reconstituted lyophilized tendon hydrogel. Plast Reconstr Surg 137:843–851

    Article  Google Scholar 

  • D’Este M, Sprecher CM, Milz S, Nehrbass D, Dresing I, Zeiter S, Alini M, Eglin D (2016) Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J Biomed Mater Res Part A 104:1469–1478

    Article  Google Scholar 

  • Das S, Monteforte AJ, Singh G, Majid M, Sherman MB, Dunn AK, Baker AB (2016) Syndecan-4 enhances therapeutic angiogenesis after hind limb ischemia in mice with type 2 diabetes. Adv Healthc Mater 5:1008–1013

    Article  Google Scholar 

  • De France KJ, Chan KJ, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17:649–660

    Article  Google Scholar 

  • Del PS, Bianchi C, Marchetti P (2007) Beta cell function and anti-diabetic pharmacotherapy. Diabetes Metab Res Rev 23:518–527

    Article  Google Scholar 

  • Del Gaudio P, De Cicco F, Aquino RP, Picerno P, Russo P, Dal Piaz F, Bizzarro V, Belvedere R, Parente L, Petrella A (2015) Evaluation of in situ injectable hydrogels as controlled release device for ANXA1 derived peptide in wound healing. Carbohydr Polym 115:629–635

    Article  Google Scholar 

  • Dodi G, Jongen J, de la Portilla F, Raval M, Altomare DF, Lehur PA (2010) An open-label, noncomparative, multicenter study to evaluate efficacy and safety of NASHA/Dx gel as a bulking agent for the treatment of fecal incontinence. Gastroenterol Res Pract 2010:467136

    Article  Google Scholar 

  • Dorati R, Genta I, Conti B, Klöss H, Martin K (2012) An injectable in situ forming composite gel to guide bone regeneration: design and development of technology platform. Eur Cells Mater 24:14 p

    Google Scholar 

  • Du L, Tong L, Jin Y, Jia J, Liu Y, Su C, Yu S, Li X (2012) A multifunctional in situ—forming hydrogel for wound healing. Wound Rep Reg 20:904–910

    Article  Google Scholar 

  • Ebara M, Kotsuchibashi Y, Narain R, Idota N, Kim Y-J, Hoffman JM, Uto K, Aoyagi T (2014) Smart Biomaterials (Chapter 2). National Institute for Materials Science, Japan. Published by Springer Japan

    Google Scholar 

  • Elhayek RF, Sawhney A, Jarrett P, Guedez S, Rosales C (2014) Sustained release of bevacizumab from hydrogel depots for intravitreal injections. Investig Ophthalmol Vis Sci 55:5264

    Google Scholar 

  • Famili A, Kahook MY, Park D (2014) A combined micelle and poly(serinol hexamethylene urea)-co-poly(nisopropylacrylamide) reverse thermal gel as an injectable ocular drug delivery system. Macromol Biosci 14:1719–1729

    Article  Google Scholar 

  • Fang J, Yang Z, Tan S, Tayag C, Nimni ME, Urata M, Han B (2014) Injectable gel graft for bone defect repair. Regen Med 9:41–51

    Article  Google Scholar 

  • Farnebo S, Woon CYL, Schmitt T, Joubert LM, Kim M, Pham H, Chang J (2014) Design and characterization of an injectable tendon hydrogel: a novel scaffold for guided tissue regeneration in the musculoskeletal system. Tissue Eng Part A 20:1550–1561

    Article  Google Scholar 

  • Fawaz F, Koffi A, Guyot M, Millet P (2004) Comparative in vitro–in vivo study of two quinine rectal gel formulations. Int J Pharm 280:151–162

    Article  Google Scholar 

  • Friedlaender GE, Strong DM, Sell KW (1984) Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am 66:107–112

    Article  Google Scholar 

  • Funayama A, Niki Y, Matsumoto H, Maeno S, Yatabe T, Morioka H, Yanagimoto S, Taguchi T, Tanaka J, Toyama Y (2008) Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. J Orthop Sci 13:225–232

