Data Platform for the Research and Prevention of Alzheimer’s Disease

  • Ning An
  • Liuqi Jin
  • Jiaoyun YangEmail author
  • Yue Yin
  • Siyuan Jiang
  • Bo Jing
  • Rhoda Au
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1028)


With the rapid increase in global aging, Alzheimer’s disease has become a major burden in both social and economic costs. Substantial resources have been devoted to researching this disease, and rich multimodal data resources have been generated. In this chapter, we discuss an ongoing effort to build a data platform to harness these data to help research and prevention of Alzheimer’s disease. We will detail this data platform in terms of its architecture, its data integration strategy, and its data services. Then, we will consider how to leverage this data platform to accelerate risk factor identification and pathogenesis study with its data analytics capability. This chapter will provide a concrete pathway for developing a data platform for studying and preventing insidious onset chronic diseases in this data era.


Data platform Alzheimer’s disease Implementation 



This study was supported partially by Anhui Provincial Key Technologies R&D Program under Grant No. 1704e1002221, the National Natural Science Foundation of China (NSFC) under Grant No. 71661167004 and the Programme of Introducing Talents of Discipline to Universities (“111 Program”) under Grant No. B14025.


  1. 1.
    Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M. (2015) The global impact of dementia: an analysis of prevalence, incidence, cost and trends. World Alzheimer ReportGoogle Scholar
  3. 3.
    Wimo A, Jönsson L, Bond J, Prince M, Winblad B, International AD (2013) The worldwide economic impact of dementia 2010. Alzheimers Dement 9(1):1–1CrossRefPubMedGoogle Scholar
  4. 4.
    Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA (2006) The lifetime risk of stroke estimates from the Framingham study. Stroke 37(2):345–350CrossRefPubMedGoogle Scholar
  5. 5.
    Mahmood SS, Levy D, Vasan RS, Wang TJ (2014) The Framingham heart study and the epidemiology of cardiovascular disease: a historical perspective. Lancet 383(9921):999–1008CrossRefPubMedGoogle Scholar
  6. 6.
    Alzheimer’s A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332CrossRefGoogle Scholar
  7. 7.
    Shimmer, Wireless Sensing Solutions for werable applications, online at:
  8. 8.
    Souillard-Mandar W, Davis R, Rudin C, Au R, Libon DJ, Swenson R, Price CC, Lamar M, Penney DL (2016) Learning classification models of cognitive conditions from subtle behaviors in the digital Clock Drawing Test. Mach Learn 102(3):393–441CrossRefPubMedGoogle Scholar
  9. 9.
    Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738PubMedPubMedCentralGoogle Scholar
  10. 10.
    Honig LS, Kukull W, Mayeux R (2005) Atherosclerosis and AD analysis of data from the US National Alzheimer’s coordinating center[J]. Neurology 64(3):494–500CrossRefPubMedGoogle Scholar
  11. 11.
    Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects[J]. Ann Neurol 65(4):403–413CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jack CR, Bernstein MA, Fox NC et al (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods[J]. J Magn Reson Imaging 27(4):685–691CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hodes RJ, Buckholtz N (2016) Accelerating medicines partnership: Alzheimer’s disease (AMP-AD) knowledge portal aids Alzheimer’s drug discovery through open data sharing[J]. Expert Opin Ther TargetsGoogle Scholar
  14. 14.
    Simmons A, Westman E, Muehlboeck S et al (2011) The AddNeuroMed framework for multi-centre MRI assessment of Alzheimer's disease: experience from the first 24 months[J]. Int J Geriatr Psychiatry 26(1):75–82CrossRefPubMedGoogle Scholar
  15. 15.
    Lovestone S, Francis P, Kloszewska I et al (2009) AddNeuroMed—the European collaboration for the discovery of novel biomarkers for Alzheimer's disease[J]. Ann N Y Acad Sci 1180(1):36–46CrossRefPubMedGoogle Scholar
  16. 16.
    Partch AB, Laufer D, Valladares O et al (2015) Nia genetics of Alzheimer’s disease data storage site (NIAGADS): 2015 update[J]. Alzheimers Dement 11(7):P362CrossRefGoogle Scholar
  17. 17.
