How to Become a Smart Patient in the Era of Precision Medicine?

  • Yalan Chen
  • Lan Yang
  • Hai Hu
  • Jiajia Chen
  • Bairong ShenEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1028)


The objective of this paper is to define the definition of smart patients, summarize the existing foundation, and explore the approaches and system participation model of how to become a smart patient. Here a thorough review of the literature was conducted to make theory derivation processes of the smart patient; “data, information, knowledge, and wisdom (DIKW) framework” was performed to construct the model of how smart patients participate in the medical process. The smart patient can take an active role and fully participate in their own health management; DIKW system model provides a theoretical framework and practical model of smart patients; patient education is the key to the realization of smart patients. The conclusion is that the smart patient is attainable and he or she is not merely a patient but more importantly a captain and global manager of one’s own health management, a partner of medical practitioner, and also a supervisor of medical behavior. Smart patients can actively participate in their healthcare and assume higher levels of responsibility for their own health and wellness which can facilitate the development of precision medicine and its widespread practice.


Smart patients Precision medicine Healthcare 



This study was supported by the National Natural Science Foundation of China (NSFC) (grant nos. 31670851, 31470821, and 91530320) and National Key R&D programs of China (2016YFC1306605).


  1. 1.
    Hood L, Flores M (2012) A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. New Biotechnol 29(6):613–624CrossRefGoogle Scholar
  2. 2.
    Soller BR et al (2002) Smart medical systems with application to nutrition and fitness in space. Nutrition 18(10):930–936CrossRefPubMedGoogle Scholar
  3. 3.
    Giovanni Acampora DJC, Rashidi P, Vasilakos AV (2013) A survey on ambient intelligence in health care. Proc IEEE Inst Electr Electron Eng 101(12):2470–2494CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kartakis S et al (2012) Enhancing health care delivery through ambient intelligence applications. Sensors (Basel) 12(9):11435–11450CrossRefGoogle Scholar
  5. 5.
    van der Werf CS et al (2015) Congenital short bowel syndrome: from clinical and genetic diagnosis to the molecular mechanisms involved in intestinal elongation. Biochim Biophys Acta 1852(11):2352–2361CrossRefPubMedGoogle Scholar
  6. 6.
    Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398(6):2505–2533CrossRefPubMedGoogle Scholar
  7. 7.
    Chen J et al (2013) Translational biomedical informatics in the cloud: present and future. Biomed Res Int 2013:658925PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bahcall O (2015) Precision medicine. Nature 526(7573):335CrossRefPubMedGoogle Scholar
  9. 9.
    Roizen MF, Oz MC (2006) You the smart patient: an insider’s handbook for getting the best treatment. Free Press, New YorkGoogle Scholar
  10. 10.
    Zengota EG (1986) Planning a “smart” patient security system. Contemp Longterm Care 9(8):30. 32PubMedGoogle Scholar
  11. 11.
    Seidman S (1990) Press release: European community to use smart patient cards. J Med Syst 14(3):158–159PubMedGoogle Scholar
  12. 12.
    Park CS et al (2011) Development and evaluation of “hospice smart patient” service program. J Korean Acad Nurs 41(1):9–17CrossRefPubMedGoogle Scholar
  13. 13.
    Kim YM, Bazant E, Storey JD (2006) Smart patient, smart community: improving client participation in family planning consultations through a community education and mass-media program in Indonesia. Int Q Community Health Educ 26(3):247–270CrossRefPubMedGoogle Scholar
  14. 14.
    Hoo WE (2006) On “smart” patients as consumers. J Healthc Qual 28(6):4. 12CrossRefPubMedGoogle Scholar
  15. 15.
    Hogan NM, Kerin MJ (2012) Smart phone apps: smart patients, steer clear. Patient Educ Couns 89(2):360–361CrossRefPubMedGoogle Scholar
  16. 16.
    Abdaoui A et al (2015) E-patient reputation in health forums. Stud Health Technol Inform 216:137–141PubMedGoogle Scholar
  17. 17.
    Gee PM et al (2012) Exploration of the e-patient phenomenon in nursing informatics. Nurs Outlook 60(4):e9–16CrossRefPubMedGoogle Scholar
  18. 18.