    Article  Google Scholar 

  • Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD (2014) Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS Nano 8:9833–9842

    Article  Google Scholar 

  • Gaudin K, Barbaud A, Boyer C, Langlois M-H, Lagueny A-M, Dubost J-P, Millet P, Fawaz F (2008) In vitro release and stability of an artesunate rectal gel suitable for pediatric use. Int J Pharm 353:7 p

    Google Scholar 

  • Giano MC, Ibrahim Z, Medina SH, Sarhane KA, Christensen JM, Yamada Y, Brandacher G, Schneider JP (2014) Injectable bioadhesive hydrogels with innate antibacterial properties. Nat Commun. https://doi.org/10.1038/ncomms5095

    Google Scholar 

  • Graf W, Mellgren A, Matzel KE, Hull T, Johansson C, Bernstein M (2011) NASHA Dx study group. Efficacy of dextranomer in stabilised hyaluronic acid for treatment of faecal incontinence: a randomised, sham-controlled trial. Lancet 377:997–1003

    Article  Google Scholar 

  • Griffin DR, Weaver WM, Scumpia PO, Carlo DD, Segura T (2015) Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater 14:737–744

    Article  Google Scholar 

  • Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, Cheng H, Langer RS, Anderson DG (2013) Injectable Nano-network for glucose-mediated insulin delivery. ACS Nano 7:4194–4201

    Article  Google Scholar 

  • Gupta S, Singh M, Amarendar Reddy M, Yavvari PS, Srivastava A, Bajaj A (2016) Interactions governing the entrapment of anticancer drugs by low-molecular-weight hydrogelator for drug delivery applications. RSC Adv 6:19751–19757

    Article  Google Scholar 

  • Habal MB (1992) Different forms of bone grafts. In: Habal MB, Reddi AH (eds) Bone grafts and bone substitutes. WB Saunders, Philadelphia, pp 6–8

    Google Scholar 

  • Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain M, Paul A (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci 2:18 p

    Google Scholar 

  • Hayashi K, Sakamoto W, Yogo T (2016) Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy. Adv Funct Mater 26:1708–1718

    Article  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  Google Scholar 

  • Hoemann CD, Sun J, Legare A, McKee MD, Buschmann MD (2005) Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr cartilage 13:318–329

    Article  Google Scholar 

  • Horvát G, Gyarmati B, Berkó S, Szabó-Révész P, Szilágyi BÁ, Szilágyi A, Soós J, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Caramella C, Csányi E, Budai-Szűcs M (2015) Thiolated poly(aspartic acid) as potential in situ gelling, ocular mucoadhesive drug delivery system. Eur J Pharm Sci 67:1–11

    Article  Google Scholar 

  • Hou Q, De Bank PA, Shakesheff KM (2004) Injectable scaffolds for tissue regeneration. J Mater Chem 14:1915–1923

    Article  Google Scholar 

  • Hudson SP, Langer R, Fink GR, Kohane DS (2010) Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 31:1444–1452

    Article  Google Scholar 

  • Huynh DP, Nguyen MK, Pi BS, Kim MS, Chae SY, Lee KC, Kim SB, Kim SW, Lee DS (2008) Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials 29:2527–2534

    Article  Google Scholar 

  • Hyun H, Park SH, Kwon DY, Khang G, Lee HB, Kim MS (2014) Thermo-responsive injectable MPEG-polyester diblock copolymers for sustained drug release. Polymers 6:2670–2683

    Article  Google Scholar 

  • Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A 107:11507–11512

    Article  Google Scholar 

  • Igarashi T, Iwasaki N, Kawamura D, Kasahara Y, Tsukuda Y, Ohzawa N, Ito M, Izumisawa Y, Minami A (2012) Repair of articular cartilage defects with a novel injectable in situ forming material in a canine model. J Biomed Mater Res Part A 100A:180–187

