Skip to main content

Salicylic Acid and Nutrients Interplay in Abiotic Stress Tolerance

  • Chapter
  • First Online:

Abstract

Abiotic stress factors, such as cold, heat, drought, flood, salinity, or oxidizing agents, are the major threats to agricultural system that affect the economic yield of crop plants. Phytohormones, the chemical messengers, play a vital role in resistance of plants to the changing environments by regulating physiological and molecular processes. Salicylic acid (SA) regulates photosynthetic events, nutrient metabolism, osmotic relations, and defense mechanisms in plants growing under optimal and changing environmental conditions. The role of SA in the regulation of nutrients metabolism and their interplay for abiotic stress tolerance is in infancy stage. Few reports are available on the interaction between SA and macro- and micronutrients and the influence of nutrients on SA biosynthesis and perception. The present chapter discusses the role of SA in macro-, micro-, and beneficial elements in the alleviation of adverse effects of abiotic stresses in plants. Moreover, it also covers the effect of deficiency or excess of the mineral nutrients on SA-induced abiotic stress tolerance mechanisms. The topics covered in the chapter are (a) biosynthesis and signaling of SA in plants exposed to major abiotic stresses (b) and understanding the mechanisms underlying between SA and nutrient signal transduction pathway in plants for abiotic stress tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Salam MM (2016) Effect of foliar application of salicylic acid and micronutrients on the berries quality of “Bez El Naka” local grape cultivar. Science 6:178–188

    Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    Article  CAS  Google Scholar 

  • Alam MM, Hasanuzzaman M, Nahar K, Fujita M (2013) Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 7:1053–1063

    CAS  Google Scholar 

  • Al-Hakimi AMA, Hamada AM (2001) Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol Plant 44:253–261

    Article  Google Scholar 

  • Al-Whaibi MH, Siddiqui MH, Basalah MO (2012) Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma 249:769–778

    Article  CAS  PubMed  Google Scholar 

  • Aly SSM, Soliman SM (1998) Impact of some organic acids on correcting iron chlorosis in two soybean genotypes grown in calcareous soil. Nutr Cycl Agroecosyst 51:185–191

    Article  CAS  Google Scholar 

  • Ardebili NO, Saadatmand S, Niknam V, Khavari-Nejad RA (2014) The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol Plant 36:3199–3205

    Article  CAS  Google Scholar 

  • Arpali D, Furan MA, Ozturkci Y (2016) Recovering wheat (Triticum aestivum L.) to intake mineral nutrient components under drought stress with salicylic acid. FEB-Fresenius Environ Bullet 3395

    Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Khan MIR, Anjum NA, Khan NA (2015a) Minimizing cadmium toxicity in plants: role of plant growth regulators. Protoplasma 252:399–413

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Khan MIR, Fatma M, Khan NA (2015b) Potentiality of ethylene in sulfur-mediated counteracting adverse effects of cadmium in plants. In: Chakraborty U, Chakraborty BN (eds) Abiotic stresses in crop plants. CAB International, UK, p 136

    Google Scholar 

  • Ashley R (2011) Grapevine nutrition-an Australian perspective, Foster’s Wine Estates Americas

    Google Scholar 

  • Bagheri R, Ahmad J, Bashir H, Iqbal M, Qureshi MI (2017) Changes in rubisco, cysteine-rich proteins and antioxidant system of spinach (Spinacia oleracea L.) due to sulphur deficiency, cadmium stress and their combination. Protoplasma 254:1–13

    Article  Google Scholar 

  • Belkadhi A, De Haro A, Soengas P, Obregon S, Cartea ME, Chaibi W, Djebali W (2014) Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.) J Plant Interact 9:647–654

    Article  Google Scholar 

  • Ben AH, Manaa A, Ezzeddine ZID (2009) Effect of salicylic acid on the growth and mineral nutrition in salt stressed wheat plants. J Arid Land Stud 19:177–180

    Google Scholar 

  • Bürstenbinder K, Rzewuski G, Wirtz M, Hell R, Sauter M (2007) The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49:238–249

    Article  PubMed  Google Scholar 

  • Byrnes BH, Bumb BL (1998) Population growth, food production and nutrient requirements. In: Rengel Z (ed) Mineral nutrition of crops: mechanisms and implications. The Haworth Press, New York, pp 1–27

    Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Chao YY, Chen CY, Huang WD, Kao CH (2010) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337

    Article  CAS  Google Scholar 

  • Chung E, Park JM, Oh SK, Joung YH, Lee S, Choi D (2004) Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220:286–295

