Skip to main content

Magnetically Actuated Minimally Invasive Microbots for Biomedical Applications

  • Chapter
  • First Online:
Electromagnetic Actuation and Sensing in Medical Robotics

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

This chapter elucidates comprehensive overview of magnetically actuated microbots for various biomedical applications, discover recent developments and show a possible future scope and challenges therein. We confine our biomedical applications and present state of the art mostly related to translational research and near term deliverable possibilities to make in vivo applications. We will first demonstrate a brief overview of the potential medical applications and recent state of the art magnetically actuated microbots. After that, we will briefly touch upon various aspects of magnetically driven magneto-responsive microcapsules for targeted Drug Delivery (TDD) applications. In this part, we will provide a brief literature review in the nexus of magnetic micro robotics with design specifications for drug delivery. Finally, we will illustrate magnetically manipulated self-propelled microjets for biosensing as future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, Suzanne, et al. 2013. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29 (52): 16113–16118.

    Article  Google Scholar 

  2. Alberts, Bruce, et al. 2013. Essential cell biology. Garland Science.

    Google Scholar 

  3. Bahaj, A.S., and P.A.B. James. 1993. Characterisation of magnetotactic bacteria using image processing techniques. IEEE Transactions on Magnetics 29 (6): 3358–3360.

    Article  Google Scholar 

  4. Baker, Erin L., Roger T. Bonnecaze, and Muhammad H. Zaman. 2009. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophysical Journal 97 (4): 1013–1021.

    Article  Google Scholar 

  5. Banerjee, Hritwick. 2014. Frequency driven alteration in cellular morphology during ultrasound pulsing in a microfluidic confinement. PhD thesis, Indian Institute of Technology, Gandhinagar.

    Google Scholar 

  6. Banerjee, Hritwick and Babji Srinivasan. 2013. Modelling, optimization and control of droplet based microfluidic technology for single-cell high-throughput screening.

    Google Scholar 

  7. Berris, M., and M. Shoham. 2006. Febotics-a marriage of fetal surgery and robotics. Computer Aided Surgery 11 (4): 175–180.

    Article  Google Scholar 

  8. Bose, Nilanjana. 2015. The role of acoustofluidics in targeted drug delivery. Biomicrofluidics 9 (5): 052609.

    Article  Google Scholar 

  9. Bose, Nilanjana, et al. 2011. The role of cell membrane strain in sonoporation characterised by microfluidic-based single-cell analysis. In 15th International conference on miniaturized systems for chemistry and life sciences, 1743–1745, Seattle, Washington, USA.

    Google Scholar 

  10. Boskma, Klaas Jelmer, Stefano Scheggi and Sarthak Misra. 2016. Closed-loop control of a magnetically-actuated catheter using two-dimensional ultrasound images. In 2016 6th IEEE international conference on biomedical robotics and biomechatronics (BioRob), 61–66, IEEE.

    Google Scholar 

  11. Burdick, Jared, et al. 2008. Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo. Journal of the American Chemical Society 130 (26): 8164–8165.

    Article  Google Scholar 

  12. Campuzano, S., et al. 2011. Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136 (22): 4621–4630.

    Article  Google Scholar 

  13. Chaumette, Francois. 1998. Potential problems of stability and convergence in image-based and position-based visual servoing. In The confluence of vision and control, 66–78.

    Google Scholar 

  14. Cheung, Eugene, et al. 2005. A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives. In Proceedings, 2005 IEEE/ASME international conference on advanced intelligent mechatronics, 551–557, IEEE.

    Google Scholar 

  15. Chng, Elaine Lay Khim, Guanjia Zhao, and Martin Pumera. 2014. Towards biocompatible nano/microscale machines: self-propelled catalytic nanomotors not exhibiting acute toxicity. Nanoscale 6 (4): 2119–2124.

    Article  Google Scholar 

  16. Cho, Ah Ra, et al. 2014. Preparation of chitosan-TPP microspheres as resveratrol carriers. In Journal of Food Science 79 (4).