    Article  Google Scholar 

  • Jabarian LE, Rouini MR, Atyabi F, Foroumadi A, Nassiri SM, Dinarvand R (2013) In vitro and in vivo evaluation of an in situ gel forming system for the delivery of PEGylated octreotide. Eur J Pharm Sci 48:87–96

    Article  Google Scholar 

  • Ji QX, Zhao QS, Deng J, Lu R (2010) A novel injectable chlorhexidine thermosensitive hydrogel for periodontal application: preparation, antibacterial activity and toxicity evaluation. J Mater Sci Mater Med 21:2435–2442

    Article  Google Scholar 

  • Jones V, Grey JE, Harding KG (2006) ABC of wound healing wound dressings. BMJ 332:777–780

    Article  Google Scholar 

  • Jun J-B, Kim JK, Kim T-H, Na Y-I, Choi CH, Kim Y-H (2011) Inhibition of the IL-1β-induced expression of matrix metalloproteinases by controlled release of IL-1 receptor antagonist using injectable and thermo-reversible gels in human osteoarthritis chondrocytes. J Rheum Dis 18:85–93

    Article  Google Scholar 

  • Kaigler D, Silva EA, Mooney DJ (2013) Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol 84:230–238

    Article  Google Scholar 

  • Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10:E1. http://www.medscape.com/viewarticle/405699_7

  • Kaushik SN, Scoffield J, Andukuri A, Alexander GC, Walker T, Kim S, Choi SC, Brott BC, Eleazer PD, Lee J-Y, Wu H, Childers NK, Jun H-W, Park J-H, Cheon K (2015) Evaluation of ciprofloxacin and metronidazole encapsulated biomimetic nanomatrix gel on Enterococcus faecalis and Treponema denticola. Biomater Res 19:10 p

    Google Scholar 

  • Khodaverdi E, Heidari Z, Tabassi SAS, Tafaghodi M, Alibolandi M, Sadat F, Tekie M, Khameneh B, Hadizadeh F (2015) Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech 16:140–149

    Article  Google Scholar 

  • Kim EJ, Choi JS, Kim JS, Choi YC, Cho YW (2016) Injectable and thermosensitive soluble extracellular matrix and methylcellulose hydrogels for stem cell delivery in skin wounds. Biomacromolecules 17:4–11

    Article  Google Scholar 

  • Lao G, Yan L, Yang C, Zhang L, Zhang S, Zhou Y (2012) Controlled release of epidermal growth factor from hydrogels accelerates wound healing in diabetic rats. J Am Podiat Med Assoc 102:89–98

    Article  Google Scholar 

  • Lapasin R, Segatti F, Mercuri D, Conti GD, Spagnul C, Fusi S (2015) Rheological studies dedicated to the development of a novel injectable polymeric blend for visco supplementation treatment. Chem Biochem Eng Q 29:511–518

    Article  Google Scholar 

  • Lavik E, Kuehn MH, Kwon YH (2011) Novel drug delivery systems for glaucoma. Eye 25:578–586

    Article  Google Scholar 

  • Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC (2012a) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 18:2173–2186

    Article  Google Scholar 

  • Lee J-H, Oh H, Baxa U, Raghavan SR, Blumenthal R (2012b) Biopolymer-connected liposome networks as injectable biomaterials capable of sustained local drug delivery. Biomacromolecules 13:3388–3394

    Article  Google Scholar 

  • Li X, Fan R, Tong A, Yang M, Deng J, Zhou L, Zhang X, Guo G (2015) In situ gel-forming AP-57 peptide delivery system for cutaneous wound healing. Int J Pharm 495:560–571

    Article  Google Scholar 

  • Li HM, Tian J, Zhang ZR, Luo XQ, Yu ZG (2016) Pharmacokinetics studies of enrofloxacin injectable in situ forming gel in dogs. J Vet Pharmacol Ther 39:144–148

    Article  Google Scholar 

  • Liu W, Zhan J, Su Y, Wu T, Ramakrishna S, Liao S, Mo X (2014) Injectable hydrogel incorporating with nanoyarn for bone regeneration. J Biomater Sci Polym Ed 25:168–180