    Pérez-Cano R, Vranckx JJ, Lasso JM et al (2012) Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial[J]. Eur J Surg Oncol (EJSO) 38(5):382–389CrossRefGoogle Scholar
  18. 18.
    Thal LJ (2004) The Alzheimer’s disease cooperative study in 2004.[J]. Alzheimer Dis Assoc Disord 18(4):183–185PubMedGoogle Scholar
  19. 19.
    Zhao Y, Hu Y, Smith JP et al (2014) Cohort profile: the China health and retirement longitudinal study (CHARLS).[J]. Int J Epidemiol 43(1):61CrossRefPubMedGoogle Scholar
  20. 20.
    Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov 2(5):401–404CrossRefPubMedGoogle Scholar
  21. 21.
    CommonMind Consortium Launched as a Public-Private Effort to Generate and Broadly Share Molecular Data on Neuropsychiatric Disease[J] (2012) Biomedical Market NewsletterGoogle Scholar
  22. 22.
    Day K, Mcguire L, Anderson L (2009) The CDC healthy brain initiative: public health and cognitive impairment[J]. Generations 33(1):11–17Google Scholar
  23. 23.
    States A (2013) The healthy brain initiative: the public health road map for state and national partnerships, 2013–2018[J]. Aging/physiology/united StatesGoogle Scholar
  24. 24.
    Jiang J (2012) Discussion on the information Organization of the Scientific Data Sharing Platform-Take the National Scientific Data Sharing Platform for population and health as an example[J]. J Inf Resour ManagGoogle Scholar
  25. 25.
    Centers for Disease Control and Prevention (2014) Health indicators warehouse[J]. Obesity in children and adolescents aged. 2–19Google Scholar
  26. 26.
    Parkinson J (2008) Common neurological disorders: Parkinson’s disease[J]. Br J Healthc Assistants JanuaryGoogle Scholar
  27. 27.
    Exalto LG, Quesenberry CP, Barnes D, Kivipelto M, Biessels GJ, Whitmer RA (2014) Midlife risk score for the prediction of dementia four decades later. Alzheimer’s Dement: J Alzheimer’s Assoc 10:562–570. doi: 10.1016/j.jalz.2013.05.1772 CrossRefGoogle Scholar
  28. 28.
    Woodford H, George J (2007) Cognitive assessment in the elderly: a review of clinical methods. QJM 100:469–484CrossRefPubMedGoogle Scholar
  29. 29.
    Singh M, Sachdeva S (2014) Cognitive assessment techniques. Int J Inf Technol Knowl Manag 7(2):108–118Google Scholar
  30. 30.
    Anstey KJ et al (2014) A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults. The ANU-ADRI. PLoS One 9:e86141CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sindi S, Calov E, Fokkens J et al (2015) The CAIDE dementia risk score app: the development of an evidence-based mobile application to predict the risk of dementia. Alzheimers Dement 1:328–333Google Scholar
  32. 32.
    Selkoe DJ (2012) Preventing Alzheimer’s disease. Science 337(6101):1488–1492CrossRefPubMedGoogle Scholar
  33. 33.
    Zmily A, Mowafi Y, Mashal E (2014) Study of the usability of spaced retrieval exercise using mobile devices for Alzheimer’s disease rehabilitation. JMIR mHealth uHealth 2(3):e31CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis.[J]. JAMA Neurol 71(4):505–508CrossRefPubMedGoogle Scholar
  35. 35.
    Pastor P, Roe CM, Villegas A et al (2003) Apolipoprotein Eε4 modifies Alzheimer’s disease onset in an E280A PS1 kindred[J]. Ann Neurol 54(2):163–169CrossRefPubMedGoogle Scholar
  36. 36.
    Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data[J]. Magn Reson Med 34(6):910CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Escudero J, Ifeachor E, Zajicek JP et al (2013) Machine learning-based method for personalized and cost-effective detection of Alzheimer's disease[J]. IEEE Trans Biomed Eng 60(1):164–168CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang D, Wang Y, Zhou L et al (2011) Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. NeuroImage 55(3):856–867CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hinrichs C, Singh V, Xu G et al (2011) Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population[J]. NeuroImage 55(2):574–589CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Ning An
    • 1
  • Liuqi Jin
    • 1
  • Jiaoyun Yang
    • 1
    Email author
  • Yue Yin
    • 1
  • Siyuan Jiang
    • 1
  • Bo Jing
    • 1
  • Rhoda Au
    • 2
  1. 1.School of Computer and InformationHefei University of TechnologyHefeiChina
  2. 2.School of MedicineBoston UniversityBostonUSA

Personalised recommendations