Skip to main content

Controlled Molecular Assembly Toward Self-propelled Micro-/Nanomotors

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems
  • 1189 Accesses

Abstract

Micro-/nanomotors (MNMs) are able to propel themselves in fluids through converting different energies from environment into kinetic energy. Recently, layer-by-layer (LbL) assembly, a versatile assembly approach, has been employed to access MNMs with advantages such as regulated motion, stimuli-response properties, and multifunctionality. In this chapter, we review the recent progress on controlled fabrication, motion control, and biomedical applications of MNMs based on controlled molecular assembly. Through integrating diverse functional building blocks such as nanoparticles, enzymes, and metal shells, MNMs with various structures (e.g., hollow capsules and nanotubes) have been prepared, and the control over the on/off state of the MNM motion has been realized. In addition, we also discuss a special type of MNMs which is derived from the combination of as-assembled biological aggregates and artificial nanostructures. These MNMs can be driven by bubble recoil, irradiation by near-infrared light, and ultrasonic fields. We have also demonstrated the potential applications of these assembled MNMs in biomedical fields such as targeted drug delivery, photothermal therapy, and detoxification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li JB, He Q, Yan XH (2011) Molecular assembly of biomimetic systems. Wiley-VCH, Weinheim

    Google Scholar 

  2. Spudich JA (2011) Molecular motors, beauty in complexity. Science 331(6021):1143–1144. doi:10.1126/science.1203978

    Article  Google Scholar 

  3. van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317(5836):333–336. doi:10.1126/science.1139570

    Article  Google Scholar 

  4. Badjić JD, Balzani V, Credi A, Silvi S, Stoddart JF (2004) A molecular elevator. Science 303(5665):1845–1849. doi:10.1126/science.1094791

    Article  Google Scholar 

  5. Fletcher SP, Dumur F, Pollard MM, Feringa BL (2005) A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310(5745):80–82. doi:10.1126/science.1117090

    Article  Google Scholar 

  6. Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A (2005) Dream nanomachines. Adv Mater 17(24):3011–3018. doi:10.1002/adma.200501767

    Article  Google Scholar 

  7. Sengupta S, Ibele ME, Sen A (2012) Fantastic voyage: designing self-powered nanorobots. Angew Chem Int Ed 51(34):8434–8445. doi:10.1002/anie.201202044

    Article  Google Scholar 

  8. Wang J (2013) Nanomachines: fundamentals and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Sánchez S, Soler L, Katuri J (2015) Chemically powered micro- and nanomotors. Angew Chem Int Ed 54(5):1414–1444. doi:10.1002/anie.201406096

    Article  Google Scholar 

  10. Wang J, Gao W (2012) Nano/Microscale motors: biomedical opportunities and challenges. ACS Nano 6(7):5745–5751. doi:10.1021/nn3028997

    Article  Google Scholar 

  11. Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A (2013) Intelligent, self-powered, drug delivery systems. Nanoscale 5(4):1273–1283. doi:10.1039/C2NR32600K

    Article  Google Scholar 

  12. Guix M, Mayorga-Martinez CC, Merkoçi A (2014) Nano/micromotors in (bio)chemical science applications. Chem Rev 114(12):6285–6322. doi:10.1021/cr400273r

    Article  Google Scholar 

  13. Abdelmohsen LKEA, Peng F, Tu YF, Wilson DA (2014) Micro- and nano-motors for biomedical applications. J Mater Chem B 2(17):2395–2408. doi:10.1039/c3tb21451f

    Article  Google Scholar 

  14. Gao W, Wang J (2014) Synthetic micro/nanomotors in drug delivery. Nanoscale 6(18):10486–10494. doi:10.1039/c4nr03124e

    Article  Google Scholar 

  15. Balasubramanian S, Kagan D, Hu C-MJ, Campuzano S, Lobo-Castañon MJ, Lim N, Kang DY, Zimmerman M, Zhang LF, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50(18):4161–4164. doi:10.1002/anie.201100115

    Article  Google Scholar 

  16. Chalupniak A, Morales-Narvaez E, Merkoçi A (2015) Micro and nanomotors in diagnostics. Adv Drug Deliv Rev 95:104–116. doi:10.1016/j.addr.2015.09.004

    Article  Google Scholar 

  17. Soler L, Magdanz V, Fomin VM, Sánchez S, Schmidt OG (2013) Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11):9611–9620. doi:10.1021/nn405075d

    Article  Google Scholar 

  18. Gao W, Wang J (2014) The environmental impact of micro/nanomachines. A review. ACS Nano 8(4):3170–3180. doi:10.1021/nn500077a

    Article  Google Scholar 

  19. Moo JGS, Pumera M (2015) Chemical energy powered nano/micro/macromotors and the environment. Chem Eur J 21(1):58–72. doi:10.1002/chem.201405011

    Article  Google Scholar 

  20. Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self-assembly. Angew Chem Int Ed 41(4):652–654. doi:10.1002/1521-3773(20020215)41:4<652:AID-ANIE652>3.0.CO;2-U

    Article  Google Scholar 

  21. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors:  autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424–13431. doi:10.1021/ja047697z

  22. Fournier-Bidoz S, Arsenault AC, Manners I, Ozin GA (2005) Synthetic self-propelled nanorotors. Chem Commun 4:441–443. doi:10.1039/B414896G

    Article  Google Scholar 

  23. Wang W, Duan WT, Ahmed S, Mallouk TE, Sen A (2013) Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8(5):531–554. doi:10.1016/j.nantod.2013.08.009

    Article  Google Scholar 

  24. Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704–8735. doi:10.1021/acs.chemrev.5600047

    Article  Google Scholar 

  25. Lin XK, Wu ZG, Wu YJ, Xuan MJ, He Q (2016) Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv Mater 28(6):1060–1072. doi:10.1002/adma.201502583

    Article  Google Scholar 

  26. Wu ZG, Lin XK, Si TY, He Q (2016) Recent progress on bioinspired self-propelled micro/nanomotors via controlled molecular self-assembly. Small 12(23):3080–3093. doi:10.1002/smll.201503969

    Article  Google Scholar 

  27. Tu YF, Peng F, Adawy A, Men YJ, Abdelmohsen LKEA, Wilson DA (2016) Mimicking the cell: bio-lnspired functions of supramolecular assemblies. Chem Rev 116(4):2023–2078. doi:10.1021/acs.chemrev.5b00344

    Article  Google Scholar 

  28. Dong B, Zhou T, Zhang H, Li CY (2013) Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7(6):5192–5198. doi:10.1021/nn400925q

    Article  Google Scholar 

  29. Wilson DA, Nolte RJM, van Hest JCM (2012) Autonomous movement of platinum-loaded stomatocytes. Nat Chem 4(4):268–274. doi:10.1038/nchem.1281

    Article  Google Scholar 

  30. Wu YJ, Wu ZG, Lin XK, He Q, Li JB (2012) Autonomous movement of controllable assembled janus capsule motors. ACS Nano 6(12):10910–10916. doi:10.1021/nn304335x

    Article  Google Scholar 

  31. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421. doi:10.1126/science.1070821

    Article  Google Scholar 

  32. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi:10.1126/science.277.5330.1232

    Article  Google Scholar 

  33. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37(16):2201–2205. doi:10.1002/(SICI)1521-3773(19980904)37:16<2201:AID-ANIE2201>3.0.CO;2-E

    Article  Google Scholar 

  34. Ai SF, Lu G, He Q, Li JB (2003) Highly flexible polyelectrolyte nanotubes. J Am Chem Soc 125(37):11140–11141. doi:10.1021/ja0356378

    Article  Google Scholar 

  35. Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233):aaa2491. doi:10.1126/science.aaa2491

  36. Wu YJ, Si TY, Lin XK, He Q (2015) Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors. Chem Commun 51(3):511–514. doi:10.1039/c4cc07182d

    Article  Google Scholar 

  37. Wu YJ, Lin XK, Wu ZG, Möhwald H, He Q (2014) Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Appl Mater Interfaces 6(13):10476–10481. doi:10.1021/am502458h

    Article  Google Scholar 

  38. del Mercato LL, Carraro M, Zizzari A, Bianco M, Miglietta R, Arima V, Viola I, Nobile C, Soraru A, Vilona D, Gigli G, Bonchio M, Rinaldi R (2014) Catalytic self-propulsion of supramolecular capsules powered by polyoxometalate cargos. Chem Eur J 20(35):10910–10914. doi:10.1002/chem.201403171

    Article  Google Scholar 

  39. Xuan MJ, Shao JX, Lin XK, Dai LR, He Q (2015) Light-activated janus self-assembled capsule micromotors. Colloids Surf A 482:92–97. doi:10.1016/j.colsurfa.2015.04.032

    Article  Google Scholar 

  40. Wu YJ, Si TY, Shao JX, Wu ZG, He Q (2016) Near-infrared light-driven Janus capsule motors: fabrication, propulsion, and simulation. Nano Res 9(12):3747–3756. doi:10.1007/s12274-016-1245-0

    Article  Google Scholar 

  41. Wu ZG, Wu YJ, He WP, Lin XK, Sun JM, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52(27):7000–7003. doi:10.1002/anie.201301643

    Article  Google Scholar 

  42. Lin ZH, Wu ZG, Lin XK, He Q (2016) Catalytic polymer multilayer shell motors for separation of organics. Chem Eur J 22(5):1587–1591. doi:10.1002/chem.201503892

    Article  Google Scholar 

  43. Gai MY, Frueh J, Hu N, Si TY, Sukhorukov GB, He Q (2016) Self-propelled two dimensional polymer multilayer plate micromotors. Phys Chem Chem Phys 18(5):3397–3401. doi:10.1039/c5cp07697h

    Article  Google Scholar 

  44. Gai MY, Frueh J, Si TY, Hu N, Sukhorukov GB, He Q (2016) The collision phenomena of Janus polymer micro-plate motors propelled by oscillating micro-bubbles. Colloids Surf A 510:113–121. doi:10.1016/j.colsurfa.2016.04.042

    Article  Google Scholar 

  45. Li JX, Rozen I, Wang J (2016) Rocket science at the nanoscale. ACS Nano 10(6):5619–5634. doi:10.1021/acsnano.6b02518

    Article  Google Scholar 

  46. Wu ZG, Lin XK, Zou X, Sun JM, He Q (2015) Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces 7(1):250–255. doi:10.1021/am507680u

    Article  Google Scholar 

  47. Wu ZG, Si TY, Gao W, Lin XK, Wang J, He Q (2016) Superfast near-infrared light-driven polymer multilayer rockets. Small 12(5):577–582. doi:10.1002/smll.201502605

    Article  Google Scholar 

  48. Xuan MJ, Shao JX, Dai LR, He Q, Li JB (2015) Macrophage cell membrane camouflaged mesoporous silica nanocapsules for in vivo cancer therapy. Adv Healthcare Mater 4(11):1645–1652. doi:10.1002/adhm.201500129

    Article  Google Scholar 

  49. Gao CY, Lin ZH, Jurado-Sánchez B, Lin XK, Wu ZG, He Q (2016) Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 12(30):4056–4062. doi:10.1002/smll.201600624

    Article  Google Scholar 

  50. Gao CY, Wu ZG, Lin ZH, Lin XK, He Q (2016) Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform. Nanoscale 8(6):3548–3554. doi:10.1039/c5nr08407e

    Article  Google Scholar 

  51. He WP, Frueh J, Wu ZW, He Q (2016) Leucocyte membrane-coated janus microcapsules for enhanced photothermal cancer treatment. Langmuir 32(15):3637–3644. doi:10.1021/acs.langmuir.5b04762

    Article  Google Scholar 

  52. Wu ZG, Li TL, Li JX, Gao W, Xu TL, Christianson C, Gao WW, Galarnyk M, He Q, Zhang LF, Wang J (2014) Turning erythrocytes into functional micromotors. ACS Nano 8(12):12041–12048. doi:10.1021/nn506200x

    Article  Google Scholar 

  53. Wu ZG, de Avila BEF, Martin A, Christianson C, Gao WW, Thamphiwatana SK, Escarpa A, He Q, Zhang LF, Wang J (2015) RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale 7(32):13680–13686. doi:10.1039/c5nr03730a

    Article  Google Scholar 

  54. Wu ZG, Li TL, Gao W, Xu TL, Jurado-Sánchez B, Li JX, Gao WW, He Q, Zhang LF, Wang J (2015) Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv Funct Mater 25(25):3881–3887

    Google Scholar 

  55. Wu ZG, Li JX, de Ávila BEF, Li TL, Gao WW, He Q, Zhang LF, Wang J (2015) Water-powered cell-mimicking janus micromotor. Adv Funct Mater 25(48):7497–7501. doi:10.1002/adfm.201503441

    Article  Google Scholar 

  56. Xuan MJ, Shao JX, Lin XK, Dai LR, He Q (2014) Self-propelled janus mesoporous silica nanomotors with sub-100 nm diameters for drug encapsulation and delivery. ChemPhysChem 15(11):2255–2260. doi:10.1002/cphc.201402111

    Article  Google Scholar 

  57. Wang W, Castro LA, Hoyos M, Mallouk TE (2012) Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6(7):6122–6132. doi:10.1021/nn301312z

    Article  Google Scholar 

  58. Wu ZG, Lin XK, Wu YJ, Si TY, Sun JM, He Q (2014) Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano 8(6):6097–6105. doi:10.1021/nn501407r

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (21674029, 21573053, and 21603047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Lin, X., Wu, Z., He, Q. (2017). Controlled Molecular Assembly Toward Self-propelled Micro-/Nanomotors. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_11

Download citation

Publish with us

Policies and ethics