    Article  Google Scholar 

  • López-Noriega A, Hastings CL, Ozbakir B, O’Donnell KE, O’Brien FJ, Storm G, Hennink WE, Duffy GP, Ruiz-Hernández E (2014) Hyperthermia-induced drug delivery from thermosensitive liposomes encapsulated in an injectable hydrogel for local chemotherapy. Adv Healthc Mater 3:854–859

    Article  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  Google Scholar 

  • Mamaghani PY, Kaffashi B, Salehi R, Davaran S (2015) Synthesis, characterization, and viscoelastic behavior of thermothickening poly(N-isopropylacrylamide-methacrylicacide-vinylpyrrolidone) nanogels as an injectable biocompatible drug carrier. Int J Polym Mater Polym Biomater 64:55–63

    Article  Google Scholar 

  • Manda S, Thimmasetty MKJM, Prabhushankar GL, Geetha MS (2012) Formulation and evaluation of an in situ gel-forming ophthalmic formulation of moxifloxacin hydrochloride. Int J Pharm Investig 2:78–82

    Article  Google Scholar 

  • Mateescu M, Baixe S, Garnier T, Jierry L, Ball V, Haikel Y, Metz-Boutigue MH, Nardin M, Schaaf P, Etienne O, Lavalle P (2015) Antibacterial peptide-based gel for prevention of medical implanted-device infection. PLoS ONE 10:e0145143

    Article  Google Scholar 

  • Miao B, Song C, Ma G (2011) Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J Appl Polym Sci 122:2139–2145

    Article  Google Scholar 

  • Miljkovic ND, Lin YC, Cherubino M, Minteer D, Marra KG (2009) A novel injectable hydrogel in combination with a surgical sealant in a rat knee osteochondral defect model. Knee Surg Sports Traumatol Arthrosc 17:1326–1331

    Article  Google Scholar 

  • Mohd Zohdi R, Abu Bakar Zakaria Z, Yusof N, Mohamed Mustapha N, Abdullah MNH (2012) Gelam (Melaleuca spp.) honey-based hydrogel as burn wound dressing. Evid Based Complement Alternat Med, 7 p

    Google Scholar 

  • Monette A, Ceccaldi C, Assaad E, Lerouge S, Lapointe R (2016) Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials 75:237–249

    Article  Google Scholar 

  • Nagahama K, Kawano D, Oyama N, Takemoto A, Kumano T, Kawakami J (2015) Self-assembling polymer micelle/clay nanodisk/doxorubicin hybrid injectable gels for safe and efficient focal treatment of cancer. Biomacromolecules 16:880–889

    Article  Google Scholar 

  • NASHA (2008) The monograph. Bengt Ågerup, Q-Med AB, Uppsala, Sweden

    Google Scholar 

  • Navaei A, Truong D, Heffernan J, Cutts J, Brafman D, Sirianni RW, Vernon B, Nikkhah M (2016) PNIPAAm-based biohybrid injectable hydrogel for cardiac tissue engineering. Acta Biomater 32:10–23

    Article  Google Scholar 

  • Navath RS, Menjoge AR, Dai H, Romero R, Kannan S, Kannan RM (2011) Injectable PAMAM dendrimer-PEG hydrogels for the treatment of genital infections: formulation, in-vitro and in-vivo evaluation. Mol Pharm 8:1209–1223

    Article  Google Scholar 

  • Nguyen MK, Lee DS (2010) Injectable biodegradable hydrogels. Macromol Biosci 10:563–579

    Article  Google Scholar 

  • Nguyen X-T, Toi VV, Nguyen T-H (2015) Development of a new injectable PVA–Ag NPs/chitosan hydrogel for wound dressing application. In: 5th International conference on biomedical engineering in Vietnam, vol 46, pp 321–324

