Skip to main content

Heat Stress Tolerance in Plants: Action of Salicylic Acid

  • Chapter
  • First Online:
Salicylic Acid: A Multifaceted Hormone

Abstract

Heat stress is a major abiotic stress of global concern, affecting plant growth and production of plants, particularly crops worldwide. It occurs due to disturbance in plant metabolism as a consequence of excess generation of reactive oxygen species (ROS), which leads to oxidative stress. Plants adopt different strategies to overcome the adverse effects of heat stress. The molecular mechanism of the heat stress responses and breeding of heat-tolerant plants is essential to protect the food production. Recently, the role of salicylic acid has received attention in the regulation of numerous developmental processes under heat stress condition and has emerged through cross talk between chemical signaling pathways. The present review focuses on improving our understanding on the mechanism to induce thermotolerance in plants by salicylic acid interaction and gives an insight into some scientific approaches to modulate plants’ responses for high temperature tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-RamĂ­rez A, Rodriguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, GĂłmez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Amooaghaie R, Moghym S (2011) Effect of polyamines on thermotolerance and membrane stability of soybean seedling. Afr J Biotechnol 47:9673–9679

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia F, Ferrari L, De Bellis L, Turchi L, Giuliano G, Cattivelli L (2009) Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics 10:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnison PG, Donaldson P, Jackson A, Semple C, Keller W (1990) Genotype specific response of cultured boroccoli (Brassica oleracea var. Italica) anthers to cytokinins. Plant Cell Tiss Org Cult 20:217–222

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asensi-Fabado MA, Oliván A, MunnĂ©-Bosch S (2013) A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environ Exp Bot 94:57–65

    Article  CAS  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48:81–86

    Article  CAS  Google Scholar 

  • Asthir B, Deep A (2011) Thermotolerance and antioxidant response induced by putrescine and heat acclimation in wheat seedlings. Seed Sci Biotechnol 5:42–46

    Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48–59

    Article  PubMed  CAS  Google Scholar 

  • Basra RK, Basra AS, Malik CP, Grover IS (1997) Are polyamines involved in the heat-shock protection of mungbean seedlings? Bot Bull Acad Sin 38:165–169

    CAS  Google Scholar 

  • Caers M, Rudelsheim PA, Van Onckelen HV, Horemans S (1985) Effect of heat stress on photosynthetic activity and chloroplast ultra-structure in correlation with endogenous cytokinin concentration in maize seedlings. Plant Cell Physiol 26:47–52

    CAS  Google Scholar 

  • Cairns JE, Sanchez C, Vargas M, Ordonez R, Araus JL (2012) Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions. J Integr Plant Biol 54:1007–1020

    Article  PubMed  Google Scholar 

  • Cavusoglu K, Kudret K (2007) Comparative effects of some plant growth regulators on the germination of barley and radish seeds under high temperature stress. Eur Asia J Bio Sci 1:1–10

    Google Scholar 

  • Chakraborty U, Pradhan D (2011) High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. J Plant Interact 6:43–52

    Article  CAS  Google Scholar 

  • Chen K, Chen L, Fan J, Fu J (2013) Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynth Res 116:21–31

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–437

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJM, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  PubMed  Google Scholar 

  • Coleman JS, McConnaughay K (1994) Phenotypic plasticity. Trends Ecol Evol 9:187–191

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant maize to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol 118:1455–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davletova S, MĂ©szaros T, Miskolczi P, Oberschall A, Torok K, Magyar Z, Dudits D, Deák M (2001) Auxin and heat shock activation of a novel member of the calmodulin like domain protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342

    Article  CAS  PubMed  Google Scholar 

  • Fu XJ, Xing F, Wang NQ, Peng LZ, Chun CP, Cao L, Ling LL, Jiang CL (2014) Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnol Biotechnol Equip 28:192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galani S, Hameed S, Ali MK (2016) Exogenous application of salicylic acid: inducing thermotolerance in cotton (Gossypium Hirsutum L.) seedlings. Int J Agric Food Res 5:9–18

    Google Scholar 

  • Ghannoum O, Way DA (2011) On the role of ecological adaptation and geographic distribution in the response of trees to climate change. Tree Physiol 31:1273–1276

    Article  PubMed  Google Scholar 

  • Ghasemnezhad M, Javaherdashti M (2008) Effect of methyl jasmonate treatment on antioxidant capacity, internal quality and postharvest life of raspberry fruit. J Environ Sci 6:73–78

    Google Scholar 

  • Gong M, Chen S, Song Y, Li Z (1997) Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust J Plant Physiol 24:371–379

    Article  CAS  Google Scholar 

  • Gould KS, Lamotte O, Klinguer A, Pugin A, Wendehenne D (2003) Nitric oxide production in tobacco leaf cells: a generalized stress response. Plant Cell Environ 26:1851–1862

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M (2013) Enhancing plant productivity under salt stress-relevance of poly-omics. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: omics, signaling and responses. Springer, Berlin, pp 113–156

    Chapter  Google Scholar 

  • Heckatorn S, Downs C, Sharkey T, Coleman J (1998) The small methionine rich heat-shock protein protects PSII electron transport during heat stress. Plant Physiol 116:439–444

    Article  Google Scholar 

  • Hemantaranjan A, Bhanu NA, Singh MN, Yadav DK, Patel PK, Singh R, Katiyar D (2014) Heat stress responses and thermotolerance. Adv Plants Agric Res 1:00012

    Google Scholar 

  • Hemme D, Veyel D, Muhlhaus T, Sommer F, Juppner J, Unger AK, Sandmann M, Fehrle I, Schonfelder S, Steup M et al (2014) Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell 26:4270–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath I, Glatz A, Varvasovszki V, Torok Z, Pali T, Balogh G, Kovács E, Nádasdi L, Benkö S, JoĂł F, VĂ­gh L (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a fluidity gene. Proc Natl Acad Sci 95:3513–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J (2009) From freezing to scorching, transcriptional responses to temperature variations in plants. Curr Opin Plant Biol 12:568–573

    Article  CAS  PubMed  Google Scholar 

  • IPCC Climate Change (2007) The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press

    Google Scholar 

  • IPCC (2011) Extreme weather and climate change: Report. Intergovernmental panel on environmental change, Kampala

    Google Scholar 

  • Jurivich DA, Sistonen L, Kroes RA, Morimoto RI (1992) Effect of sodium salicylate on the human HS response. Science 255:1243–1245

    Article  CAS  PubMed  Google Scholar 

  • Karagezov TG (2002) Ethylene as a factor in the adaptability of wheat cells to culture. Proc Azerb Nat Acad Sci Biol Sci:344–354

    Google Scholar 

  • Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658

    Article  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stress, 2nd edn. Academic Press, New York USA

    Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  CAS  PubMed  Google Scholar 

  • Li F, Zhan D, Xu L, Han L, Zhang X (2014) Antioxidant and hormone responses to heat stress in two kentucky bluegrass cultivars contrasting in heat tolerance. J Amer Soc Hortic Sci 139:587–596

    CAS  Google Scholar 

  • Liu X, Huang B (2002) Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci 42:466–472

    Article  CAS  Google Scholar 

  • Liu X, Huang B (2005) Root physiological factors involved in cool-season grass response to high soil temperature. Environ Exp Bot 53:233–245

    Article  Google Scholar 

  • Liu Y, Zhang J, Liu H, Huang W (2008) Salicylic acid or heat acclimation pre-treatment enhances the plasma membrane associated ATPase activities in young grape plants under heat shock. Sci Hortic 119:21–27

    Article  CAS  Google Scholar 

  • Liu HC, Liao HY, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34:738–751

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Asner GP (2003) Climate and management contributions to recent trends in U.S. agricultural yields. Science 299:1032

    Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2, 014002

    Google Scholar 

  • Lobell DB, Schlenker W, CostaRoberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scot IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    Article  CAS  Google Scholar 

  • Lubovská Z, Dobrá J, Storchová WHN (2014) Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J Plant Physiol 171:1625–1633

    Article  PubMed  CAS  Google Scholar 

  • Mansoor S, Naqvi FN (2013) Isoamylase profile of mung bean seedlings treated with high temperature and gibberellic acid. Afr J Biotechnol 12:1495–1499

    CAS  Google Scholar 

  • Marchand FL, Mertens S, Kockelbergh F, Beyens L, Nijs I (2005) Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob Chang Biol 11:2078–2089

    Article  Google Scholar 

  • Mitchell RAC, Mitchell VJ, Driscoll SP, Franklin J, Lawlor DW (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter-wheat at 2 levels of nitrogen application. Plant Cell Environ 16:521–529

    Article  CAS  Google Scholar 

  • Morales D, Rodriguez P, Dellamico J, Nicolas E, Torrecillas A, Sanchez-Blanco MJ (2003) High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol Plant 47:203–208

    Article  Google Scholar 

  • Mostofa MG, Yoshida N, Fujita M (2014) Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 73:31–44

    Article  CAS  Google Scholar 

  • Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 155:553–561

    Article  CAS  PubMed  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Salvador N (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Omae H, Kumar A, Lubovská SM (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. Aust J Bot 2012:1–6