    Gee PM et al (2015) E-patients perceptions of using personal health records for self-management support of chronic illness. Comput Inform Nurs 33(6):229–237CrossRefPubMedGoogle Scholar
  19. 19.
    Meehan TP (2014) Transforming patient to partner: the e-patient movement is a call to action. Conn Med 78(3):175–176PubMedGoogle Scholar
  20. 20.
    Cook DA et al (2015) A comprehensive information technology system to support physician learning at the point of care. Acad Med 90(1):33–39CrossRefPubMedGoogle Scholar
  21. 21.
    Smith PF, Ross DA (2012) Information, knowledge, and wisdom in public health surveillance. J Public Health Manag Pract 18(3):193–195CrossRefPubMedGoogle Scholar
  22. 22.
    Herr TM et al (2015) A conceptual model for translating omic data into clinical action. J Pathol Inform 6:46Google Scholar
  23. 23.
    Dorajoo R, Liu J, Boehm BO (2015) Genetics of type 2 diabetes and clinical utility. Genes (Basel) 6(2):372–384CrossRefGoogle Scholar
  24. 24.
    Hebbring SJ (2014) The challenges, advantages and future of phenome-wide association studies. Immunology 141(2):157–165CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pendergrass SA et al (2011) The use of phenome-wide association studies (PheWAS) for exploration of novel genotype-phenotype relationships and pleiotropy discovery. Genet Epidemiol 35(5):410–422CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pendergrass SA et al (2013) Phenome-wide association study (PheWAS) for detection of pleiotropy within the population architecture using genomics and epidemiology (PAGE) network. PLoS Genet 9(1):e1003087CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Denny JC et al (2013) Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol 31(12):1102–1110CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Denny JC et al (2010) PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26(9):1205–1210CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Anand P et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gorelik GJ, Yarlagadda S, Richardson BC (2012) PKCδ oxidation contributes to ERK inactivation in lupus t CELLS1. Arthritis Rheum 64(9):2964–2974CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Romani M, Pistillo MP, Banelli B (2015) Environmental epigenetics: crossroad between public health, lifestyle, and cancer prevention. Biomed Res Int 2015:587983CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huser V, Sincan M, Cimino JJ (2014) Developing genomic knowledge bases and databases to support clinical management: current perspectives. Pharmgenomics Pers Med 7:275–283PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mirnezami R, Nicholson J, Darzi A (2012) Preparing for precision medicine. N Engl J Med 366(6):489–491CrossRefPubMedGoogle Scholar
  34. 34.
    Ibrahim A et al (2015) Case study for integration of an oncology clinical site in a semantic interoperability solution based on HL7 v3 and SNOMED-CT: data transformation needs. AMIA Jt Summits Transl Sci Proc 2015:71PubMedPubMedCentralGoogle Scholar
  35. 35.
    Omidi Y (2011) Smart multifunctional theranostics: simultaneous diagnosis and therapy of cancer. Bioimpacts 1(3):145–147PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang J et al (2014) Smartphone interventions for long-term health management of chronic diseases: an integrative review. Telemed J E Health 20(6):570–583CrossRefPubMedGoogle Scholar
  37. 37.
    Boulos MNK et al (2011) How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomed Eng Online 10:24CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Free C et al (2013), The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med 10(1)Google Scholar
  39. 39.
    Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak 12:67CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pope L, Silva P, Almeyda R 2010 I-phone applications for the modern day otolaryngologist. Clin Otolaryngol 35(4):350–354Google Scholar
  41. 41.
    Pramana G et al (2014) The SmartCAT: an m-health platform for ecological momentary intervention in child anxiety treatment. Telemed J E Health 20(5):419–427CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Yu F et al (2012) A smartphone application of alcohol resilience treatment for behavioral self-control training. Conf Proc IEEE Eng Med Biol Soc 2012:1976–1979PubMedGoogle Scholar
  43. 43.
    Bhat S et al (2015) Is there a clinical role for smartphone sleep apps? Comparison of sleep cycle detection by a smartphone application to polysomnography. J Clin Sleep Med 11(7):709–715PubMedPubMedCentralGoogle Scholar
  44. 44.