    Google Scholar 

  • Nishi KK, Jayakrishnan A (2007) Self-gelling primaquine-gum arabic conjugate: an injectable controlled delivery system for primaquine. Biomacromolecules 8:84–90

    Article  Google Scholar 

  • Oliveira JT, Gardel LS, Rada T, Martins L, Gomes ME, Reis RL (2010) Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J Orthop Res 28:1193–1199

    Article  Google Scholar 

  • Orth P, Rey-Rico A, Venkatesan JK, Madry H, Cucchiarini M (2014) Current perspectives in stem cell research for knee cartilage repair. Stem Cells Cloning 7:1–17

    Google Scholar 

  • Pape ACH, Bakker MH, Tseng CCS, Bastings MMC, Koudstaal S, Agostoni P, Chamuleau SAJ, Dankers PYW (2015) An injectable and drug-loaded supramolecular hydrogel for local catheter injection into the pig heart. J Vis Exp 100:e52450. https://doi.org/10.3791/52450

    Google Scholar 

  • Park HS, Jung SY, Kim HY, Ko DY, Chung SM, Jeong B, Kim HS (2016) Feasibility of injectable thermoreversible gels for use in intramuscular injection of parathyroid autotransplantation. Eur Arch Otorhinolaryngol, pp 1–8. https://doi.org/10.1007/s00405-016-3990-9

  • Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA, Yaremchuk MJ (2004) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7:805–815

    Article  Google Scholar 

  • Patenaude M, Smeets NMB, Hoare T (2014) Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol Rapid Commun 35:598–617

    Article  Google Scholar 

  • Paul A, Hasan A, Kindi HA, Gaharwar AK, Rao VTS, Nikkhah M, Shin SR, Krafft D, Dokmeci MR, Shum-Tim D, Khademhosseini A (2014) Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–8062

    Article  Google Scholar 

  • Peng Q, Sun X, Gong T, Wu CY, Zhang T, Tan J, Zhang ZR (2013) Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater 9:5063–5069

    Article  Google Scholar 

  • Pereira RC, Scaranari M, Castagnola P, Grandizio M, Azevedo HS, Reis RL, Cancedda R, Gentili C (2009) Novel injectable gel (system) as a vehicle for human articular chondrocytes in cartilage tissue regeneration. J Tissue Eng Regen Med 3:97–106

    Article  Google Scholar 

  • Plotkin M, Vaibavi SR, Rufaihah AJ, Nithya V, Wang J, Shachaf Y, Kofidis T, Seliktar D (2014) The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials 35:1429–1438

    Article  Google Scholar 

  • Qi B-W, Yu A-X, Zhu S-B, Zhou M, Wu G (2013) Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med (Maywood) 238:23–30

    Article  Google Scholar 

  • Rauck BM, Friberg TR, Mendez CAM, Park D, Shah V, Bilonick RA, Wang Y (2014) Biocompatible reverse thermal gel sustains the release of intravitreal bevacizumab in vivo. Invest Ophthalmol Vis Sci 55:469–476

    Article  Google Scholar 

  • Ren Z, Wang Y, Ma S, Duan S, Yang X, Gao P, Zhang X, Cai Q (2015) Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS Appl Mater Interfaces 7:19006–19015

    Article  Google Scholar 

  • Salick DA, Pochan DJ, Schneider JP (2009) Design of an injectable b-hairpin peptide hydrogel that kills methicillin-resistant staphylococcus aureus. Adv Mater 21:4120–4123

    Article  Google Scholar 

  • Sá-Lima H, Caridade SG, Mano JF, Reis RL (2010) Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter 6:5184–5195

    Article  Google Scholar 

  • Sancho-Tello M, Forriol F, Gastaldi P, Ruiz-Saurí A, de Llano JJM, Novella-Maestre E, Antolinos-Turpín CM, Gómez-Tejedor JA, Ribelles JJG, Carda C (2015) Time evolution of in vivo articular cartilage repair induced by bone marrow stimulation and scaffold implantation in rabbits. Int J Artif Organs 38:210–223

