Advertisement

Systems Health: A Transition from Disease Management Toward Health Promotion

  • Li Shen
  • Benchen Ye
  • Huimin Sun
  • Yuxin Lin
  • Herman van WietmarschenEmail author
  • Bairong ShenEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1028)

Abstract

To date, most of the chronic diseases such as cancer, cardiovascular disease, and diabetes, are the leading cause of death. Current strategies toward disease treatment, e.g., risk prediction and target therapy, still have limitations for precision medicine due to the dynamic and complex nature of health. Interactions among genetics, lifestyle, and surrounding environments have nonnegligible effects on disease evolution. Thus a transition in health-care area is urgently needed to address the hysteresis of diagnosis and stabilize the increasing health-care costs. In this chapter, we explored new insights in the field of health promotion and introduced the integration of systems theories with health science and clinical practice. On the basis of systems biology and systems medicine, a novel concept called “systems health” was comprehensively advocated. Two types of bioinformatics models, i.e., causal loop diagram and quantitative model, were selected as examples for further illumination. Translational applications of these models in systems health were sequentially discussed. Moreover, we highlighted the bridging of ancient and modern views toward health and put forward a proposition for citizen science and citizen empowerment in health promotion.

Keywords

Systems health Systems biology Complexity Critical transitions 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 31670851, 31470821, and 91530320) and National Key R&D programs of China (2016YFC1306605).

