Skip to main content

Data Analysis for Gut Microbiota and Health

  • Chapter
  • First Online:
Healthcare and Big Data Management

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1028))

Abstract

In recent years, data mining and analysis of high-throughput sequencing of microbiomes and metagenomic data enable researchers to discover biological knowledge by characterizing the composition and variation of species across environmental samples and to accumulate a huge amount of data, making it feasible to infer the complex principle of species interactions. The interactions of microbes in a microbial community play an important role in microbial ecological system. Data mining provides diverse approachs to identify the correlations between disease and microbes and how microbial species coexist and interact in a host-associated or natural environment. This is not only important to advance basic microbiology science and other related fields but also important to understand the impacts of microbial communities on human health and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31(1):69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Comparative metagenomics of microbial communities. Science. [Online]. Available: http://science.sciencemag.org/content/308/5721/554. Accessed 04 Feb 2017

  3. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and Eucarya. PNAS 87(12):4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. H. M. P. Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214

    Article  Google Scholar 

  5. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449(7164):804–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun, In Press

    Google Scholar 

  8. Dzutsev A, Badger JH, Perez-Chanona E et al (2017) Microbes and Cancer. Annu Rev Immunol 35:199–228

    Google Scholar 

  9. Tsilimigras MCB, Fodor AA (2016) Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol 26(5):330–335

    Article  PubMed  Google Scholar 

  10. 2015 Microbiome, metagenomics, and high-dimensional compositional data analysis. Ann Rev Stat Appl 2(1):73–94

    Google Scholar 

  11. Xiao K-Q et al (2016) Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiol Ecol 92(3), fiw023

    Google Scholar 

  12. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19(7):1141–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. [Online]. Available: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087830. Accessed 04 Feb 2017

  14. Jiang X, Hu X, Xu W, He T, Park EK (2013) Comparison of dimensional reduction methods for detecting and visualizing novel patterns in human and marine microbiome. IEEE Trans Nanobioscience 12(3):199–205

    Article  PubMed  Google Scholar 

  15. Tyler AD, Smith MI, Silverberg MS (2014) Analyzing the human microbiome: a ‘How To’ guide for physicians. Am J Gastroenterol 109(7):983–993

    Article  PubMed  Google Scholar 

  16. Bartram AK et al (2014) Exploring links between pH and bacterial community composition in soils from the Craibstone experimental farm. FEMS Microbiol Ecol 87(2):403–415

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X et al (2012) Functional biogeography of ocean microbes revealed through non-negative matrix factorization. PLOS ONE 7(9):e43866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang X, Weitz JS, Dushoff J (Mar. 2012) A non-negative matrix factorization framework for identifying modular patterns in metagenomic profile data. J Math Biol 64(4):697–711

    Article  PubMed  Google Scholar 

  19. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Personalized microbial network inference via multi-view clustering of oral metagenomics data – TiFN. [Online]. Available: http://www.tifn.nl/publication/personalized-microbial-network-inference-via-multi-view-clustering-of-oral-metagenomics-data/. Accessed 04 Feb 2017

  21. Kuang D, Ding C, Park H (2012) Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of the 2012 SIAM international conference on data mining (0 vols). Society for Industrial and Applied Mathematics. pp 106–117

    Google Scholar 

  22. Raes J, Letunic I, Yamada T, Jensen LJ, Bork P (2011) Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 7(1):n/a–n/a

    Google Scholar 

  23. Patel PV, Gianoulis TA, Bjornson RD, Yip KY, Engelman DM, Gerstein MB (2010) Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families. Genome Res 20(7):960–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1 2:1208–1213. Vol. 2

    Google Scholar 

  25. Chen X, Hu X, Shen X, Rosen G (2010) Probabilistic topic modeling for genomic data interpretation. In: 2010 I.E. International Conference on Bioinformatics and Biomedicine, BIBM 2010, Hong Kong, China, December 18–21, 2010, Proceedings, pp 149–152