    Article  Google Scholar 

  • Sang L, Liu Y, Hua W, Xu K, Wang G, Zhong W, Wang L, Xu S, Xing MMQ, Qiu X (2016) Thermally sensitive conductive hydrogel using amphiphilic crosslinker self-assembled carbon nanotube to enhance neurite outgrowth and promote spinal cord regeneration. RSC Adv 6:26341–26351

    Article  Google Scholar 

  • Satteson ES, Molnar JA (2015). In: Elston DM (ed) Materials for wound closure. http://emedicine.medscape.com/article/1127693-overview. 13 Feb 2015. Accessed 10 Mar 2016

  • Schramm TK, Gislason GH, Hospet R, Rasmussen S, Jørgensen CH, Folke F, Hansen ML, Fosbøl EL, Bretler D-M, Køber L, Vaag A, Torp-Pedersen C (2008) Differences in risk of cardiovascular death according to type of oral glucose-lowering therapy in patients with diabetes: a nationwide study. Circulation 118:S1117

    Article  Google Scholar 

  • Shatsky M (2009) Evidence for the use of intramuscular injections in outpatient practice. Am Fam Physician 79:297–300

    Google Scholar 

  • Shavandi A, Bekhit AEDA, Sun Z, Ali MA (2016) Injectable gel from squid pen chitosan for bone tissue engineering Applications. J Sol Gel Sci Technol 77:675–687

    Article  Google Scholar 

  • Shen N, Hu J, Zhang L, Zhang L, Sun Y, Xie Y, Wu S, Liu L, Gao Z (2012) Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer. Acta Pharm Sin B 2:610–614

    Article  Google Scholar 

  • Shen N, Hu J, Zhang L, Zhang L, Sun Y, Xie Y, Wu S, Liu L, Gao Z (2016) Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer. Biomaterials 75:237–249

    Article  Google Scholar 

  • Shinde CG, Pramod kumar TM, Venkatesh MP, Rajesh KS, Srivastava A, Osmani RAM, Sonawane YH (2016) Intra-articular delivery of a methotrexate loaded nanostructured lipid carrier based smart gel for effective treatment of rheumatic diseases. RSC Adv 6:12913–12924

    Article  Google Scholar 

  • Singh K, Kaur H, Kumar SLH (2013) Design and development of sustained release injectable in situ gel of cytarabine. Pharmacophore 4:252–267

    Google Scholar 

  • Singh M, Kundu S, Amarendar Reddy M, Sreekanth V, Motiani RK, Sengupta S, Srivastava A, Bajaj A (2014) Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale 6:12849–12855

    Article  Google Scholar 

  • Smith JP, Stock E, Orenberg EK, Yu NY, Kanekal S, Brown DM (1995) Intratumoral chemotherapy with a sustained-release drug delivery system inhibits growth of human pancreatic cancer xenografts. Anticancer Drugs 6:717–726

    Article  Google Scholar 

  • Tan H, Marra KG (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652

    Article  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  Google Scholar 

  • Tran NQ, Joung YK, Lih E, Park KD (2011) In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules 12:2872–2880

    Article  Google Scholar 

  • Turturro SB, Guthrie MJ, Appel AA, Drapala PW, Brey EM, Pérez-Luna VH, Mieler WF, Kang-Mieler JJ (2011) The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function. Biomaterials 32:3620–3626

    Article  Google Scholar 

  • Venkatesh MP, Anis S, Kumar P (2013) Design and development of an injectable in methotrexate for the treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 23:445–453

    Article  Google Scholar 

  • Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R (2005) Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angew Chem Int Ed 44:4061–4066

    Article  Google Scholar 

  • Wan WG, Jiang XJ, Li XY, Zhang C, Yi X, Ren S, Zhang XZ (2014) Enhanced cardioprotective effects mediated by plasmid containing the short-hairpin RNA of angiotensin converting enzyme with a biodegradable hydrogel after myocardial infarction. J Biomed Mater Res A 102:3452–3458

