Skip to main content

Emerging Trends in Physiological and Biochemical Responses of Salicylic Acid

  • Chapter
  • First Online:
Salicylic Acid: A Multifaceted Hormone

Abstract

Salicylic acid (SA) is one of the important plant growth regulators that has garnered focus due to its crucial role in both physiological aspects and plant defense responses. Several studies throw light on its role in regulation of various biochemical pathways that further shows its control on morphology and physiology of plants. It is involved in conferring innate immunity to plants against both biotic and abiotic stresses by influencing multiple processes. It interacts with transcription factors and thus alters gene expression. It is also instrumental in controlling the expression of PR genes through NPR1 proteins. RNA silencing mechanisms in viral infections also become activated with SA and thus provide immunity. Plants also gain systemic acquired resistance through SA that causes stimulation of long-distance mobile signaling and activation of transcriptional coactivators. The studies thus indicate that SA is involved in regulation of mechanisms responsible for plant morphology, physiology, and responses to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberg B (1981) Plant growth regulators. XLI. Monosubstituted benzoic acids. Swed J Agric Res 11:93–105

    Google Scholar 

  • Abreu ME, Munné-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    Article  CAS  Google Scholar 

  • Aghaeifard F, Babalar M, Fallahi E, Ahmadi A (2016) Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria × Ananassa duch.) cv Camarosa. J Plant Nutr 39:1821–1829

    Article  CAS  Google Scholar 

  • Alonso-Ramırez A, Rodrıguez D, Reyes D, Jimenez JA, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  PubMed Central  PubMed  Google Scholar 

  • Alvarado VY, Scholthof HB (2009) Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 20:1032–1040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An C, Mou Z (2013) The function of the Mediator complex in plant immunity. Plant Signal Behav 8:e23182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anandhi S, Ramanujam MP (1997) Effect of salicylic acid on black gram (Vigna mungo) cultivars. Indus J Plant Physiol 2:138–141

    Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164(6):685–694

    Article  CAS  PubMed  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol 6:395–401

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Liu J, Zhou J, Xing D (2014) Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid. J Exp Bot 65(22):6513–6528

    Article  CAS  PubMed  Google Scholar 

  • Chame SK, Khalil-Tahmasbi B, Shah Mahmoodi P, Abdollahi A, Fathi A, Jalil S, Mousavi S, Abadi MH, Ghoreishi S, Bahamin S (2016) Effects of salinity stress, salicylic acid and pseudomonas on the physiological characteristics and yield of seed beans (Phaseolus vulgaris). Sci Agric 14:234–238

    Google Scholar 

  • Chandra A, Bhatt RK (1998) Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 35:255–258

    Article  CAS  Google Scholar 

  • Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Venables B, Petros RA, Nalam V, Li M, Wang X, Takemoto LJ, Shah J (2012) An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J 71:161–172

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005) Effect of temperature on Geminivirus induced RNA silencing in plants. Plant Physiol 138:1828–1841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciechanover A (1998) The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conaway RC, Conaway JW (2011) Function and regulation of the Mediator complex. Curr Opin Genet Dev 21:225–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman M-A, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch- Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Dellagi A, Helibronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, Toth IK, Cooke DE, Lyon GD, Birch PR (2000) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with a class I endochitinase expression. Mol Plant-Microbe Interact 13:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:1–12

    Article  Google Scholar 

  • Deng L, Qin P, Liu Z, Wang G, Chen W, Tong J, Xiao L, Tu B, Sun Y, Yan W, He H, Tan J, Chen X, Wang Y, Li S, Ma B (2017) Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice. Plant Physiol Biochem 111:50–58

    Article  CAS  PubMed  Google Scholar 

  • Després C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ding S-W (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  • Ding S-W, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot (Lond) 99:787–822

    Article  CAS  Google Scholar 

  • Du H, Klessig DF (1997) Identification of a soluble, high-affinity salicylic acid-binding protein in tobacco. Plant Physiol 113:1319–1327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du Q, Zhu W, Zhao Z, Qian X, Xu Y (2012) Novel benzo-1,2,3-thiadiazole-7-carboxylate derivatives as plant activators and the development of their agricultural applications. J Agric Food Chem 60:346–353

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Espanany A, Fallah S (2016) Seed germination of dill (Anethum graveolens L.) in response to salicylic acid and halopriming under cadmium stress. Iran J Plant Physiol 6(3):1702–1713

    Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Faried HN, Ayyub CM, Amjad M, Ahmed R, Wattoo FM, Butt M, Bashir M, Shaheen MR, Waqas MA (2017) Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation. J Sci Food Agric 97:1868–1875. https://doi.org/10.1002/jsfa.7989

    Article  CAS  PubMed  Google Scholar 

  • Fateh E, Jiriaii M, Shahbazi S, Jahni R (2012) Effect of salicylic acid and seed weight on germination of wheat under different levels of osmotic stress. Pelagia Res Lib 2(5):1680–1684

    CAS  Google Scholar 

  • Flors V, Ton J, van Doorn R, Garcia-Agustin P, Mauch-Mani B (2008) Interplay between JA, SA, and ABA signalling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J 54:81–92

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Yan Y, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagege D, Courtois D, Joseph C (2012) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Cult 113:25–39

    Article  CAS  Google Scholar 

  • Gao Q, Liu Y, Wang M, Zhang J, Gai Y, Zhu C, Guo N (2009) Molecular cloning and characterization of an inducible RNA-dependent RNA polymerase gene, GhRdRP, from cotton ( Gossypium hirsutum L.) Mol Biol Rep 36:47–56

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 22:481–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Métraux J-P (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of the Arabidopsis. Plant Physiol 147:1279–1287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghai N, Setia RC, Setia N (2002) Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphology 52:83–87

    Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:Article 72/1

    Google Scholar 

  • Grennan AK (2008) Ethylene response factors in jasmonate signaling and defense response. Plant Physiol 146:1457–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez-Coronado M, Trejo CL, Larque-Saavedra A (1998) Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiol Biochem 36:563–565

    Article  CAS  Google Scholar 

  • Hamiduzzaman MM, Jakeb G, Barnavon L, Neuhaus JM, Mauch-Mani B (2005) β-aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Mol Plant-Microbe Interact 18:819–829

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Fariduddin Q, Ali B, Ahmad A (2005) Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 53:433–437

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Alyemini MN, Ahmad A (2012) Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environ 58:417–423

    CAS  Google Scholar 

  • He J, Ren Y, Pan X, Yan Y, Zhu C, Jiang D (2010) Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth, and amylase activity of rice. J Plant Nutr Soil Sci 173(2):300–305

    Article  CAS  Google Scholar 

  • Heidari A, Shekari F, Saba J, Shahidi G (2015) The effect of seed priming with salicylic acid on growth and grain yield of pinto bean under nitrogen level. Int J Biosci 6:298–307

    Article  Google Scholar 

  • Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Leubner-Metzger G (2007) 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot 58(11):3047–3060

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 6:171

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Hwang BK (2007) Role of a novel pathogen induced pepper C3-H-C4 type RING-finger protein gene, CaRFPI, in disease susceptibility and osmotic stress tolerance. Plant Mol Biol 63:571–588

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Kárenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Imran H, Zhang Y, Du G, Wang G, Zhang J (2007) Effect of salicylic acid (SA) on delaying fruit senescence of Huang Kum pear. Front Agric China 1:456–459

    Article  Google Scholar 

  • Janda T, Gondor OK, Yordanova R, Szalai G, Pal M (2014) Salicylic acid and photosynthesis: signalling and effects. Acta Physiol Plant 36:2537–2546

    Article  CAS  Google Scholar 

  • Janda K, Hideg E, Szalai G, Kovacs L, Janda T (2012) Salicylic acid may indirectly influence the photosynthetic electron transport. J Plant Physiol 169:971–978

    Article  CAS  PubMed  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jaubert M, Bhattacharjee S, Mello AF, Perry KL, Moffett P (2011) ARGONAUTE2 mediates RNA silencing anti-viral defenses against Potato virus X in Arabidopsis. Plant Physiol 156:1556–1564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji Y, Liu J, Xing D (2016) Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity. J Exp Bot 67(17):5233–5245

    Article  CAS  PubMed  Google Scholar 

  • Jing B, Xu S, Xu M, Li Y, Li S, Ding J, Zhang Y (2011) Brush and spray: a high-throughput systemic acquired resistance assay suitable for large-scale genetic screening. Plant Physiol 157:973–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jovel J, Walker M, Sanfacon H (2011) Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. Mol Plant-Microbe Interact 24:706–718

    Article  CAS  PubMed  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009) Priming in systemic plant immunity. Science 324:89–91

    Article  CAS  PubMed  Google Scholar 

  • Kaihara S, Watanabe K, Takimoto A (1981) Flower-inducing effect of benzoic and salicylic acids in various strains of Lemna paucicostata and L. minor. Plant Cell Physiol 22(5):819–825

    CAS  Google Scholar 

  • Kamakka RT, Biggins S (2005) Histone variants: deviants? Genes Dev 19:295–310

    Article  CAS  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawano T, Bouteau F (2013) Salicylic acid-induced local and long-distance signaling models in plants. In: Long-distance systemic signaling and communication in plants. Springer, Berlin, pp 23–52

    Chapter  Google Scholar 

  • Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144(1):336–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492

    Article  CAS  PubMed  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Int J Agric Biol 6(1):5–8

    CAS  Google Scholar 

  • Khurana JP, Cleland CF (1992) Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiol 100(3):1541–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khurana A, Kumar R, Babbar SB (2014) Nitric oxide is involved in salicylic acid-induced flowering of Lemna aequinoctialis Welw. Acta Physiol Plant 36:2827–2833

    Article  CAS  Google Scholar 

  • Khurana JP, Maheshwari SC (1983) Floral induction in Wolffia microscopica by salicylic acid and related compounds under non-inductive long days. Plant Cell Physiol 24(5):907–912

    Article  CAS  Google Scholar 

  • Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K (2011) Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 22:741–748

    Article  CAS  PubMed  Google Scholar 

  • Kim KC, Fan B, Chen Z (2006) Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances susceptibility to Pseudomonas syringae. Plant Physiol 142:1180–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koo YJ, Kim MA, Kim EH, Song JT, Jung CK, Moon JK, Kim JH, Seo HS, Song SL, Kim JK, Lee JS, Cheong JJ, Choi YD (2007) Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Mol Biol 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Koshio A, Hasegawa T, Okada R, Takeno K (2015) Endogenous factors regulating poor-nutrition stress-induced flowering in pharbitis: the involvement of metabolic pathways regulated by aminooxyacetic acid. J Plant Physiol 173:82–88

    Article  CAS  PubMed  Google Scholar 

  • Kovacik J, Gruz J, Hedbavny J, Klejdus B, Strnad M (2009) Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem 57:9848–9855

    Article  CAS  PubMed  Google Scholar 

  • Kumar U, Gulati IJ, Rathiya GR, Singh MP (2017) Effect of saline water irrigation, humic acid and salicylic acid on soil properties, yield attributes and yield of tomato (Lycopersicon esculentum Mill.) Environ Ecol 35:449–453

    Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci U S A 100:16101–16106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwon S, Hamada K, Matsuyama A, Yasuda M, Nakashita H, Yamakawa T (2009) Biotic and abiotic stresses induce AbSAMT1, encoding S -adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, in Atropa belladonna. Plant Biotechnol 26:207–215

    Article  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controllingPR-1 gene expression in Arabidopsis. Plant J 16(2):223–233

    Article  CAS  PubMed  Google Scholar 

  • Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156:2011–2025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee W-S, Fu S-F, Verchot-Lubicz J, Carr JP (2011) Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. BMC Plant Biol 11:41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  CAS  PubMed  Google Scholar 

  • Leibman D, Wolf D, Saharan V, Zelcer A, Arazi T, Yoel S, Gaba V, Gal-On A (2011) A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. Mol Plant-Microbe Interact 24:1220–1238

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes A, Spoel SH, De Lang ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RAM, Ritsema T, Pieterse CMJ (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Chang Y, Zhao C, Yang H, Ren D (2016) Expression of the inactive ZmMEK1 induces salicylic acid accumulation and salicylic acid-dependent leaf senescence. J Integr Plant Biol 58(8):724–736

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Woo HR, Nam HG (2003) Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci 8:272–278

    Article  CAS  PubMed  Google Scholar 

  • Liu P-P, von Dahl CC, Klessig DF (2011) The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol 157:2216–2226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu P-P, von Dahl CC, Park S-W, Klessig DF (2011) Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. Plant Physiol 155:1762–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Zhang H, Yang Y, Li G, Yang Y, Wang X, Basnayake BM, Li D, Song F (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68:17–30

    Article  CAS  PubMed  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic acquired resistance in potato. Mol Plant-Microbe Interact 23:82–90

    Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Mandal B, Mandal S, Csinos AS, Martinez N, Culbreath AK, Pappu HR (2008) Biological and molecular analyses of the acibenzolar-S-methyl-induced systemic acquired resistance in fluecured tobacco against Tomato spotted wilt virus. Phytopathology 98:196–204

    Article  CAS  PubMed  Google Scholar 

  • Manosalva PM, Park S-W, Forouhar F, Tong L, Fry WE, Klessig DF (2010) Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. Mol Plant-Microbe Interact 23:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • March-Diaz R, Garcia-Domỉnguez M, Lozano-Juste J, LeÏŒn J, Florencio FJ, Reyes JC (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53:475–487

    Article  CAS  PubMed  Google Scholar 

  • Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M-F, Regard F, Cailleteau B, Hamdi S, Lauvergeat V (2007) Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J Exp Bot 58:1999–2010

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217

    Article  CAS  PubMed  Google Scholar 

  • Maslenkova L, Peeva V, Stojnova ZH, Popova L (2009) Salicylic acid-induced changes in photosystem II reactions in barley plants. Biotechnol Biotechnol Equip 23:297–300. https://doi.org/10.1080/13102818.2009.10818423

    Article  Google Scholar 

  • Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B (2004) Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function 568 in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Menke FLH, Kang H-G, Chen Z, Mee Park J, Kumar D, Klessig DF (2005) Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant-Microbe Interact 10:1027–1034

    Article  CAS  Google Scholar 

  • Metraux JP (2002) Recent breakthroughs in the study of salicylic acid biosynthesis. Trends Plant Sci 8:332–334

    Article  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 463 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moharekar ST, Lokhande SD, Hara T, Tanaka R, Tanaka A, Chavan PD (2003) Effects of salicylic acid on chlorophyll and carotenoid contents on wheat and moong seedlings. Photosynthetica 41:315–317

    Article  CAS  Google Scholar 

  • Mohtashami M, Naderi A, Ghanbari AA, Alavifazel M, Lak S (2016) Effect of seed pre-treatment with growth regulators on seed yield and yield components of common beans (Phaseolus vulgaris L.) Turk J Field Crops 21(2):313–317

    Google Scholar 

  • Moreau M, Tian M, Klessig DF (2012) Salicylic acid binds NPR3 and NPR4 to regulate NPR1- dependent defense responses. Cell Res 22(12):1631–1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23(5):677–685

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mulgir VB, Joshi AK, Dhutmal RR, More AW, Sharma V (2014) Effect of exogenous application of brassinosteroide and salicylic acid on growth and yield parameters of groundnut (Arachis hypogea L.) Ecoscan 6:157–162

    Google Scholar 

  • Munir M, Amjad M, Ziaf K, Ahmad A (2016) Improving okra productivity by mitigating drought through foliar application of salicylic acid. Pak J Agric Sci 53:879–884

    Google Scholar 

  • Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarova H, Bernsdorff F, Döring A-C, Zeier J (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–5141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oata Y (1975) Short day flowering of Lemnagibba G3 induced by salicylic acid. Plant Cell Physiol 16:1131–1135

    Article  Google Scholar 

  • Pacheco AC, da Silva CC, da Silva Fermino ES, Aleman CC (2013) Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. J Med Plant Res 7(42):3158–3163

    Google Scholar 

  • Pancheva TV, Popova LP, Uzunova AM (1996) Effect of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    Article  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150(4):1648–1655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papaefthimiou I, Hamilton A, Denti M, Baulcombe D, Tsagris M, Tabler M (2001) Replicating Potato spindle tuber viroid RNA is accompanied by short RNA fragments that are characteristic of post-transcriptional gene silencing. Nucleic Acids Res 29:2395–2400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pape S, Thurow C, Gatz C (2010) The Arabidopsis PR-1 promoter contains multiple integration sites for the coactivator NPR1 and the repressor SNI1. Plant Physiol 154(4):1805–1818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Liu PP, Forouhar F, Vlot AC, Tong L, Tietjen K, Klessig DF (2009) Use of synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem 284:7307–7317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269:7709–7718

    CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Poor P, Tari I (2012) Regulation of stomatal movement and photosynthetic activity in guard cells of tomato abaxial epidermal peels by salicylic acid. Funct Plant Biol 39:1028–1037

    Article  CAS  Google Scholar 

  • Popova L, Pancheva T, Uzunova A (1997) Salicylic acid: properties, biosynthesis and physiological role. Bulg J Plant Physiol 23(1–2):85–93

    CAS  Google Scholar 

  • Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One 4:e4971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu C, Ji W, Guo Y (2011) Effects of high temperature and strong light on chlorophyll fluorescence, the D1 protein, and Deg1 protease in Satsuma mandarin, and the protective role of salicylic acid. Acta Ecol Sin 31:3802–3810

    CAS  Google Scholar 

  • Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao Y, Li X, Xu C, Wang S (2007) OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonatedependent signaling. Mol Plant-Microbe Interact 20:492–499

    Article  CAS  PubMed  Google Scholar 

  • Qu F, Morris TJ (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infection. FEBS Lett 579:5958–5964

    Article  CAS  PubMed  Google Scholar 

  • Quilis J, Peñas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interact 21:1215–1231

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Belghazi M, Huguet R, Robin C, Moreau A, Job C, Job D (2006) Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defence mechanisms. Plant Physiol 141:910–923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rakshandehroo F, Takeshita M, Squires J, Palukaitis P (2009) The influence of RNA-dependent RNA polymerase 1 on potato virus Y infection and on other antiviral response genes. Mol Plant-Microbe Interact 22:1312–1318

    Article  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43(1):439–463

    Article  CAS  Google Scholar 

  • Reddy J, Narsimha Rao KL, Subbarao DV (2002) Effect of phenolic compounds on growth and yield of mungbean. Ind J Pulses Res 15(2):188–189

    Google Scholar 

  • Rubio JS, Garcia-Sanchez F, Rubio F, Martinez V (2009) Yield blossom end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Sci Hortic 119:79–87

    Article  CAS  Google Scholar 

  • Sahu GK, Kar M, Sabat SC (2002) Electron transport activities of isolated thylakoids from wheat plants grown in salicylic acid. Plant Biol 4:321–328

    Article  CAS  Google Scholar 

  • Sandoval-Yapiz MR (2004) Reguladores de crecimiento XXIII: efecto del acido salicilico en la biomasa del cempazuchitl (Tagetes erecta). Tesis de Licenciatura. Instituto Tecnologico Agropecuario, Conkal, Yucatan, Mexico

    Google Scholar 

  • Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30. https://doi.org/10.3389/fpls.2013.00030

    Article  PubMed Central  PubMed  Google Scholar 

  • Shakirova FM (2007) Role of hormonal system in the manifestation of growth promotion and anti-stress action of salicylic acid. In: Hayat S, Ahmad A (eds) A plant hormone. Springer, Dordrecht

    Google Scholar 

  • Shama MA, Moussa SAM, Abo NI, Fadel E (2016) Salicylic acid efficacy on resistance of garlic plants (Allium sativum, L.) to water salinity stress on growth, yield and its quality. Alex Sci Exch J 37:2

    Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    Article  CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  CAS  PubMed  Google Scholar 

  • Song JT, Lu H, McDowell JM, Greenberg JT (2004) A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J 40:200–212

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  CAS  PubMed  Google Scholar 

  • Spoel SH, Mou Z, Tada Y, Spivey NW, Genschik P, Dong X (2009) Proteasome-mediated coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sultan S, Mohamed M (2016) Growth and yield of cucumber plants derived from seeds pretreated with salicylic acid. J Boil Chem Environ Sci 11(1):541–561

    Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Dong X (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxin. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Sun X, Wen T, Liu M, Yang M, Chen X (2017) Implications of terminal oxidase function in regulation of salicylic acid on soybean seedling photosynthetic performance under water stress. Plant Physiol Biochem 112:19–28

    Article  CAS  PubMed  Google Scholar 

  • Tripathi D, Jiang Y-L, Kumar D (2010) SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett 584:3458–3463

    Article  CAS  PubMed  Google Scholar 

  • Uzunova AN, Popova LP (2000) Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250

    Article  CAS  Google Scholar 

  • van den Burg HA, Takken FLW (2009) Does chromatin remodeling mark systemic acquired resistance? Trends Plant Sci 14:286–294

    Article  CAS  PubMed  Google Scholar 

  • Van der Ent S, Verhagen BWM, Van Doorn R, Bakker D, Verlaan MG, Pel MJC, Joosten RG, Proveniers MCG, Van Loon LC, Ton J, Pieterse CMJ (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Verk MC, Pappaaioannou D, Neeleman L, Bol JF, Linthorst HJM (2008) A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiol 140:1983–1995

    Article  CAS  Google Scholar 

  • Vicente MRS, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62(10):3321–3338

    Article  CAS  Google Scholar 

  • Vlot AC, Dempsey DM, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Klessig DF, Park S-W (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11(4):436–432

    Article  CAS  PubMed  Google Scholar 

  • Vlot AC, Liu P-P, Cameron RK, Park S-W, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF (2008) Identification of likely orthologs of tobacco salicylic acidbinding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J 56:445–456

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2008) Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr Opin Plant Biol 11:464–470

    Article  CAS  PubMed  Google Scholar 

  • Wada KC, Mizuuchi K, Koshio A, Kaneko K, Mitsui T, Takeno K (2014) Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in Pharbitis. J Plant Physiol 171(11):895–902

    Article  CAS  PubMed  Google Scholar 

  • Wada KC, Yamada M, Shiraya T, Takeno K (2010) Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. J Plant Physiol 167(6):447–452

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathog 2:e123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5(2):e1000301. https://doi.org/10.1371/journal. ppat.1000301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99(2):410–412

    Article  CAS  PubMed  Google Scholar 

  • Willmann MR, Endres MW, Cook RT, Gregory BD (2011) The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book 9:e0146. https://doi.org/10.1199/tab.0146

    Article  PubMed Central  PubMed  Google Scholar 

  • Wypijewski K, Hornyik C, Shaw JA, Stephens J, Goraczniak R, Gunderson SI, Lacomme C (2009) Ectopic 5′ splice sites inhibit gene expression by engaging RNA surveillance and silencing pathways in plants. Plant Physiol 151:955–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie Z, Kasschau KD, Carrinton JC (2003) Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Xing DH, Lai ZB, Zheng ZY, Vinod KM, Fan BF, Chen ZX (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    Article  CAS  PubMed  Google Scholar 

  • Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada M, Takeno K (2014) Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. J Plant Physiol 171:205–212

    Article  CAS  PubMed  Google Scholar 

  • Yang D-L, Yang Y, He Z (2013) Roles of plant hormones and their interplay in rice immunity. Mol Plant 6:675–685

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yıldırım E, Dursun A (2009) Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Acta Hortic 807:395–400

    Article  Google Scholar 

  • Yu D, Fan B, MacFarlane SA, Chen Z (2003) Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant-Microbe Interact 16:206–216

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Fariduddin Q, Varshney P, Ahmad A (2012) Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res 19:8–18

    Article  CAS  Google Scholar 

  • Yusuf M, Hayat S, Alyemeni MN, Fariduddin Q, Ahmad A (2013) Salicylic acid: physiological roles in plants. In: Hayat S et al (eds) Salicylic acid. Springer Science+Business Media, Dordrecht, pp 15–30

    Chapter  Google Scholar 

  • Zahn LM (2009) Secondary messenger. Sci Signal 2:ec123

    Google Scholar 

  • Zeng LR, Vega-Sa’nchez ME, Zhu T, Wang GL (2006) Ubiquitination mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 16:413–426

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS (2013) Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci U S A 110(36):14807–14812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Li Q, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling Arabidopsis- Pseudomonas syringae interaction. Plant Physiol 145:450–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Wang C, Zhang Y, Sun Y, Mou Z (2012) The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene induced defense pathways. Plant Cell 24:4294–4309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao XY, Wang JG, Song SJ, Wang Q, Kang H, Zhang Y, Li S (2016) Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling. Sci Rep 6:20309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z (2007) Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biol 7:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:596–605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Handa, N. et al. (2017). Emerging Trends in Physiological and Biochemical Responses of Salicylic Acid. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_4

Download citation

Publish with us

Policies and ethics