Skip to main content

Photosystem II Based Multilayers

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems
  • 1070 Accesses

Abstract

During billions of years of evolution and development, photosynthesis has formed an effective mechanism for solar energy fixation and conversion. The unique property of photosystem II (PSII) to split water in ambient condition makes it the key role in the process of photosynthesis. Assembly of PSII-based multilayers toward the construction of water splitting systems has attracted more and more attention. As a means to study PSII, it might lead to quicker solutions to understand the electron transfer mechanism in such hybrid systems and how activities of PSII can be affected by different physicochemical or environmental factors. Such systems might also provide guidelines for the design and fabrication of artificial photosynthetic energy conversion systems. In this chapter, we concentrate on the design and development of PSII-based water splitting systems, in which photoelectrochemical (PEC) cells utilizing PSII will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: Chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 103:15729–15735

    Article  Google Scholar 

  2. Li Y (2012) Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45:723–733

    Article  Google Scholar 

  3. Service RF (2014) ENERGY TECHNOLOGY Perovskite solar cells keep on surging. Science 344:458

    Article  Google Scholar 

  4. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  Google Scholar 

  5. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  Google Scholar 

  6. Joya KS, Joya YF, Ocakoglu K et al (2013) Water-splitting catalysis and solar fuel devices: artificial leaves on the move. Angew Chem Int Ed Engl 52:10426–10437

    Article  Google Scholar 

  7. Hankamer B, Barber J, Boekema EJ (1997) Structure and membrane organization of photosystem II in green plants. Annu Rev Plant Physiol Plant Mol Biol 48:641–671

    Article  Google Scholar 

  8. Aro EM, Suorsa M, Rokka A et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356

    Article  Google Scholar 

  9. Meyer TJ, Huynh MH, Thorp HH (2007) The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew Chem Int Ed Engl 46:5284–5304

    Article  Google Scholar 

  10. Umena Y, Kawakami K, Shen J-R et al (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9[thinsp]A. Nature 473:55–60

    Article  Google Scholar 

  11. Kato M, Zhang JZ, Paul N et al (2014) Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev 43:6485–6497

    Article  Google Scholar 

  12. Yehezkeli O, Tel-Vered R, Michaeli D et al (2014) Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynth Res 120:71–85

    Article  Google Scholar 

  13. Iwata S, Barber J (2004) Structure of photosystem II and molecular architecture of the oxygen-evolving centre. Curr Opin Struct Biol 14:447–453

    Article  Google Scholar 

  14. Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  Google Scholar 

  15. Ruttinger W, Dismukes GC (1997) Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation. Chem Rev 97:1–24

    Article  Google Scholar 

  16. Zhang CX, Chen CH, Dong HX et al (2015) A synthetic Mn4Ca cluster mimicking the oxygen-evolving center of photosynthesis. Science 348:690–693

    Article  Google Scholar 

  17. McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  Google Scholar 

  18. Rappaport F, Guergova-Kuras M, Nixon PJ et al (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527

    Article  Google Scholar 

  19. de Wijn R, van Gorkom HJ (2002) The rate of charge recombination in Photosystem II. Biochim Biophys Acta Bioenerg 1553:302–308

    Article  Google Scholar 

  20. Varsamis DG, Touloupakis E, Morlacchi P et al (2008) Development of a photosystem II-based optical microfluidic sensor for herbicide detection. Talanta 77:42–47

    Article  Google Scholar 

  21. Pfister K, Steinback KE, Gardner G et al (1981) Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc Natl Acad Sci USA 78:981–985

    Article  Google Scholar 

  22. Koblizek M, Maly J, Masojidek J et al (2002) A biosensor for the detection of triazine and phenylurea herbicides designed using photosystem II coupled to a screen-printed electrode. Biotechnol Bioeng 78:110–116

    Article  Google Scholar 

  23. Loranger C, Carpentier R (1994) A fast bioassay for phytotoxicity measurements using immobilized photosynthetic membranes. Biotechnol Bioeng 44:178–183

    Article  Google Scholar 

  24. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35–54

    Article  Google Scholar 

  25. Magnuson A, Anderlund M, Johansson O et al (2009) Biomimetic and microbial approaches to solar fuel generation. Acc Chem Res 42:1899–1909

    Article  Google Scholar 

  26. Swierk JR, Mallouk TE (2013) Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 42:2357–2387

    Article  Google Scholar 

  27. Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  Google Scholar 

  28. van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320

    Article  Google Scholar 

  29. Cuni A, Xiong L, Sayre R et al (2004) Modification of the pheophytin midpoint potential in photosystem II: modulation of the quantum yield of charge separation and of charge recombination pathways. Phys Chem Chem Phys 6:4825–4831

    Article  Google Scholar 

  30. Tyystjärvi T, Aro E-M, Jansson C et al (1994) Changes of amino acid sequence in PEST-like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II. Plant Mol Biol 25:517–526

    Article  Google Scholar 

  31. Terasaki N, Iwai M, Yamamoto N et al (2008) Photocurrent generation properties of Histag-photosystem II immobilized on nanostructured gold electrode. Thin Solid Films 516:2553–2557

    Article  Google Scholar 

  32. Kato M, Cardona T, Rutherford AW et al (2013) Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 135:10610–10613

    Article  Google Scholar 

  33. Badura A, Guschin D, Esper B et al (2008) Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis 20:1043–1047

    Article  Google Scholar 

  34. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  Google Scholar 

  35. Abdelhamid ME, O’Mullane AP, Snook GA (2015) Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv 5:11611–11626

    Article  Google Scholar 

  36. Janata J, Josowicz M (2003) Conducting polymers in electronic chemical sensors. Nat Mater 2:19–24

    Article  Google Scholar 

  37. Fei J, Cui Y, Yan X et al (2009) Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures. ACS Nano 3:3714–3718

    Article  Google Scholar 

  38. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  Google Scholar 

  39. Gu C, Zhang Z, Sun S et al (2012) In situ electrochemical deposition and doping of C-60 films applied to high-performance inverted organic photovoltaics. Adv Mater 24:5727–5731

    Article  Google Scholar 

  40. Ariga K, Ji Q, Mori T et al (2013) Enzyme nanoarchitectonics: organization and device application. Chem Soc Rev 42:6322–6345

    Article  Google Scholar 

  41. Gizzie EA, Niezgoda JS, Robinson MT et al (2015) Photosystem I-polyaniline/TiO2 solid-state solar cells: simple devices for biohybrid solar energy conversion. Energ Environ Sci 8:3572–3576

    Article  Google Scholar 

  42. Li G, Feng X, Fei J et al (2016) Interfacial Assembly of photosystem II with conducting polymer films toward enhanced photo-bioelectrochemical cells. Adv Mater Interfaces 1600619

    Google Scholar 

  43. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  Google Scholar 

  44. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22

    Article  Google Scholar 

  45. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  Google Scholar 

  46. Jia Y, Cui Y, Fei J et al (2012) Construction and evaluation of hemoglobin-based capsules as blood substitutes. Adv Funct Mater 22:1446–1453

    Article  Google Scholar 

  47. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  48. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Article  Google Scholar 

  49. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4:5549–5563

    Google Scholar 

  50. Darby E, LeBlanc G, Gizzie EA et al (2014) Photoactive films of photosystem I on transparent reduced graphene oxide electrodes. Langmuir 30:8990–8994

    Article  Google Scholar 

  51. Cai P, Feng X, Fei J et al (2015) Co-assembly of photosystem II/reduced graphene oxide multilayered biohybrid films for enhanced photocurrent. Nanoscale 7:10908–10911

    Article  Google Scholar 

  52. Yehezkeli O, Tel-Vered R, Michaeli D et al (2013) Photosystem I (PSI)/Photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small 9:2970–2978

    Article  Google Scholar 

  53. Santato C, Ulmann M, Augustynski J (2001) Photoelectrochemical properties of nanostructured tungsten trioxide films. J Phys Chem B 105:936–940

    Article  Google Scholar 

  54. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  Google Scholar 

  55. Wang W, Wang Z, Zhu Q et al (2015) Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell. Chem Commun 51:16952–16955

    Article  Google Scholar 

  56. Burda C, Lou YB, Chen XB et al (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051

    Article  Google Scholar 

  57. Li J, Feng X, Fei J et al (2016) Integrating photosystem II into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells. J Mater Chem A 4:12197–12204

    Article  Google Scholar 

  58. Gerster D, Reichert J, Bi H et al (2012) Photocurrent of a single photosynthetic protein. Nat Nanotechnol 7:673–676

    Article  Google Scholar 

  59. Mershin A, Matsumoto K, Kaiser L et al (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep 2:234

    Article  Google Scholar 

  60. Yehezkeli O, Tel-Vered R, Wasserman J et al (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat Commun 3:742

    Article  Google Scholar 

  61. Kothe T, Plumere N, Badura A et al (2013) Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed Engl 52:14233–14236

    Article  Google Scholar 

  62. Guschin DA, Sultanov YM, Sharif-Zade NF et al (2006) Redox polymer-based reagentless horseradish peroxidase biosensors Influence of the molecular structure of the polymer. Electrochim Acta 51:5137–5142

    Article  Google Scholar 

  63. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    Article  Google Scholar 

  64. Zhang Q, Uchaker E, Candelaria SL et al (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  Google Scholar 

  65. Protti S, Albini A, Serpone N (2014) Photocatalytic generation of solar fuels from the reduction of H2O and CO2: a look at the patent literature. Phys Chem Chem Phys 16:19790–19827

    Article  Google Scholar 

  66. Ahmad H, Kamarudin SK, Minggu LJ et al (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610

    Article  Google Scholar 

  67. Wang W, Wang H, Zhu Q et al (2016) Spatially separated photosystem II and a silicon photoelectrochemical cell for overall water splitting: a natural-artificial photosynthetic hybrid. Angew Chem Int Ed Engl 55:9229–9233

    Article  Google Scholar 

  68. Mersch D, Lee CY, Zhang JZ et al (2015) Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J Am Chem Soc 137:8541–8549

    Article  Google Scholar 

  69. Wang W, Chen J, Li C et al (2014) Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun 5:4647

    Google Scholar 

  70. Feng X, Jia Y, Cai P et al (2016) Coassembly of photosystem II and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano 10:556–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Cai, P., Li, G., Li, J., Jia, Y., Zhang, Z., Li, J. (2017). Photosystem II Based Multilayers. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_6

Download citation

Publish with us

Policies and ethics