    Google Scholar 

  • Pan Q, Zhan J, Liu H, Zhang J, Chen J, Wen P, Huang W (2006) Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci 171:226–233

    Article  CAS  Google Scholar 

  • Penueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    Article  Google Scholar 

  • Piterková J, Luhová L, Mieslerová B, Lebeda A, Petrivalsky M (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57–65

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • RodrĂ­guez M, Canales E, Borrás-Hidalgo O (2005) Molecular aspects of abiotic stress in plants. Biotechnol Appl 22:1–10

    Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Sagor GHM, Berberich T, Takahashi Y, Niitsu M, Kusano T (2013) The polyamine spermine protects Arabidopsis from heat stress induced damage by increasing expression of heat shock related genes. Transgenic Res 22:595–605

    Article  CAS  PubMed  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci U S A 107:8569–8574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18:1292–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayed SA (1999) Effect of lead kinetin on the growth and some physiological components of safflower. Plant Growth Regul 29:167–174

    Article  CAS  Google Scholar 

  • Schöffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes Co, Austin, pp 81–98

    Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci Cambridge 148:543–552

    Article  CAS  Google Scholar 

  • Song L, Ding W, Zhao MG, Sun BT, Zhang LX (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458

    Article  CAS  PubMed  Google Scholar 

  • Song L, Ding W, Shen J, Zhang Z, Bi Y, Zhang L (2008) Nitric oxide mediates abscisic acid induced thermotolerance in the calluses from two ecotypes of reed under heat stress. Plant Sci 175:826–832

    Article  CAS  Google Scholar 

  • Song L, Yue L, Zhao H, Hou M (2013) Protection effect of nitric oxide on photosynthesis in rice under heat stress. Acta Physiol Plant 35:3323–3333

    Article  CAS  Google Scholar 

  • Srivastava S, Pathak AD, Gupta PS, Shrivastava AK (2012) Hydrogen peroxide-scavenging enzymes impart tolerance to high temperature induced oxidative stress in sugarcane. J Environ Biol 33:657–661

    CAS  PubMed  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Synkova H, Semoradova S, Schnablova R, Witters E, Husak M, Valcke R (2006) Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-ipt tobacco during plant ontogeny. Biol Plant 50:31–41

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-arree W, Pankean P, Suksamrarn A (2013) Effects of a brassinosteroid and an ecdysone analogue on pollen germination of rice under heat stress. J Pestic Sci 38:105–111

    Article  CAS  Google Scholar 

  • Tian XJ, Tao HZ, Luo J, Zhang XD, Tao Q (2010) Physiological effect of heat stress on pea (Pisum sativum) hypocotyls. Acta Bot Yunnanica 31:363–368

    Article  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  CAS  PubMed  Google Scholar 

  • Veerasamy M, He Y, Huang B (2007) Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinin. J Amer Soc Hort Sci 132:467–472

    CAS  Google Scholar 

  • Wahid A (2007) Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120:219–228

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang JZ, Cui LJ, Wang Y, Li JL (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:247–252

    Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wheeler TR, Hong TD, Ellis RH, Batts GR, Morison JIL, Hadley P (1996) The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. J Exp Bot 47:623–630

    Article  CAS  Google Scholar 

  • Wu SH, Wong C, Chen J, Lin BC (1994) Isolation of a cDNA encoding a 70 kDa heat shock cognate protein expressed in the vegetative tissue of Arabidopsis. Plant Mol Biol 25:577–583

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36:251–261

    Article  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Huang B (2009) Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci 49:1876–1884

    Article  CAS  Google Scholar 

  • Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J Exp Bot 61:3273–3289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195:10–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas SI, Rivero RM, MartĂ­nez V, GĂłmez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Wang X (2011) Overexpression of GASA5 increases the sensitivity of Arabidopsis to heat stress. J Plant Physiol 168:2093–2101

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Zhu XH, Ding HD, Yang SJ, Chen YY (2013) Foliar application of 24-epibrassinolide alleviates high-temperature induced inhibition of photosynthesis in seedlings of two melon cultivars. Photodermatol 51:341–349

    CAS  Google Scholar 

  • Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic β-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53:144–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

RN and NI are thankful to University Grant Commission, New Delhi, for funding in the form of Dr. D.S. Kothari Postdoctoral Fellowship and to the head of the Department of Botany, Jamia Hamdard University, New Delhi, for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahat Nazar or Noushina Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazar, R., Iqbal, N., Umar, S. (2017). Heat Stress Tolerance in Plants: Action of Salicylic Acid. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_8

Download citation

Publish with us

Policies and ethics