References

  1. 1.
    McEwen BS (2012) Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci U S A 109(Suppl 2):17180–17185CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Irish LA et al (2015) The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev 22:23–36CrossRefPubMedGoogle Scholar
  3. 3.
    Lustig RH (2006) The ‘skinny’ on childhood obesity: how our western environment starves kids’ brains. Pediatr Ann 35(12):898–902. 905–7PubMedGoogle Scholar
  4. 4.
    Kohl HW 3rd et al (2012) The pandemic of physical inactivity: global action for public health. Lancet 380(9838):294–305CrossRefPubMedGoogle Scholar
  5. 5.
    Yach D et al (2004) The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA 291(21):2616–2622CrossRefPubMedGoogle Scholar
  6. 6.
    Dyrbye LN et al (2010) Burnout and serious thoughts of dropping out of medical school: a multi-institutional study. Acad Med 85(1):94–102CrossRefPubMedGoogle Scholar
  7. 7.
    Epstein RS, Sherwood LM (1996) From outcomes research to disease management: a guide for the perplexed. Ann Intern Med 124(9):832–837CrossRefPubMedGoogle Scholar
  8. 8.
    Mattke S, Seid M, Ma S (2007) Evidence for the effect of disease management: is $1 billion a year a good investment? Am J Manag Care 13(12):670–676PubMedGoogle Scholar
  9. 9.
    McCall N, Cromwell J (2011) Results of the medicare health support disease-management pilot program. N Engl J Med 365(18):1704–1712CrossRefPubMedGoogle Scholar
  10. 10.
    Dewan NA et al (2011) Economic evaluation of a disease management program for chronic obstructive pulmonary disease. COPD 8(3):153–159CrossRefPubMedGoogle Scholar
  11. 11.
    Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Physician 77(3):311–319PubMedGoogle Scholar
  12. 12.
    Seoane JA et al (2013) Biomedical data integration in computational drug design and bioinformatics. Curr Comput Aided Drug Des 9(1):108–117CrossRefPubMedGoogle Scholar
  13. 13.
    Wahlqvist ML (2014) Ecosystem health disorders – changing perspectives in clinical medicine and nutrition. Asia Pac J Clin Nutr 23(1):1–15PubMedGoogle Scholar
  14. 14.
    Flores M et al (2013) P4 medicine: how systems medicine will transform the healthcare sector and society. Perinat Med 10(6):565–576Google Scholar
  15. 15.
    Hood L, Lovejoy JC, Price ND (2015) Integrating big data and actionable health coaching to optimize wellness. BMC Med 13:4CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grasso M et al (2012) The health effects of climate change: a survey of recent quantitative research. Int J Environ Res Publ Health 9(5):1523–1547CrossRefGoogle Scholar
  17. 17.
    Chaves LF, Pascual M (2006) Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med 3(8):e295CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Akter R et al (2017) Joint effects of climate variability and socioecological factors on dengue transmission: epidemiological evidence. Trop Med Int Health 22(6):656–669CrossRefPubMedGoogle Scholar
  19. 19.
    Samy AM et al (2016) Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS One 11(10):e0163863CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ferrao JL, Mendes JM, Painho M (2017) Modelling the influence of climate on malaria occurrence in Chimoio municipality. Mozambique Parasit Vectors 10(1):260CrossRefPubMedGoogle Scholar
  21. 21.
    Ivanescu L et al (2016) Climate change is increasing the risk of the reemergence of malaria in Romania. Biomed Res Int 2016:8560519CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Holland JH (2006) Studying complex adaptive systems. J Syst Sci Complex 19(1):1–8CrossRefGoogle Scholar
  23. 23.
    (1983) Health promotion: alcohol and drug misuse prevention. Publ Health Rep. Suppl: p 116–32Google Scholar
  24. 24.
    Leung DY et al (2016) Hardcore smoking after comprehensive smoke-free legislation and health warnings on cigarette packets in Hong Kong. Public Health 132:50–56CrossRefPubMedGoogle Scholar
  25. 25.
    Schane RE, Glantz SA, Ling PM (2009) Social smoking implications for public health, clinical practice, and intervention research. Am J Prev Med 37(2):124–131CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    McEwen BS, Getz L (2013) Lifetime experiences, the brain and personalized medicine: an integrative perspective. Metabolism 62(Suppl 1):S20–S26CrossRefPubMedGoogle Scholar
  27. 27.
    Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91(4):449–458CrossRefPubMedGoogle Scholar
  28. 28.
    Jayasinghe S (2012) Complexity science to conceptualize health and disease: is it relevant to clinical medicine? Mayo Clin Proc 87(4):314–319CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Scheffer M et al (2012) Anticipating critical transitions. Science 338(6105):344–348CrossRefPubMedGoogle Scholar
  30. 30.
    Wiener N (1948) Cybernetics. Sci Am 179(5):14–18CrossRefPubMedGoogle Scholar
  31. 31.
    Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664CrossRefPubMedGoogle Scholar
  32. 32.
    Liu ET, Kuznetsov VA, Miller LD (2006) In the pursuit of complexity: systems medicine in cancer biology. Cancer Cell 9(4):245–247CrossRefPubMedGoogle Scholar
  33. 33.
    Haase T et al (2016) Systems medicine as an emerging tool for cardiovascular genetics. Front Cardiovasc Med 3:27CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    van Wietmarschen HA, Wortelboer HM, van der Greef J (2016) Grip on health: a complex systems approach to transform health care. J Eval Clin PractGoogle Scholar
  35. 35.
    Jonas WB, Chez RA (2004) Toward optimal healing environments in health care. J Altern Complement Med 10(Suppl 1):S1–S6CrossRefPubMedGoogle Scholar
  36. 36.
    Freedman MR, Stern JS (2004) The role of optimal healing environments in the management of childhood obesity. J Altern Complement Med 10(Suppl 1):S231–S244CrossRefPubMedGoogle Scholar
  37. 37.