    Article  Google Scholar 

  • Wang H, Shi J, Wang Y, Yin Y, Wang L, Liu J, Liu Z, Duan C, Zhu P, Wang C (2014) Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 35:3986–3998

    Article  Google Scholar 

  • Wei X, Lv X, Zhao Q, Qiu L (2013) Thermosensitive β-cyclodextrin modified poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) micelles prolong the anti-inflammatory effect of indomethacin following local injection. Acta Biomater 9:6953–6963

    Article  Google Scholar 

  • WHO (2014) Global status report on non-communicable diseases 2014. WHO, Geneva

    Google Scholar 

  • WHO Malaria Factsheet Updated January 2016 (2016) http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 18 Feb 2016

  • World Health Organization (2005) Malaria control in complex emergencies. WHO, Switzerland

    Google Scholar 

  • Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32:579–586

    Article  Google Scholar 

  • Wu Z, Zhang X, Guo H, Li C, Yu D (2012) An injectable and glucose-sensitive nanogel for controlled insulin release. J Mater Chem 22:22788–22796

    Article  Google Scholar 

  • Wu X, He C, Wu Y, Chen X (2016) Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials 75:148–162

    Article  Google Scholar 

  • Xi L, Wang T, Zhao F, Zheng Q, Li X, Luo J, Liu J, Quan D, Ge J (2014) Evaluation of an injectable thermosensitive hydrogel as drug delivery implant for ocular glaucoma surgery. PLoS ONE 9:e100632

    Article  Google Scholar 

  • Xu X, Weng Y, Xu L, Chen H (2013) Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery. Int J Biol Macromol 60:272–276

    Article  Google Scholar 

  • Yan Q, Xiao L-Q, Tan L, Sun W, Wu T, Chen L-W, Mei Y, Shi B (2015) Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics. J Biomed Mater Res Part A 103A:3580–3589

    Article  Google Scholar 

  • Yasmeen S, Lo ML, Bajracharya S, Roldo M (2014) Injectable scaffolds for bone regeneration. Langmuir 30:12977–12985

    Article  Google Scholar 

  • Ye Y, Hu X (2016) A pH-Sensitive injectable nanoparticle composite hydrogel for anticancer drug delivery. J Nanomater, Article ID 9816461, 8 p

    Google Scholar 

  • Yu NY, Orenberg EK, Luck EE, Brown DM (1995) Antitumor effect of intratumoral administration of fluorouracil/epinephrine injectable gel in C3H mice. Cancer Chemother Pharmacol 36:27–34

    Article  Google Scholar 

  • Yu L, Li Y, Zhao K, Tang Y, Chang Z, Chen J, Zang Y, Wu J, Kong L, Liu S, Lei W, Wu Z (2013) A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS ONE 8:e62570

    Article  Google Scholar 

  • Zdeblick TA, Ducker TB (1991) The use of freeze-dried allograft bone for anterior cervical fusions. Spine 16:726–729

    Article  Google Scholar 

  • Zhang K, Shi X, Lin X, Yao C, Shen L, Feng Y (2015) Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv 22:375–382

    Article  Google Scholar 

  • Zhang J, Liu W, Gauthier O, Sourice S, Pilet P, Rethore G, Khairoun K, Bouler J-M, Tancret F, Weiss P (2016) A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomater 31:326–338

    Article  Google Scholar 

References (Internet Source)

Download references

Acknowledgements

The financial assistance of Medical Research Council (Self-Initiated Research) and National Research Foundation, South Africa towards this research are hereby acknowledged. The views and opinions expressed in this manuscript are those of the author and not of MRC or NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Aderibigbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aderibigbe, B.A. (2018). Design and Application of Injectable Gels in Tissue Engineering and Drug Delivery. In: Thakur, V., Thakur, M., Voicu, S. (eds) Polymer Gels. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6080-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6080-9_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6079-3

  • Online ISBN: 978-981-10-6080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics