Skip to main content

Functional Dendrimer-Based Vectors for Gene Delivery Applications

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems

Abstract

Poly (amidoamine) (PAMAM) dendrimers are a class of highly branched, monodispersed, synthetic macromolecules with abundant terminal functional groups, and have significant advantages over other cationic polymers as gene delivery vectors due to their well-defined structure, the possibility of facile surface modification, and capacity of carrying large gene segments. The surface amine groups of dendrimers can be conjugated with functional molecules (e.g., hydrophobic moieties, β-cyclodextrin, polyethylene glycol, etc.), and targeting ligands (e.g., folic acid, arginine-glycine-aspartic peptide), while the unique interior of dendrimers affords their uses to form dendrimer-entrapped gold nanoparticles. These modifications render the dendrimer-based vectors with an ability for targeted and enhanced gene delivery, including pDNA and siRNA delivery. In this chapter, we review some recent advances made in multifunctional poly(amidoamine) dendrimer-based nanoparticles for gene delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavazzana-Calvo M, Hacein-Bey S, Basile CD, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Le Deist F, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672. doi:10.1126/science.288.5466.669

    Article  Google Scholar 

  2. Jeong JH, Kim SW, Park TG (2003) Novel intracellular delivery system of antisense oligonucleotide by self-assembled hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjugate Chem 14(2):473–479

    Article  Google Scholar 

  3. Yang ZR, Wang HF, Zhao J, Peng YY, Wang J, Guinn BA, Huang LQ (2007) Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 14(7):599–615. doi:10.1038/sj.cgt.7701054

    Article  Google Scholar 

  4. Barhoumi A, Huschka R, Bardhan R, Knight MW, Halas NJ (2009) Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy. Chem Phys Lett 482(4):171–179

    Article  Google Scholar 

  5. Biswas S, Torchilin VP (2013) Dendrimers for siRNA delivery. Pharmaceuticals 6(2):161–183

    Article  Google Scholar 

  6. Scholz C, Wagner E (2012) Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Controll Release 161(2):554–565

    Article  Google Scholar 

  7. Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H (2007) Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjugate Chem 18(6):2054–2060

    Article  Google Scholar 

  8. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discovery 8(2):129–138

    Article  Google Scholar 

  9. Nguyen K, Dang PN, Alsberg E (2013) Functionalized, biodegradable hydrogels for control over sustained and localized siRNA delivery to incorporated and surrounding cells. Acta Biomater 9(1):4487–4495

    Article  Google Scholar 

  10. Paroo Z, Corey DR (2004) Challenges for RNAi in vivo. Trends Biotechnol 22(8):390–394

    Article  Google Scholar 

  11. Tang J, Chen JY, Liu JY, Luo M, Wang YJ, Wei XW, Gao X, Wang BL, Liu YB, Yi T (2012) Calcium phosphate embedded PLGA nanoparticles: a promising gene delivery vector with high gene loading and transfection efficiency. Int J Pharm 431(1):210–221

    Article  Google Scholar 

  12. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    Article  Google Scholar 

  13. Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    Article  Google Scholar 

  14. Guillot-Nieckowski M, Eisler S, Diederich F (2007) Dendritic vectors for gene transfection. New J Chem 31:1111–1127

    Article  Google Scholar 

  15. Anderson WF (1998) Human gene therapy. Nature 392:25–30

    Article  Google Scholar 

  16. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  Google Scholar 

  17. Luo D, Saltzman WM (2000) Synthetic dna delivery systems. Nat Biotechnol 18:33–37

    Article  Google Scholar 

  18. Mancheño-Corvo P, Martin-Duque P (2006) Viral gene therapy. Clin Transl Oncol 8:858–867

    Article  Google Scholar 

  19. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  Google Scholar 

  20. Paleos CM, Tziveleka LA, Sideratou Z, Tsiourvas D (2009) Gene delivery using functional dendritic polymers. Expert Opin Drug Delivery 6:27–38

    Article  Google Scholar 

  21. Shcharbin DG, Klajnert B, Bryszewska M (2009) Dendrimers in gene transfection. Biochemistry (Moscow) 74:1070–1079

    Article  Google Scholar 

  22. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Delivery Rev 57:2106–2129