    Schweitzer M, Gilpin L, Frampton S (2004) Healing spaces: elements of environmental design that make an impact on health. J Altern Complement Med 10(Suppl 1):S71–S83CrossRefPubMedGoogle Scholar
  38. 38.
    Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lucas M, Laplaze L, Bennett MJ (2011) Plant systems biology: network matters. Plant Cell Environ 34(4):535–553CrossRefPubMedGoogle Scholar
  40. 40.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854CrossRefPubMedGoogle Scholar
  41. 41.
    Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hsu SD et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39(Database issue):D163–D169CrossRefPubMedGoogle Scholar
  43. 43.
    Xiao F et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database issue):D105–D110CrossRefPubMedGoogle Scholar
  44. 44.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73CrossRefPubMedGoogle Scholar
  45. 45.
    Rennie W et al (2014) STarMir: a web server for prediction of microRNA binding sites. Nucleic Acids Res 42(Web Server issue):W114–W118CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shen L et al (2016) Knowledge-guided bioinformatics model for identifying autism spectrum disorder diagnostic MicroRNA biomarkers. Sci Rep 6:39663CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469CrossRefPubMedGoogle Scholar
  48. 48.
    de Boer HC et al (2013) Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J 34(44):3451–3457CrossRefPubMedGoogle Scholar
  49. 49.
    Li Y, Zhang Z (2015) Computational biology in microRNA. Wiley Interdiscip Rev RNA 6(4):435–452CrossRefPubMedGoogle Scholar
  50. 50.
    Huber M et al (2011) How should we define health? BMJ 343:d4163CrossRefPubMedGoogle Scholar
  51. 51.
    Ryff CD, Singer BH, Dienberg Love G (2004) Positive health: connecting well-being with biology. Philos Trans R Soc Lond Ser B Biol Sci 359(1449):1383–1394CrossRefGoogle Scholar
  52. 52.
    Ryff C et al (2012) Varieties of resilience in MIDUS. Soc Personal Psychol Compass 6(11):792–806CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Adourian A et al (2008) Correlation network analysis for data integration and biomarker selection. Mol BioSyst 4(3):249–259CrossRefPubMedGoogle Scholar
  54. 54.
    Derous D et al (2015) Network-based integration of molecular and physiological data elucidates regulatory mechanisms underlying adaptation to high-fat diet. Genes Nutr 10(4):470CrossRefPubMedGoogle Scholar
  55. 55.
    Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25(7):1253–1256CrossRefPubMedGoogle Scholar
  56. 56.
    Lan TS et al (2014) An investigation of factors affecting elementary school students’ BMI values based on the system dynamics modeling. Comput Math Methods Med 2014:575424CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pere D (2017) Building physician competency in lifestyle medicine: a model for health improvement. Am J Prev Med 52(2):260–261CrossRefPubMedGoogle Scholar
  58. 58.
    Mechanick JI, Zhao S, Garvey WT (2016) The adipokine-cardiovascular-lifestyle network: translation to clinical practice. J Am Coll Cardiol 68(16):1785–1803CrossRefPubMedGoogle Scholar
  59. 59.
    Homer JB, Hirsch GB (2006) System dynamics modeling for public health: background and opportunities. Am J Publ Health 96(3):452–458CrossRefGoogle Scholar
  60. 60.
    Goh YM et al (2012) Dynamics of safety performance and culture: a group model building approach. Accid Anal Prev 48:118–125CrossRefPubMedGoogle Scholar
  61. 61.
    McGlashan J et al (2016) Quantifying a systems map: network analysis of a childhood obesity causal loop diagram. PLoS One 11(10):e0165459CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Umulis DM et al (2010) Organism-scale modeling of early drosophila patterning via bone morphogenetic proteins. Dev Cell 18(2):260–274CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jaeger J et al (2004) Dynamic control of positional information in the early drosophila embryo. Nature 430(6997):368–371CrossRefPubMedGoogle Scholar
  64. 64.
    Fakhouri WD et al (2010) Deciphering a transcriptional regulatory code: modeling short-range repression in the drosophila embryo. Mol Syst Biol 6:341CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kurz FT et al (2017) Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back. Wiley Interdiscip Rev Syst Biol Med 9(1):e1352CrossRefGoogle Scholar
  66. 66.
    Garcia-Martin A, Fernandez-Golfin C, Zamorano-Gomez JL (2014) New quantitative model of aortic valve in PreTAVI patients. Rev Esp Cardiol (Engl Ed) 67(6):488CrossRefGoogle Scholar
  67. 67.
    Hongwei W et al (2010) Nonspecific biochemical changes under different health statuses and a quantitative model based on biological markers to evaluate systemic function in humans. Clin Lab 56(5–6):223–225PubMedGoogle Scholar
  68. 68.
    Cramer AO et al (2016) Major depression as a complex dynamic system. PLoS One 11(12):e0167490CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    van de Leemput IA et al (2014) Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci U S A 111(1):87–92CrossRefPubMedGoogle Scholar
  70. 70.
    Wichers M et al (2014) Reply to Bos and de Jonge: between-subject data do provide first empirical support for critical slowing down in depression. Proc Natl Acad Sci U S A 111(10):E879CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sherwood M, Thornton AE, Honer WG (2012) A quantitative review of the profile and time course of symptom change in schizophrenia treated with clozapine. J Psychopharmacol 26(9):1175–1184CrossRefPubMedGoogle Scholar
  72. 72.
    Sherwood M, Thornton AE, Honer WG (2006) A meta-analysis of profile and time-course of symptom change in acute schizophrenia treated with atypical antipsychotics. Int J Neuropsychopharmacol 9(3):357–366CrossRefPubMedGoogle Scholar
  73. 73.