    Google Scholar 

  26. Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing | bioRxiv. [Online]. Available: http://biorxiv.org/content/early/2016/09/22/076836. Accessed 04 Feb 2017

  27. Dietert RR, Silbergeld EK (2015) Biomarkers for the 21st century: listening to the microbiome. Toxicol Sci 144(2):208–216

    Article  CAS  PubMed  Google Scholar 

  28. Jiang X, Hu X, Xu W, Wang Y (2013) Manifold-constrained regularization for variable selection in environmental microbiomic data. In: 2013 I.E. International Conference on Bioinformatics and Biomedicine, Shanghai, China, December 18–21, 2013, pp 86–89

    Google Scholar 

  29. Lin W, Shi P, Feng R, Li H (2014) Variable selection in regression with compositional covariates. Biometrika 101(4):785–797

    Article  Google Scholar 

  30. Shi P, Zhang A, Li H (2016) Regression analysis for microbiome compositional data. arXiv:1603.00974 [stat]

    Google Scholar 

  31. Randolph TW, Zhao S, Copeland W, Hullar M, Shojaie A (2015) Kernel-penalized regression for analysis of microbiome data. arXiv:1511.00297 [stat]

    Google Scholar 

  32. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Micro 10(8):538–550

    Article  CAS  Google Scholar 

  33. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459(7244):193–199

    Article  CAS  PubMed  Google Scholar 

  34. Fritz JV, Desai MS, Shah P, Schneider JG, Wilmes P (2013) From meta-omics to causality: experimental models for human microbiome research. Microbiome 1:14

    Article  PubMed  PubMed Central  Google Scholar 

  35. @MInter: automated text-mining of microbial interactions | Bioinformatics | Oxford Academic. [Online]. Available: https://academic.oup.com/bioinformatics/article-abstract/32/19/2981/2196520/MInter-automated-text-mining-of-microbial?redirectedFrom=fulltext. Accessed 04 Feb 2017

  36. Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227–234

    Article  PubMed  PubMed Central  Google Scholar 

  37. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation | BMC Bioinformatics | Full Text. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0588-y. Accessed 04 Feb 2017

  38. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Constructing and analyzing metabolic flux models of microbial communities | KBase

    Google Scholar 

  40. Shoaie S, Nielsen J (2014) Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Front Genet 5

    Google Scholar 

  41. Gerber GK (2014) The dynamic microbiome. FEBS Lett 588(22):4131–4139

    Article  CAS  PubMed  Google Scholar 

  42. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. [Online]. Available: http://www.pnas.org/content/108/Supplement_1/4554.short. Accessed 04 Feb 2017

  43. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates | BMC Systems Biology | Full Text.” [Online]. Available: https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-5-S2-S15. Accessed 2017

  44. Jiang X, Hu X, Xu W, Park EK (2015) Predicting microbial interactions using vector autoregressive model with graph regularization. IEEE/ACM Trans Comput Biology Bioinform 12(2):254–261

    Article  CAS  Google Scholar 

  45. Ma Y, Hu X, He T et al (2016) Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data[J]. Methods 111:80–84

    Google Scholar 

  46. Rangel C et al (2004) Modeling T-cell activation using gene expression profiling and state-space models. Bioinformatics 20(9):1361–1372

    Article  CAS  PubMed  Google Scholar 

  47. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks | Bioinformatics | Oxford Academic. [Online]. Available: https://academic.oup.com/bioinformatics/article/18/2/261/225574/Probabilistic-Boolean-networks-a-rule-based. Accessed 04 Feb 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingpeng Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Jiang, X., Hu, X. (2017). Data Analysis for Gut Microbiota and Health. In: Shen, B. (eds) Healthcare and Big Data Management. Advances in Experimental Medicine and Biology, vol 1028. Springer, Singapore. https://doi.org/10.1007/978-981-10-6041-0_5

Download citation

Publish with us

Policies and ethics