    Article  CAS  PubMed  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156. https://doi.org/10.1199/tab.0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimeyeva L, Sitpayeva GT, Sultanova BM, Ussen K, Islamgulova A (2015) High altitude flora and vegetation of Kazakhstan and climate change impacts. In: Öztürk M, Hakeem KR, Faridah-Hanum I, Efe R (eds) Climate change impacts on high altitude ecosystems. Springer, Cham, pp 1–48

    Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    Article  CAS  PubMed  Google Scholar 

  • El Tayeb MA, Ahmed NL (2010) Response of wheat cultivars to drought and salicylic acid. American-Eurasian J Agron 3:1–7

    Google Scholar 

  • El-Beltagi HS, Ahmed SH, Namich AA, Abdel-Sattar RR (2017) Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environ Bull 26:1091–1100

    CAS  Google Scholar 

  • Eraslan F, Inal A, Pilbeam DJ, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul 55:207

    Article  CAS  Google Scholar 

  • FAO, Food and Agricultural Organization (2009) How to feed the world in 2050. Food and Agriculture Organization, Rome, Italy. Available: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63

    Article  CAS  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 13:45–55

    Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gémes K, Poór P, Horváth E, Kolbert Z, Szopkó D, Szepesi Á, Tari I (2011) Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol Plant 142:179–192

    Article  PubMed  Google Scholar 

  • Graziano M, Beligni MV, Lamattina L (2002) Nitric oxide improves internal iron availability in plants. Plant Physiol 130:1852–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Cicek N, Guneri E, Eraslan F, Guzelordu T (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.) Arch Agron Soil Sci 51:687–695

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Nazim H, Liang Z, Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4:83–91

    Article  Google Scholar 

  • Habibi G (2012) Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol Szeged 56:57–63

    Google Scholar 

  • Hadacek F, Bachmann G, Engelmeier D, Chobot V (2011) Hormesis and a chemical raison d’ětre for secondary plant metabolites. Dose-Response 9:79–116

    Article  CAS  Google Scholar 

  • Hayat Q, Hayat S, Alyemeni MN, Ahmad A (2012) Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environ 58:417–423

    CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Biol 50:473–503

    Article  CAS  Google Scholar 

  • Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennen-berg H (2012) Sulfur limitation and early sulfur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:873–1893

    Article  Google Scholar 

  • Horváth E, Pál M, Szalai G, Páldi E, Janda T (2007) Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol Plant 51:480–487

    Article  Google Scholar 

  • Iqbal N, Masood A, Khan MIR, Asgher M, Fatma M, Khan NA (2013) Cross-talk between sulfur assimilation and ethylene signaling in plants. Plant Signal Behav 8:e22478

    Article  PubMed  Google Scholar 

  • Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Jini D, Sujatha S (2010) Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian J Crop Sci 2:226–235

    Article  Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust J Crop Sci 5:296

    CAS  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Prot Res 11:6066–6079

    Article  CAS  Google Scholar 

  • Kastori R, Plesnicar M, Arsenijevic-Maksimovic I, Petrovic N, Pankovic D, Saka Z (2000) Photosynthesis, chlorophyll fluorescence, and water relations in young sugar beet plants as affected by sulfur supply. J Plant Nutr 23:1037–1049

    Article  CAS  Google Scholar 

  • Kawano T, Furuichi T, Muto S (2004) Controlled salicylic acid levels and corresponding signaling mechanisms in plants. Plant Biotechnol 21:319–335

    Article  CAS  Google Scholar 

  • Keller M (2005) Deficit irrigation and vine mineral nutrition. Amer J Enol Viticul 56:267–283

    CAS  Google Scholar 

  • Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol. https://doi.org/10.4081/pb.2010.e1

  • Khan MIR, Syeed S, Nazar R, Anjum NA (2012) An insight into the role of salicylic acid and jasmonic acid in salt stress tolerance. In: Khan NA, Nazar R, Iqbal N, Amjum NA (eds) Phytohormones and abiotic stress tolerance in plants. Springer-Verlag, Berlin, pp 277–300

    Chapter  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.) Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khan NA, Asgher M, Per TS, Masood A, Fatma M, Khan MIR (2016) Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard. Front Plant Sci 7:1628

    PubMed  PubMed Central  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Dong Y, Xu L, Liu S, Bai X (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot Stud 55:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Leclercq J, Ranty B, Sanchez-Ballesta MT, Li Z, Jones B, Jauneau A, Pech JC, Latché A, Ranjeva R, Bouzayen M (2005) Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J Exp Bot 56:25–35

    CAS  PubMed  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, New York

    Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of a Na+ and K+ permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. Tansley review. New Phytol 167:645–656

    Article  CAS  PubMed  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Erkelens C, Lefeber AW, Spijksma G, van der Heijden R, Verpoorte R (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70:532–539

    Article  CAS  PubMed  Google Scholar 

  • Mutlu S, Karadağoğlu Ö, Atici Ö, Nalbantoğlu B (2013) Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol Plant 57:507–513

    Article  CAS  Google Scholar 

  • Naser Alavi SM, Arvin MJ, Manoochehri Kalantari K (2014) Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. J Plant Interact 9:683–688

    Article  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 03(10):1476–1489

    Google Scholar 

  • Nazar R, Umar S, Khan NA (2015) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751

    Article  PubMed  PubMed Central  Google Scholar 

  • Noriega G, Caggiano E, Lecube ML, Santa Cruz D, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25:1155–1165

    Article  CAS  PubMed  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Mense BJD (1990) Salicylic acid levels in thermogenic and nonthermogenic plants. Ann Bot 66:376–383

    Article  Google Scholar 

  • Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaïbi W, Djebali W (2013) Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. South Afr J Bot 85:32–38

    Article  CAS  Google Scholar 

  • Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV, Shakirova FM (2003) Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg J Plant Physiol 29:314–319

    Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    Article  CAS  Google Scholar 

  • Siboza XI, Bertling I, Odindo AO (2014) Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). J Plant Physiol 171:1722–1731

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    Article  CAS  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    Article  CAS  Google Scholar 

  • Szalai G, Krantev A, Yordanova R, Popova LP, Janda T (2013) Influence of salicylic acid on phytochelatin synthesis in Zea mays during Cd stress. Turk J Bot 37:708–714

    CAS  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  CAS  PubMed  Google Scholar 

  • Tahir MA, Aziz T, Rahmatullah (2011) Silicon induced growth and yield enhancement in two wheat genotypes differing in salinity tolerance. Commu Soil Sci Plant Analy 42:395–407

    Article  CAS  Google Scholar 

  • Tufail A, Arfan M, Gurmani AR, Khan A, Bano A (2013) Salicylic acid induced salinity tolerance in maize (Zea mays). Pak J Bot 45:75–82

    CAS  Google Scholar 

  • Verberne MC, Muljono RAB, Verpoorte R (1999) Salicylic acid biosynthesis. New Comp Biochem 33:295–312

    Article  CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang C, Zhang S, Wang P, Hou J, Qian J, Ao Y, Lu J, Li L (2011) Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress. Chemosphere 84:136–142

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Kong J, Liu S (2013) Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. J Plant Growth Regul 32:721–731

    Article  CAS  Google Scholar 

  • Waraich EA, Ahmad R, Ashraf MY, Saifullah Ahmad M (2011) Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand Section B Plant Soil Sci 61:291–304

    CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signalling pathways in plants. J Biol Chem 277:45049–45058

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Peng H, Whitaker BD, Jurick WM (2013) Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiol Plant 148:445–455

    Article  CAS  PubMed  Google Scholar 

  • Yavas I, Unay A (2016) Effects of zinc and salicylic acid on wheat under drought stress. JAPS J Animal Plant Sci 26:4

    Google Scholar 

  • Yazdanpanah S, Baghizadeh A, Abbassi F (2011) The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. Afr J Agric Res 6:798–807

    Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nutr 31:593–612

    Article  CAS  Google Scholar 

  • Yoshida S, Tamaoki M, Ioki M, Ogawa D, Sato Y, Aono M, Kubo A, Saji S, Saji H, Satoh S, Nakajima N (2009) Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant 136:284–298

    Article  CAS  PubMed  Google Scholar 

  • Yücel NC, Heybet E (2016) Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chim Slov 63:738–746

    Article  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.) Protoplasma 252:911–924

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Research facilities in the lab of NAK under the DBT-BUILDER program (No. BT/PR4872/INF/22/150/2012) of Department of Biotechnology, New Delhi, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tasir S. Per or Mehar Fatma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Per, T.S., Fatma, M., Asgher, M., Javied, S., Khan, N.A. (2017). Salicylic Acid and Nutrients Interplay in Abiotic Stress Tolerance. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_11

Download citation

Publish with us

Policies and ethics