    Ratheesh A et al (2017) A systematic review and meta-analysis of prospective transition from major depression to bipolar disorder. Acta Psychiatr Scand 135(4):273–284CrossRefPubMedGoogle Scholar
  74. 74.
    Fusar-Poli P et al (2012) Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry 69(3):220–229CrossRefPubMedGoogle Scholar
  75. 75.
    Schumacher M, Rucker G, Schwarzer G (2014) Meta-analysis and the surgeon general’s report on smoking and health. N Engl J Med 370(2):186–188CrossRefPubMedGoogle Scholar
  76. 76.
    Swanson KR, True LD, Murray JD (2003) On the use of quantitative modeling to help understand prostate-specific antigen dynamics and other medical problems. Am J Clin Pathol 119(1):14–17CrossRefPubMedGoogle Scholar
  77. 77.
    Issa NT, Byers SW, Dakshanamurthy S (2014) Big data: the next frontier for innovation in therapeutics and healthcare. Expert Rev Clin Pharmacol 7(3):293–298CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lindstrom B, Eriksson M (2005) Salutogenesis. J Epidemiol Community Health 59(6):440–442CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhang C et al (2016) Integration of Chinese medicine with western medicine could lead to future medicine: molecular module medicine. Chin J Integr Med 22(4):243–250CrossRefPubMedGoogle Scholar
  80. 80.
    Roberti di Sarsina P, Alivia M, Guadagni P (2012) Traditional, complementary and alternative medical systems and their contribution to personalisation, prediction and prevention in medicine-person-centred medicine. EPMA J 3(1):15CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Verhoef MJ et al (2005) Complementary and alternative medicine whole systems research: beyond identification of inadequacies of the RCT. Complement Ther Med 13(3):206–212CrossRefPubMedGoogle Scholar
  82. 82.
    Scheid V (2014) Convergent lines of descent: symptoms, patterns, constellations, and the emergent interface of systems biology and Chinese medicine. East Asian Sci Technol Soc 8(1):107–139CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Mukherjee PK, Venkatesh P, Ponnusankar S (2010) Ethnopharmacology and integrative medicine – let the history tell the future. J Ayurveda Integr Med 1(2):100–109CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    van Wietmarschen HA et al (2012) Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLoS One 7(9):e44331CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    van Wietmarschen H et al (2009) Systems biology guided by Chinese medicine reveals new markers for sub-typing rheumatoid arthritis patients. J Clin Rheumatol 15(7):330–337CrossRefPubMedGoogle Scholar
  86. 86.
    Wei H et al (2012) Urine metabolomics combined with the personalized diagnosis guided by Chinese medicine reveals subtypes of pre-diabetes. Mol BioSyst 8(5):1482–1491CrossRefPubMedGoogle Scholar
  87. 87.
    Schroen Y et al (2015) Bridging the seen and the unseen: a systems pharmacology view of herbal medicine. Science 350(6262):S66–S69Google Scholar
  88. 88.
    Coeytaux RR et al (2006) Variability in the diagnosis and point selection for persons with frequent headache by traditional Chinese medicine acupuncturists. J Altern Complement Med 12(9):863–872CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang GG et al (2005) Variability in the traditional Chinese medicine (TCM) diagnoses and herbal prescriptions provided by three TCM practitioners for 40 patients with rheumatoid arthritis. J Altern Complement Med 11(3):415–421CrossRefPubMedGoogle Scholar
  90. 90.
    Tan S et al (2005) Traditional Chinese medicine based subgrouping of irritable bowel syndrome patients. Am J Chin Med 33(3):365–379CrossRefPubMedGoogle Scholar
  91. 91.
    Gadau M et al (2016) TCM pattern questionnaire for lateral elbow pain: development of an instrument via a Delphi process. Evid Based Complement Altern Med 2016:7034759CrossRefGoogle Scholar
  92. 92.
    Fu TC et al (2016) Validation of a new simple scale to measure symptoms in heart failure from traditional Chinese medicine view: a cross-sectional questionnaire study. BMC Complement Altern Med 16:342CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Ernsting C et al (2017) Using smartphones and health apps to change and manage health behaviors: a population-based survey. J Med Internet Res 19(4):e101CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Bos FM, Schoevers RA, Aan het Rot M (2015) Experience sampling and ecological momentary assessment studies in psychopharmacology: a systematic review. Eur Neuropsychopharmacol 25(11):1853–1864CrossRefPubMedGoogle Scholar
  95. 95.
    Maes IH et al (2015) Measuring health-related quality of life by experiences: the experience sampling method. Value Health 18(1):44–51CrossRefPubMedGoogle Scholar
  96. 96.
    Dahlem MA et al (2015) Understanding migraine using dynamic network biomarkers. Cephalalgia 35(7):627–630CrossRefPubMedGoogle Scholar
  97. 97.
    Schroen Y et al (2014) East is east and west is west, and never the twain shall meet? Science 346(6216):S10–S12Google Scholar
  98. 98.
    Hafen E, Kossmann D, Brand A (2014) Health data cooperatives – citizen empowerment. Methods Inf Med 53(2):82–86CrossRefPubMedGoogle Scholar
  99. 99.
    Frost J, Massagli M (2009) PatientsLikeMe the case for a data-centered patient community and how ALS patients use the community to inform treatment decisions and manage pulmonary health. Chron Respir Dis 6(4):225–229CrossRefPubMedGoogle Scholar
  100. 100.
    Den Broeder L et al (2016) Citizen science for public health. Health Promot IntGoogle Scholar
  101. 101.
    Cloninger CR (2013) Person-centered health promotion in chronic disease. Int J Pers Cent Med 3(1):5–12PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Center for Systems BiologySoochow UniversitySuzhouChina
  2. 2.Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu ProvinceNanjing Forestry UniversityNanjingChina
  3. 3.Louis Bolk InstituteDriebergenThe Netherlands

Personalised recommendations