    Becker S et al (2015) Demographic and health related data of users of a mobile application to support drug adherence is associated with usage duration and intensity. PLoS One 10(1):e0116980CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Becker S et al (2013) User profiles of a smartphone application to support drug adherence – experiences from the iNephro project. PLoS One 8(10):e78547CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kanawong R et al (2012) Automated tongue feature extraction for ZHENG classification in traditional Chinese medicine. Evid Based Complement Alternat Med 2012:912852CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Robbins RN et al (2014) A smartphone app to screen for HIV-related neurocognitive impairment. J Mob Technol Med 3(1):23–26CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bajaj JS et al (2013) The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. Hepatology 58(3):1122–1132CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sposaro F, Tyson G (2009) iFall: an android application for fall monitoring and response. Conf Proc IEEE Eng Med Biol Soc 2009:6119–6122PubMedGoogle Scholar
  50. 50.
    Tarbert CM, Livingstone IA, Weir AJ (2014) Assessment of visual impairment in stroke survivors. Conf Proc IEEE Eng Med Biol Soc 2014:2185–2188PubMedGoogle Scholar
  51. 51.
    Park JY et al (2014) Lessons learned from the development of health applications in a tertiary hospital. Telemed J E Health 20(3):215–222CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Agboola S, Kamdar M (2014) Pain management in cancer patients using a mobile app: study design of a randomized controlled trial. JMIR Res Protoc 3(4):e76Google Scholar
  53. 53.
    Cafazzo JA et al (2015) Usability and feasibility of an mHealth intervention for monitoring and managing pain symptoms in sickle cell disease: the sickle cell disease mobile application to record symptoms via technology (SMART). J Med Internet Res 39(3):162–168Google Scholar
  54. 54.
    Charpentier G et al (2011) The Diabeo software enabling individualized insulin dose adjustments combined with telemedicine support improves HbA1c in poorly controlled type 1 diabetic patients: a 6-month, randomized, open-label, parallel-group, multicenter trial (TeleDiab 1 study). Diabetes Care 34(3):533–539CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Worringham C, Rojek A, Stewart I (2011) Development and feasibility of a smartphone, ECG and GPS based system for remotely monitoring exercise in cardiac rehabilitation. PLoS One 6(2):e14669CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Marshall A, Medvedev O, Antonov A (2008) Use of a smartphone for improved self-management of pulmonary rehabilitation. Int J Telemed Appl: p 753064Google Scholar
  57. 57.
    Ryan D et al (2005) Mobile phone technology in the management of asthma. J Telemed Telecare 11(Suppl 1):43–46CrossRefPubMedGoogle Scholar
  58. 58.
    Atreja A, Khan S (2015) Impact of the mobile Health Promise platform on the quality of care and quality of life in patients with inflammatory bowel disease: study protocol of a pragmatic randomized controlled trial. JMIR Res Protoc 4(1): e23Google Scholar
  59. 59.
    Bangsberg DR, Pan D, Dhall R (2015) A mobile cloud-based Parkinson's disease assessment system for home-based monitoring. J Med Internet Res 3(1):e29Google Scholar
  60. 60.
    Bosl W et al (2013) Scalable decision support at the point of care: a substitutable electronic health record app for monitoring medication adherence. Interact J Med Res 2(2):e13CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cho MJ, Sim JL, Hwang SY (2014) Development of smartphone educational application for patients with coronary artery disease. Healthc Inform Res 20(2):117–124CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Franckle T, Haas D, Mandl KD (2013) App store for EHRs and patients both. AMIA Jt Summits Transl Sci Proc 2013:73PubMedGoogle Scholar
  63. 63.
    Goh G, Tan NC (2015) Short-term trajectories of use of a caloric-monitoring mobile phone app among patients with type 2 diabetes mellitus in a primary care setting. J Med Internet Res 17(2):e33Google Scholar
  64. 64.
    Csernansky JG, Smith MJ (2011) Thought, feeling, and action in real time – monitoring of drug use in schizophrenia. Am J Psychiatry 168(2):120–122Google Scholar
  65. 65.
    Swendsen J, Ben-Zeev D, Granholm E (2011) Real-time electronic ambulatory monitoring of substance use and symptom expression in schizophrenia. Am J Psychiatry 168(2):202–209CrossRefPubMedGoogle Scholar
  66. 66.