    Article  Google Scholar 

  23. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Delivery Rev 57(15):2177–2202

    Article  Google Scholar 

  24. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  Google Scholar 

  25. Kesharwani P, Iyer AK (2015) Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 20(5):536–547

    Article  Google Scholar 

  26. Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15(5):171–185

    Article  Google Scholar 

  27. Tang Y, Li YB, Wang B, Lin RY, Van Dongen M, Zurcher DM, Gu XY, Banaszak Holl MM, Liu G, Qi R (2012) Efficient in vitro siRNA delivery and intramuscular gene silencing using PEG-modified PAMAM dendrimers. Mol Pharm 9(6):1812–1821

    Article  Google Scholar 

  28. Kong LD, Alves CS, Hou WX, Qiu JQ, Möhwald H, Tomás H, Shi XY (2015) RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces 7(8):4833–4843

    Article  Google Scholar 

  29. Liu C, Liu XX, Rocchi P, Qu FQ, Iovanna JL, Peng L (2014) Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo. Bioconjugate Chem 25(3):521–532

    Article  Google Scholar 

  30. Merdan T, Kopec̆ek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54(5):715–758

    Google Scholar 

  31. Waite CL, Sparks SM, Uhrich KE, Roth CM (2009) Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnol 9(1):38

    Article  Google Scholar 

  32. Fant K, Esbjorner EK, Jenkins A, Grossel M, Lincoln P, Norden B (2010) Effects of pegylation and acetylation of pamam dendrimers on dna binding, cytotoxicity and in vitro transfection efficiency. Mol Pharm 7:1734–1746

    Article  Google Scholar 

  33. He H, Li Y, Jia XR, Du J, Ying X, Lu WL, Lou JN, Wei Y (2011) PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32:478–487

    Article  Google Scholar 

  34. Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83:97–111

    Article  Google Scholar 

  35. Qi R, Gao Y, Tang Y, He RR, Liu TL, He Y, Sun S, Li BY, Li YB, Liu G (2009) PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J 11(3):395–405

    Article  Google Scholar 

  36. Gabrielson NP, Pack DW (2006) Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromol 7:2427–2435

    Article  Google Scholar 

  37. Santos JL, Oliveira H, Pandita D, Rodrigues J, Pêgo AP, Granja PL, Tomas H (2010) Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Controlled Release 144:55–64. doi:10.1016/j.jconrel.2010.01.034

    Article  Google Scholar 

  38. Shakhbazau A, Isayenka I, Kartel N, Goncharova N, Seviaryn I, Kosmacheva S, Potapnev M, Shcharbin DG, Bryszewska M (2010) Transfection efficiencies of PAMAM dendrimers correlate inversely with their hydrophobicity. Int J Pharm 383(1–2):228–235

    Article  Google Scholar 

  39. Han L, Zhang AL, Wang HJ, Pu PY, Jiang XG, Kang CS, Chang J (2010) Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on u251 glioma cells in vitro and in vivo. Hum Gene Ther 21:417–426. doi:10.1089/hum.2009.087

    Article  Google Scholar 

  40. Santos JL, Pandita D, Rodrigues J, Pêgo AP, Granja PL, Balian G, Tomás H (2010) Receptor-mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. Mol Pharm 7(3):763–774

    Article  Google Scholar 

  41. Hou WX, Wen SH, Guo R, Wang SG, Shi XY (2015) Partially acetylated dendrimer-entrapped gold nanoparticles with reduced cytotoxicity for gene delivery applications. J Nanosci Nanotechnol 15(6):4094–4105

    Article  Google Scholar 

  42. Shan YB, Luo T, Peng C, Sheng RL, Cao AM, Cao XY, Shen MW, Guo R, Tomas H, Shi XY (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33(10):3025–3035. doi:10.1016/j.biomaterials.2011.12.045

    Article  Google Scholar 

  43. Xiao TY, Hou WX, Cao XY, Wen SH, Shen MW, Shi XY (2013) Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. Biomater Sci 1(11):1172–1180. doi:10.1039/c3bm60138b

    Article  Google Scholar 

  44. Xiao TY, Cao XY, Hou WX, Peng C, Qiu JR, Shi XY (2015) Poly(amidoamine) dendrimers modified with 1,2-epoxyhexane or 1,2-epoxydodecane for enhanced gene delivery applications. J Nanosci Nanotechnol 15(12):10134–10140. doi:10.1166/jnn.2015.11693

    Article  Google Scholar 

  45. Hong SP, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi XY, Balogh L, Orr BG, Baker JR, Holl MMB (2004) Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport. Bioconjugate Chem 15(4):774–782. doi:10.1021/bc049962b

    Article  Google Scholar 

  46. Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  47. Duncan B, Kim CK, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Controlled Release 148:122–127

    Article  Google Scholar 

  48. Li D, Cui Y, Wang K, He Q, Yan X, Li J (2007) Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv Funct Mater 17:3134–3140. doi:10.1002/adfm.200700427

    Article  Google Scholar 

  49. Li DX, He Q, Cui Y, Li JB (2007) Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly(4-vinylpyridine). Chem Mater 19:412–417. doi:10.1021/cm062290+

    Article  Google Scholar 

  50. Li DX, He Q, Cui Y, Wang KW, Zhang XM, Li JB (2007) Thermosensitive copolymer networks modify gold nanoparticles for nanocomposite entrapment. Chem - Eur J 13:2224–2229. doi:10.1002/chem.200600839

    Article  Google Scholar 

  51. Li D, He Q, Li J (2009) Smart core/shell nanocomposites: intelligent polymers modified gold nanoparticles. Adv Colloid Interface Sci 149:28–38

    Article  Google Scholar 

  52. Li DX, He Q, Yang Y, Möhwald H, Li JB (2008) Two-stage pH response of poly(4-vinylpyridine) grafted gold nanoparticles. Macromolecules 41:7254–7256. doi:10.1021/ma800894c

    Article  Google Scholar 

  53. Elbakry A, Wurster EC, Zaky A, Liebl R, Schindler E, Bauer-Kreisel P, Blunk T, Rachel R, Goepferich A, Breunig M (2012) Layer-by-Layer coated gold nanoparticles: size-dependent delivery of DNA into cells. Small 8(24):3847–3856. doi:10.1002/smll.201201112

    Article  Google Scholar 

  54. Figueroa ER, Lin AY, Yan JX, Luo L, Foster AE, Drezek RA (2014) Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials 35(5):1725–1734. doi:10.1016/j.biomaterials.2013.11.026

    Article  Google Scholar 

  55. Kawano T, Yamagata M, Takahashi H, Niidome Y, Yamada S, Katayama Y, Niidome T (2006) Stabilizing of plasmid DNA in vivo by PEG-modified cationic gold nanoparticles and the gene expression assisted with electrical pulses. J Controlled Release 111(3):382–389. doi:10.1016/j.jconrel.2005.12.022

    Article  Google Scholar 

  56. Xiao TY, Cao XY, Shi XY (2013) Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. J Controll Release 172(1):e114–e115. doi:10.1016/j.jconrel.2013.08.275

    Article  Google Scholar 

  57. Heinemann D, Schomaker M, Kalies S, Schieck M, Carlson R, Escobar HM, Ripken T, Meyer H, Heisterkamp A (2013) Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down. Plos One 8(3). doi:10.1371/journal.pone.0058604

  58. Jiwaji M, Sandison ME, Reboud J, Stevenson R, Daly R, Barkess G, Faulds K, Kolch W, Graham D, Girolami MA, Cooper JM, Pitt AR (2014) Quantification of functionalised gold nanoparticle-targeted knockdown of gene expression in HeLa cells. PLoS ONE 9(6):e99458. doi:10.1371/journal.pone.0099458

    Article  Google Scholar 

  59. Kirkland-York S, Zhang YL, Smith AE, York AW, Huang FQ, McCormick CL (2010) Tailored design of Au nanoparticle-siRNA carriers utilizing reversible addition—fragmentation chain transfer polymers. Biomacromol 11(4):1052–1059. doi:10.1021/bm100020x

    Article  Google Scholar 

  60. Kong WH, Bae KH, Jo SD, Kim JS, Park TG (2012) Cationic lipid-coated gold ganoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharm Res 29(2):362–374. doi:10.1007/s11095-011-0554-y

    Article  Google Scholar 

  61. Mitra M, Kandalam M, Rangasamy J, Shankar B, Maheswari UK, Swaminathan S, Krishnakumar S (2013) Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol Vis 19:1029–1038

    Google Scholar 

  62. Ghosh PS, Kim CK, Han G, Forbes NS, Rotello VM (2008) Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2:2213–2218

    Article  Google Scholar 

  63. Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  64. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252 (1):263–266

    Google Scholar 

  65. M. KK, B. KR, W. SP, D. EN, H. G (2006) Transport of poly (amidoamine) dendrimers across caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res 23(12):2818–2826

    Google Scholar 

  66. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM (2002) Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35(9):3456–3462

    Article  Google Scholar 

  67. Wang X, Wu X, Fan W, Ding BY, Wang XY, Zhang W, Ding XY, Gao J, Zhu QG, Liu JY, Cai Z, Gao S (2012) Surface modification with pluronic P123 enhances transfection efficiency of PAMAM dendrimer. Macromol Res 20(2):162–167. doi:10.1007/s13233-012-0031-4

    Article  Google Scholar 

  68. Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker JR Jr (2005) Tumor angiogenic vasculature targeting with PAMAM dendrimer–RGD conjugates. Chem Commun 46:5739–5741

    Article  Google Scholar 

  69. Choi JS, Nam K, Park J, Kim JB, Lee JK (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J Controlld Release 99(3):445–456

    Article  Google Scholar 

  70. Kim JB, Choi JS, Nam K, Lee M, Park JS, Lee JK (2006) Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J Controll Release 114(1):110–117

    Article  Google Scholar 

  71. Yu GS, Bae YM, Kim JY, Han J, Ko KS, Choi JS (2012) Amino acid-modified bioreducible poly(amidoamine) dendrimers: synthesis, characterization and in vitro evaluation. Macromol Res 20(11):1156–1162. doi:10.1007/s13233-012-0164-5

    Article  Google Scholar 

  72. Wang W, Xiong W, Wan J, Sun X, Xu H, Yang X (2009) The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology 20:105103

    Article  Google Scholar 

  73. Lee M, Kim SW (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 22(1):1–10

    Article  Google Scholar 

  74. Peng C, Zheng LF, Chen Q, Shen MW, Guo R, Wang H, Cao XY, Zhang GX, Shi XY (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119. doi:10.1016/j.biomaterials.2011.10.052

    Article  Google Scholar 

  75. Xua L, Shena W, Wang B, Wang X, Liua G, Taoc Y, Qia R (2016) Efficient siRNA delivery using PEG-conjugated PAMAM dendrimers targeting vascular endothelial growth factor in a CoCl2-induced neovascularization model in retinal endothelial cells. Curr Drug Delivery 13(10):590–599

    Article  Google Scholar 

  76. Kim T, Seo HJ, Choi JS, Jang HS, Baek J, Kim K, Park JS (2004) PAMAM-PEG-PAMAM: novel triblock copolymer as a biocompatible and efficient gene delivery carrier. Biomacromol 5:2487–2492

    Article  Google Scholar 

  77. Hou WX, Wei P, Kong LD, Guo R, Wang SG, Shi XY (2016) Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery. J Mater Chem B 4(17):2933–2943. doi:10.1039/c6tb00710d

    Article  Google Scholar 

  78. Patil ML, Zhang M, Taratula O, Garbuzenko OB, He HX, Minko T (2009) Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromol 10(2):258–266

    Article  Google Scholar 

  79. Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: Past, present and future. Nat Rev Drug Discovery 3(12):1023–1035. doi:10.1038/nrd1576

    Article  Google Scholar 

  80. Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins.3. Toxicological issues and safety evaluation. J Pharm Sci 86(2):147–162. doi:10.1021/js960213f

    Article  Google Scholar 

  81. Popielarski SR, Mishra S, Davis ME (2003) Structural effects of carbohydrate-containing polycations on gene delivery. 3. Cyclodextrin type and functionalization. Bioconjugate Chem 14(3):672–678. doi:10.1021/bc034010b

    Article  Google Scholar 

  82. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1753. doi:10.1021/cr970022c

    Article  Google Scholar 

  83. Yao H, Ng SS, Tucker WO, Tsang YKT, Man K, Wang XM, Chow BKC, Kung HF, Tang GP, Lin MC (2009) The gene transfection efficiency of a folate-PEI600-cyclodextrin nanopolymer. Biomaterials 30(29):5793–5803. doi:10.1016/j.biomaterials.2009.06.051

    Article  Google Scholar 

  84. Croyle MA, Roessler BJ, Hsu CP, Sun R, Amidon GL (1998) Beta cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res 15(9):1348–1355. doi:10.1023/a:1011985101580

    Article  Google Scholar 

  85. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K (2003) In vitro and in vivo gene transfer by an optimized alpha-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjugate Chem 14(2):342–350. doi:10.1021/bc025613a

    Article  Google Scholar 

  86. Ortiz Mellet C, Garcia Fernandez JM, Benito JM (2011) Cyclodextrin-based gene delivery systems. Chem Soc Rev 40(3):1586–1608. doi:10.1039/c0cs00019a

    Article  Google Scholar 

  87. Cryan SA, Holohan A, Donohue R, Darcy R, O’Driscoll CM (2004) Cell transfection with polycationic cyclodextrin vectors. Eur J Pharm Sci 21(5):625–633. doi:10.1016/j.ejps.2004.01.001

    Article  Google Scholar 

  88. Mourtzis N, Paravatou M, Mavridis IM, Roberts ML, Yannakopoulou K (2008) Synthesis, characterization, and remarkable biological properties of cyclodextrins bearing guanidinoalkylamino and aminoalkylamino groups on their primary side. Chem - Eur J 14(14):4188–4200. doi:10.1002/chem.200701650

    Article  Google Scholar 

  89. Forrest ML, Gabrielson N, Pack DW (2005) Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng 89(4):416–423. doi:10.1002/bit.20356

    Article  Google Scholar 

  90. Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjugate Chem 10(6):1068–1074. doi:10.1021/bc990072j

    Article  Google Scholar 

  91. Qiu JR, Kong LD, Cao XY, Li AJ, Tan HR, Shi XY (2016) Dendrimer-entrapped gold nanoparticles modified with beta-cyclodextrin for enhanced gene delivery applications. RSC Adv 6(31):25633–25640. doi:10.1039/c6ra03839e

    Article  Google Scholar 

  92. Wang H, Shao NM, Qiao SN, Cheng YY (2012) Host-guest chemistry of dendrimer-cyclodextrin conjugates: selective encapsulations of guests within dendrimer or cyclodextrin cavities revealed by NOE NMR techniques. J Phys Chem B 116(36):11217–11224. doi:10.1021/jp3062916

    Article  Google Scholar 

  93. Sunoqrot S, Bugno J, Lantvit D, Burdette JE, Hong S (2014) Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Controll Release 191:115–122. doi:10.1016/j.jconrel.2014.05.006

    Article  Google Scholar 

  94. Baigude H, Katsuraya K, Okuyama K, Uryu T (2004) Synthesis of structurally-controlled AIDS vaccine model with glyco-peptide dendrimer scaffolds. Macromol Chem Phy 205(5):684–691. doi:10.1002/macp.200300097

    Article  Google Scholar 

  95. Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, Togashi K, Konishi J, Brechbiel MW (2000) Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 27(9):1334–1339. doi:10.1007/s002590000293

    Article  Google Scholar 

  96. Yoon HC, Lee D, Kim HS (2002) Reversible affinity interactions of antibody molecules at functionalized dendrimer monolayer: affinity-sensing surface with reusability. Anal Chim Acta 456(2):209–218. doi:10.1016/s0003-2670(02)00032-6

    Article  Google Scholar 

  97. Fu FF, Wu YL, Zhu JY, Wen SH, Shen MW, Shi XY (2014) Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. ACS Appl Mater Interfaces 6(18):16416–16425. doi:10.1021/am504849x

    Article  Google Scholar 

  98. Liu H, Wang H, Xu YH, Guo R, Wen SH, Huang YP, Liu WN, Shen MW, Zhao JL, Zhang GX, Shi XY (2014) Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces 6(9):6944–6953. doi:10.1021/am500761x

    Article  Google Scholar 

  99. Bi XD, Liang AY, Tan Y, Maturavongsadit P, Higginbothem A, Gado T, Gramling A, Bahn HN, Wang Q (2016) Thiol-ene crosslinking polyamidoamine dendrimer-hyaluronic acid hydrogel system for biomedical applications. J Biomat Sci - Polymer E 27(8):743–757. doi:10.1080/09205063.2016.1159473

    Article  Google Scholar 

  100. Zhan JZ, Wang L, Liu S, Chen JJ, Ren L, Wang YJ (2015) Antimicrobial hyaluronic acid/poly(amidoamine) dendrimer multi layer on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) prepared by a layer-by-layer self-assembly method. ACS Appl Mater Interfaces 7(25):13876–13881. doi:10.1021/acsami.5b02262

    Article  Google Scholar 

  101. Campbell IG, Jones TA, Foulkes WD, Trowsdale J (1991) Folate-binding protein is a marker for ovarian cancer. Cancer Res 51(19):5329–5338

    Google Scholar 

  102. Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines-Physiologic and clinical implications. Cancer 73(9):2432–2443. doi:10.1002/1097-0142(19940501)73:9<2432:aid-cncr2820730929>3.0.co;2-s

    Article  Google Scholar 

  103. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    Google Scholar 

  104. Shan Y, Luo T, Peng C, Sheng R, Cao A, Cao X, Shen M, Guo R, Tomás H, Shi X (2012) Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials 33:3025–3035

    Article  Google Scholar 

  105. Cai WB, Chen XY (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Adv Anticancer Agents Med Chem 6(5):407–428

    Article  Google Scholar 

  106. Dechantsreiter MA, Planker E, Mathä B, Lohof E, Hölzemann G, Jonczyk A, Goodman SL, Kessler H (1999) N-methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J Med Chem 42(16):3033–3040

    Article  Google Scholar 

  107. Gronthos S, Simmons PJ, Graves SE, G. Robey P (2001) Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 28(2):174–181

    Google Scholar 

  108. Qiao Z, Shi XY (2014) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci. doi:10.1016/j.progpolymsci.2014.1008.1002

    Google Scholar 

  109. He X, Alves C, Oliveira N, Rodrigues J, Zhu J, Bányai I, Tomás H, Shi X (2015) RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids Surf B 125:82–89

    Article  Google Scholar 

  110. Shukla R, Hill E, Shi XY, Kim JB, Muniz MC, Sun K, Baker JR (2008) Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 4(11):2160–2163

    Article  Google Scholar 

  111. Garg A, Tisdale AW, Haidari E, Kokkoli E (2009) Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 366(1):201–210

    Article  Google Scholar 

  112. Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner Ø, Gordeladze JO, Drevon CA (2001) Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res 16(8):1426–1433

    Article  Google Scholar 

  113. Wang SG, Castro R, An X, Song CL, Luo Y, Shen MW, Tomás H, Zhu MF, Shi XY (2012) Electrospun laponite-doped poly (lactic-co-glycolic acid) nanofibers for osteogenic differentiation of human mesenchymal stem cells. J Mater Chem 22(44):23357–23367

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Science and Technology Commission of Shanghai Municipality (17540712000), National Science Foundation of China (81761148028, 21773026), and the Fundamental Research Funds for the Central Universities. X. Shi also acknowledges the support by FCT-Fundação para a Ciência e a Tecnologia (project PEst-OE/QUI/UI0674/2013, CQM, Portuguese Government funds) and by ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação through the project M1420-01-0145-FEDER-000005-Centro de Química da Madeira-CQM+ (Madeira 14-20)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kong, L., Shi, X. (2017). Functional Dendrimer-Based Vectors for Gene Delivery Applications. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_12

Download citation

Publish with us

Policies and ethics