Skip to main content

Reconstitution of Motor Protein ATPase

  • Chapter
  • First Online:
Supramolecular Chemistry of Biomimetic Systems

Abstract

Molecular motor proteins are amazing biological units that are responsible for the transformation of the chemical or biological components into mechanical works. These molecular machines express stronger energy conversion than man-made systems, which inspired scientists to pursue the target of improved performance of current synthetic devices. Thus, it is significant to explore interesting features of biomolecular motors, and design the novel intelligent platforms that mixed motor proteins with synthetic materials. Biomimetic molecular assembly enables the possibility for the in vitro reconstruction of biomolecular motors, further provides a variety of functionalized strategies. In this chapter, we gave a detailed introduction for one of the most familiar biomolecular motors, adenosine triphosphatase (ATPase), and deepen the understanding of their working mechanism and clarified how to conjugate ATPase with the artificially synthetic materials. In addition, some promising examples and significant comments were highlighted to display reconstructed performance of ATPase during this exploring voyage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336

    Article  Google Scholar 

  2. Hess H, Bachand GD, Vogel V (2004) Powering nanodevices with biomolecular motors. Chem Eur J 10:2110–2116

    Article  Google Scholar 

  3. Hess H, Bachand GD (2005) Biomolecular motors. Nano Today 8:22–29

    Google Scholar 

  4. Junge W, Müller DJ (2011) Seeing a molecular motor at work. Science 333:704–705

    Article  Google Scholar 

  5. Schliwa M, Woehlke G (2003) Molecular motors. Nature 422:759–765

    Article  Google Scholar 

  6. Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn (II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331

    Article  Google Scholar 

  7. MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

    Article  Google Scholar 

  8. Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE (2005) Structure of the rotor of the V-type Na+-ATPase from Enterococcus hirae. Science 308:654–659

    Article  Google Scholar 

  9. Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  Google Scholar 

  10. Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282

    Article  Google Scholar 

  11. Yasuda R, Noji H, Yoshida M Jr, Kinosita K, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904

    Article  Google Scholar 

  12. Feng X, Jia Y, Cai P, Fei J, Li J (2016) Coassembly of photosystem II and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano 10:556–561

    Article  Google Scholar 

  13. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318:1088–1093

    Article  Google Scholar 

  14. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865

    Article  Google Scholar 

  15. Jia Y, Li J (2015) Molecular assembly of schiff base interactions: construction and application. Chem Rev 115:1597–1621

    Article  Google Scholar 

  16. Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary F0F1-ATPase. Nature 459:364–370

    Article  Google Scholar 

  17. Møller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286:1–51

    Article  Google Scholar 

  18. Morsomme P, Chami M, Marco S, Nader J, Ketchum KA, Goffeau A, Rigaud A (2002) Characterization of a hyperthermophilic P-type ATPase from Methanococcus jannaschii expressed in yeast. J Biol Chem 277:29608–29616

    Article  Google Scholar 

  19. Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, Harake D, Kumar K, Lee P, Li T, Liu H, Lo T, Meyer CJ, Stanford S, Zamora KS (2010) The P-types ATPase superfamily. J Mol Microbiol Biotechnol 19:5–104

    Article  Google Scholar 

  20. von Ballmoos C, Wiedenmann A, Dimroth P (2009) Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672

    Article  Google Scholar 

  21. Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Møller MP, Lohr C, Christensen AL, Justesen BH, Jørgensen IL, Schiller J, Hatzakis NS, Grabe M, Pomorski TG, Stamou D (2016) Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351:1469–1473

    Article  Google Scholar 

  22. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat A, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  Google Scholar 

  23. Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209:4638–4651

    Article  Google Scholar 

  24. Rensing C, Fan B, Sharma R, Mitra B, Rosen BP (2000) Cop A: an Escherichia coli Cu (I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97:652–656

    Article  Google Scholar 

  25. Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  Google Scholar 

  26. Bublitz M, Morth JP, Nissen P (2012) P-type ATPase at a glance. J Cell Sci 124:2515–2519

    Article  Google Scholar 

  27. Weng X, Huss M, Wieczorek H, Beyenbach KW (2003) The V-type H+-ATPase in malpighian tubules of Aedes aegypti: localization and activity. J Exp Biol 206:2211–2219

    Article  Google Scholar 

  28. Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  Google Scholar 

  29. Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312

    Article  Google Scholar 

  30. Recchi C, Chavrier P (2006) V-ATPase: a potential pH sensor. Nat Cell Biol 8:107–109

    Article  Google Scholar 

  31. Sagermann M, Stevens TH, Matthews BW (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98:7134–7139

    Article  Google Scholar 

  32. Hinton A, Bond S, Forgac M (2009) V-ATPase functions in normal and disease processes. Pflugers Arch-Eur J Physiol 457:589–598

    Article  Google Scholar 

  33. Marshansky V, Futai M (2008) The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20:415–426

    Article  Google Scholar 

  34. Lipfert J, van Oene MM, Lee M, Pedaci F, Dekker NH (2015) Torque spectroscopy for the study of rotary motion in biological systems. Chem Rev 115:1449–1474

    Article  Google Scholar 

  35. Buchachenko AL, Kuznetsov DA, Breslavskaya NN (2012) Chemistry of enzymatic ATP synthesis: an insight through the isotope window. Chem Rev 112:2042–2058

    Article  Google Scholar 

  36. Okuno D, Iino R, Noji H (2011) Rotation and structure of F0F1-ATP synthase. J Biochem 149:655–664

    Article  Google Scholar 

  37. Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  Google Scholar 

  38. Jr Kinosita K, Adachi K, Itoh H (2004) Rotation of F1-ATPase: how an ATP-driven molecular machine may work. Annu Rev Biophys Biomol Struct 33:245–268

    Article  Google Scholar 

  39. Mesbah NM, Wiegel J (2011) The Na+-translocating F1F0-ATPase from the halophilic, alkalithermophile Natranaerobius thermophilus. Biochim Biophys Acta 1807:1133–1142

    Article  Google Scholar 

  40. Schalley CA, Beizai K, Vögtle F (2001) On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc Chem Res 34:465–476

    Article  Google Scholar 

  41. Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–758

    Article  Google Scholar 

  42. Pain D, Blobel G (1987) Protein import into chloroplasts requires a chloroplast ATPase. Proc Natl Acad Sci USA 84:3288–3292

    Article  Google Scholar 

  43. Senior AE (1973) The structure of mitochondrial ATPase. Biochim Biophys Acta 301:249–277

    Article  Google Scholar 

  44. Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M, Ishijima A, Berry RM (2005) Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:916–919

    Article  Google Scholar 

  45. Shu Y, Yue J, Ou-Yang Z (2010) F0F1-ATPase, rotary motor and biosensor. Nanoscale 2:1284–1293

    Article  Google Scholar 

  46. Omote H, Sambonmatsu N, Saito K, Sambongi Y, Iwamoto-Kihara A, Yanagida T, Wada Y, Futai M (1999) The γ-subunit rotation and torque generation in F1-ATPase from wide-type or uncoupled mutant Escherichia coli. Proc Natl Acad Sci USA 96:7780–7784

    Article  Google Scholar 

  47. Yasuda R, Noji H Jr, Kinosita K, Yoshida M (1998) F1-ATPase is a highly efficient molecular motor that rotates with discrete 120o steps. Cell 93:1117–1124

    Article  Google Scholar 

  48. Noji H, Yasuda R, Yoshida M Jr, Kinosita K (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  Google Scholar 

  49. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–1558

    Article  Google Scholar 

  50. Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M (1999) Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 26:1722–1724

    Article  Google Scholar 

  51. Suzuki T, Tanaka K, Wakabayashi C, Saita E, Yoshida M (2014) Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat Chem Biol 10:930–936

    Article  Google Scholar 

  52. Hayashi S, Ueno H, Shaikh AR, Umemura M, Kamiya M, Ito Y, Ikeguchi M, Komoriya Y, Iino R, Noji H (2012) Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations. J Am Chem Soc 134:8447–8454

    Article  Google Scholar 

  53. Bachand GD, Soong PK, Neves HP, Olkhovets A, Craighead HG, Montemagno CD (2001) Precision attachment of individual F1-ATPase biomolecular motors on nanofabricate substrates. Nano Lett 1:42–44

    Article  Google Scholar 

  54. Furuike S, Nakano M, Adachi K, Noji H Jr, Kinosita K, Yokoyama K (2011) Resolving stepping rotation in thermus thermophilus H+-ATPase/synthase with an essentially drag-free probe. Nat Commun 2:233

    Article  Google Scholar 

  55. Toyabe S, Watanabe-Nakayama T, Okamoto T, Kudo S, Muneyuki E (2011) Thermodynamic efficiency and mechanochemical coupling of F1-ATPase. Proc Natl Acad Sci USA 108:17951–17956

    Article  Google Scholar 

  56. York J, Spetzler D, Xiong F, Frasch WD (2008) Single-molecule detection of DNA via sequence-specific links between F1-ATPase motors and gold nanorod sensors. Lab Chip 8:415–419

    Article  Google Scholar 

  57. Safinya CR, Ewert KK (2012) Liposomes derived from molecular vases. Nature 489:372–374

    Article  Google Scholar 

  58. Steinberg-Yfrach G, Rigaud JL, Durantini EN, Moore AL, Gust D, Moore TA (1998) Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392:479–482

    Article  Google Scholar 

  59. Turina P, Samoray D, Gräber P (2003) H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. EMBO J 22:418–426

    Article  Google Scholar 

  60. De Koker S, Hoogenboom R, De Geest BG (2012) Polymeric multilayer capsules for drug delivery. Chem Soc Rev 41:2867–2884

    Article  Google Scholar 

  61. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2202–2205

    Article  Google Scholar 

  62. De Cock LJ, De Koker S, De Geest BG, Grooten J, Vervaet C, Remon JP, Sukhorukov GB, Antipina MN (2010) Polymeric multilayer capsules in drug delivery. Angew Chem Int Ed 49:6954–6973

    Article  Google Scholar 

  63. Peyratout CS, Dähne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783

    Article  Google Scholar 

  64. Tong W, Song X, Gao C (2012) Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 41:6103–6124

    Article  Google Scholar 

  65. Shao J, Xuan M, Dai L, Si T, Li J, He Q (2015) Near-infrared activated nanocalorifiers in microcapsules: vapor bubble generation for in vivo enhanced cancer therapy. Angew Chem Int Ed 54:12782–12787

    Article  Google Scholar 

  66. Shao J, Xuan M, Si T, Dai L, He Q (2015) Biointerfacing polymeric microcapsules for in vivo near-infrared light-triggered drug release. Nanoscale 7:19092–19098

    Article  Google Scholar 

  67. Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40:19–29

    Article  Google Scholar 

  68. Duan L, He Q, Wang K, Yan X, Cui Y, Möhwald H, Li J (2007) Adenosine triphosphate biosynthesis catalyzed by F0F1 ATP synthase assembled in polymer microcapsules. Angew Chem Int Ed 46:6996–7000

    Article  Google Scholar 

  69. He Q, Duan L, Qi W, Wang K, Cui Y, Yan X, Li J (2008) Microcapsules containing a biomolecular motor for ATP biosynthesis. Adv Mater 20:2933–2937

    Article  Google Scholar 

  70. Duan L, Qi W, Yan X, He Q, Cui Y, Wang K, Li D, Li J (2009) Proton gradients produced by glucose oxidase microcapsules containing motor F0F1-ATPase for continuous ATP biosynthesis. J Phys Chem B 113:395–399

    Article  Google Scholar 

  71. Qi W, Duan L, Wang K, Yan X, Cui Y, He Q, Li J (2008) Motor protein CF0F1 reconstituted in lipid-coated hemoglobin microcapsules for ATP synthesis. Adv Mater 20:601–605

    Article  Google Scholar 

  72. Li J, Wang Y, Ha W, Liu Y, Ding L, Li B, Zhang S (2013) Cyclodextrin-based microcapsules as bioreactors for ATP biosynthesis. Biomacromol 14:2984–2988

    Article  Google Scholar 

  73. Dong H, Nie R, Hou X, Wang P, Yue J, Jiang L (2011) Assembly of F0F1-ATPase into solid state nanoporous membrane. Chem Commun 47:3102–3104

    Article  Google Scholar 

  74. Hirono-Hara Y, Ishizuka K Jr, Kinosita K, Yoshida M, Noji H (2005) Activation of pausing F1 motor by external force. Proc Natl Acad Sci USA 102:4288–4293

    Article  Google Scholar 

  75. Saita E, Suzuki T Jr, Kinosita K, Yoshida M (2015) Simple mechanism whereby the F1-ATPase motor rotates with near-perfect chemomechanical energy conversion. Proc Natl Acad Sci USA 112:9626–9631

    Article  Google Scholar 

  76. Adachi K, Oiwa K, Yoshida M, Nishizaka T Jr, Kinosita K (2012) Controlled rotation of the F1-ATPase reveals differential and continuous binding changes for ATP synthesis. Nat Commun 3:1022

    Article  Google Scholar 

  77. Gaspard P, Gerritsma E (2007) The stochastic chemomechanics of the F1-ATPase molecular motor. J Theor Biol 247:672–686

    Article  Google Scholar 

  78. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393

    Article  Google Scholar 

  79. Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M Jr, Kinosita K (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    Article  Google Scholar 

  80. Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773–777

    Article  Google Scholar 

  81. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M Jr, Kinosita K (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321

    Article  Google Scholar 

  82. Palanisami A, Okamoto T (2010) Torque-induced slip of the rotary motor F1-ATPase. Nano Lett 10:4146–4149

    Article  Google Scholar 

  83. Bang M, Chisholm P (2009) Living sunlight: how plants bring the earth to life. Science 326:1483

    Article  Google Scholar 

  84. Danielson E, Golden JH, McFarland EW, Reaves CM, Weinberg WH, Wu X (1997) A combinatorial approach to the discovery and optimization of luminescent materials. Nature 389:944–948

    Article  Google Scholar 

  85. Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, Chen G, Gallo EM, Akbashev AR, Davies PK, Spanier JE, Rappe AM (2013) Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503:509–512

    Article  Google Scholar 

  86. Xuan M, Wu Z, Shao J, Dai L, Si T, He Q (2016) Near infrared light-powered Janus mesoporous silica nanoparticle motors. J Am Chem Soc 138:6492–6497

    Article  Google Scholar 

  87. Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H (2013) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678

    Article  Google Scholar 

  88. Hoffmann A, Hildebrandt V, Heberle J, Büldt G (1994) Photoactive mitochondria: in vivo transfer of a light-driven proton pump into the inner mitochondrial membrane of Schizosaccharomyces pombe. Proc Natl Acad Sci USA 91:9367–9371

    Article  Google Scholar 

  89. Luo T, Soong R, Lan E, Dunn B, Montemagno C (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nature Mater 4:220–224

    Article  Google Scholar 

  90. Diez M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CAM, Gräber P (2004) Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase. Nat Struct Mol Biol 11:135–141

    Article  Google Scholar 

  91. Choi H, Montemagno CD (2005) Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett 5:2538–2542

    Article  Google Scholar 

  92. Wendell D, Todd J, Montemagno C (2010) Artificial photosynthesis in ranaspumin-2 based foam. Nano Lett 10:3231–3236

    Article  Google Scholar 

  93. Duan X, Liu L, Jiang W, Yue J (2015) Visible thrombolysis acceleration of a nanomachine powered by light-driving F0F1-ATPase motor. Nanoscale Res Lett 10:1–10

    Article  Google Scholar 

  94. Vinkler C, Korenstein R (1982) Characterization of external electric field-driven ATP synthesis in chloroplasts. Proc Natl Acad Sci USA 79:3183–3187

    Article  Google Scholar 

  95. Bauermeister H, Schlodder E, Gräber P (1988) Electric field-driven ATP synthesis catalyzed by the membrane-bound ATP-synthase from chloroplasts. Ber Bunsenges Phys Chem 92:1036–1039

    Article  Google Scholar 

  96. Kaim G, Dimroth P (1998) Voltage-generated torque drives the motor of the ATP synthase. EMBO J 17:5887–5895

    Article  Google Scholar 

  97. Jr Miller JH, Rajapakshe KI, Infante HL, Claycomb JR (2013) Electric field driven torque in ATP synthase. PLoS ONE 8:e74978

    Article  Google Scholar 

  98. Watanabe-Nakayama T, Toyabe S, Kudo S, Sugiyama S, Yoshida M, Muneyuki E (2008) Effect of external torque on the ATP-driven rotation of F1-ATPase. Biochem Bioph Res Co 366:951–957

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Xuan, M., Jia, Y., Li, J. (2017). Reconstitution of Motor Protein ATPase. In: Li, J. (eds) Supramolecular Chemistry of Biomimetic Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-6059-5_10

Download citation

Publish with us

Policies and ethics