    Sands BE et al (2015) Feasibility of a lifestyle intervention for overweight/obese endometrial and breast cancer survivors using an interactive mobile application. JMIR Res Protoc 137(3):508–515Google Scholar
  67. 67.
    Carter MC et al (2013) Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. J Med Internet Res 15(4):e32CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Casey M et al (2014) Patients’ experiences of using a smartphone application to increase physical activity: the SMART MOVE qualitative study in primary care. Br J Gen Pract 64(625):e500–e508CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dafli E, Antoniou P (2015) Virtual patients on the semantic Web: a proof-of-application study. J Med Internet Res 17(1):e16Google Scholar
  70. 70.
    Ward MM et al (2003) Participatory patient-physician communication and morbidity in patients with systemic lupus erythematosus. Arthritis Rheum 49(6):810–818CrossRefPubMedGoogle Scholar
  71. 71.
    Durand MA et al (2014) Do interventions designed to support shared decision-making reduce health inequalities? A systematic review and meta-analysis. PLoS One 9(4):e94670CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Goddu AP, Raffel KE, Peek ME (2015) A story of change: the influence of narrative on African-Americans with diabetes. Patient Educ Couns 98(8):1017–1024CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lejbkowicz I, Caspi O, Miller A (2012) Participatory medicine and patient empowerment towards personalized healthcare in multiple sclerosis. Expert Rev Neurother 12(3):343–352CrossRefPubMedGoogle Scholar
  74. 74.
    Majmudar MD, Colucci LA, Landman AB (2015) The quantified patient of the future: opportunities and challenges. Healthc (Amst) 3(3):153–156CrossRefGoogle Scholar
  75. 75.
    Call J et al (2012) Survival of gastrointestinal stromal tumor patients in the imatinib era: life raft group observational registry. BMC Cancer 12:90CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kear T, Harrington M, Bhattacharya A (2015) Partnering with patients using social media to develop a hypertension management instrument. J Am Soc Hypertens 9(9):725–734CrossRefPubMedGoogle Scholar
  77. 77.
    Hood L, Auffray C (2013) Participatory medicine: a driving force for revolutionizing healthcare. Genome Med 5(12):110CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Palmer JE (2012) Genetic gatekeepers: regulating direct-to-consumer genomic services in an era of participatory medicine. Food Drug Law J 67(4):475–524. iiiPubMedGoogle Scholar
  79. 79.
    Reeves S et al (2017) Interprofessional collaboration to improve professional practice and healthcare outcomes. Cochrane Database Syst Rev, CD000072.pub3Google Scholar
  80. 80.
    Jain M et al (2006) Decline in ICU adverse events, nosocomial infections and cost through a quality improvement initiative focusing on teamwork and culture change. Qual Saf Health Care 15(4):235–239CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Almalki M, Gray K, Sanchez FM (2015) The use of self-quantification systems for personal health information: big data management activities and prospects. Health Inf Sci Syst 3(Suppl 1. HISA Big Data in Biomedicine and Healthcare 2013 Con):S1CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kuziemsky C et al (2014) A framework for incorporating patient preferences to deliver participatory medicine via interdisciplinary healthcare teams. AMIA Annu Symp Proc 2014:835–844PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bredfeldt C et al (2015) Patient reported outcomes for diabetic peripheral neuropathy. J Diabetes Complications 29(8):1112–1118Google Scholar
  84. 84.
    Frost J et al (2011) Patient-reported outcomes as a source of evidence in off-label prescribing: analysis of data from PatientsLikeMe. J Med Internet Res 13(1):e6CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Norris K (2014) Lung cancer patient advocacy and participatory medicine. Genome Med 6(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Charani E et al (2014) Do smartphone applications in healthcare require a governance and legal framework? It depends on the application! BMC Med 12:29CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yalan Chen
    • 1
    • 2
  • Lan Yang
    • 1
  • Hai Hu
    • 1
  • Jiajia Chen
    • 3
  • Bairong Shen
    • 4
    Email author
  1. 1.Center for Systems BiologySoochow UniversitySuzhouChina
  2. 2.Department of Medical Informatics, School of MedicineNantong UniversityNantongChina
  3. 3.School of Chemistry, Biology and Material EngineeringSuzhou University of Science and TechnologySuzhouChina
  4. 4.Center for Systems BiologySoochow UniversitySuzhouChina

Personalised recommendations