    Google Scholar 

  17. Collins, James F Jr, et al. 2011. Ophthalmic drug delivery system. US Patent 7,883,031, Feb. 2011.

    Google Scholar 

  18. Croce, Carlo M., and George A. Calin. 2005. miRNAs, cancer, and stem cell div. Cell 122 (1): 6–7.

    Article  Google Scholar 

  19. Croswell, Jennifer M., David F. Ransohoff, and Barnett S. Kramer. 2010. Principles of cancer screening: Lessons from history and study design issues. Seminars in oncology, 202–215. Elsevier.

    Google Scholar 

  20. Darnell, James E., Harvey Lodish, David Baltimore, et al. 1990. Molecular cellbiology. New York: Scientific American Books.

    Google Scholar 

  21. Das, Tamal, Tapas K. Maiti, and Suman Chakraborty. 2011. Augmented stressresponsive characteristics of cell lines in narrow confinements. Integrative Biology 3 (6): 684–695.

    Google Scholar 

  22. Duan, Ruixue, et al. 2013. Lab in a tube: Ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. Journal of the American Chemical Society 135 (12): 4604–4607.

    Article  Google Scholar 

  23. Edd, Jon, et al. 2003. Biomimetic propulsion for a swimming surgical microrobot. In Proceedings 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003), vol. 3, 2583-2588, IEEE.

    Google Scholar 

  24. Fan, Xudong. 2011. Optofluidic microsystems for chemical and biological analysis. Nature Photonics 5 (10): 591–597.

    Article  Google Scholar 

  25. Feringa, Ben L. 2007. The art of building small: From molecular switches to molecular motors. The Journal of Organic Chemistry 72 (18): 6635–6652.

    Article  Google Scholar 

  26. Flake, Alan W. 2003. Surgery in the human fetus: The future. The Journal of Physiology 547 (1): 45–51.

    Article  Google Scholar 

  27. Frankel, Richard, Timothy, Williams, and Dennis Bazylinski. 2007. Magnetoaerotaxis. In: Magnetoreception and magnetosomes in bacteria, 1–24.

    Google Scholar 

  28. Garne, E., C. Stoll, and M. Clementi. 2001. Evaluation of prenatal diagnosis of congenital heart diseases by ultrasound: experience from 20 European registries. Ultrasound in Obstetrics and Gynecology 17 (5): 386–391.

    Article  Google Scholar 

  29. Glass, Paul, Eugene Cheung, and Metin Sitti. 2008. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Transactions on Biomedical Engineering 55 (12): 2759–2767.

    Article  Google Scholar 

  30. Glass, Paul, Metin Sitti, and Ragunath Appasamy. 2007. A new biomimetic adhesive for therapeutic capsule endoscope applications in the gastrointestinal tract. Gastrointestinal Endoscopy 65 (5): AB91.

    Google Scholar 

  31. Glass, Paul, et al. 2008. A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus. In 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, BioRob, 758–764, IEEE.

    Google Scholar 

  32. Glass, Paul, et al. 2009. A swallowable tethered capsule endoscope for diagnosing Barrett’s Esophagus. Gastrointestinal Endoscopy 69 (5): AB106.

    Google Scholar 

  33. Grady, M.S., et al. 1989. Preliminary experimental investigation of in vivo magnetic manipulation: Results and potential application in hyperthermia. medical Physics 16 (2): 263–272.

    Article  Google Scholar 

  34. Grady, M.S., et al. 1990. Nonlinear magnetic stereotaxis: Three-dimensional, in vivo remote magnetic manipulation of a small object in canine brain. Medical Physics 17 (3): 405–415.

    Article  Google Scholar 

  35. Guha, Manalee, et al. 2015. Polymorphisms in CaSR and CLDN14 Genes Associated with Increased Risk of Kidney Stone Disease in Patients from the Eastern Part of India. PloS one 10 (6): e0130790.

    Article  Google Scholar 

  36. Han, Jiwon, et al. 2016. Hybrid-actuating macrophage-based microrobots for active cancer therapy. Scientific Reports 6.

    Google Scholar 

  37. Harazim, Stefan M., et al. 2012. Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO 2 microtubes. Journal of Materials Chemistry 22 (7): 2878–2884.

    Article  Google Scholar 

  38. Harazim, Stefan M., et al. 2012. Lab-in-a-tube: On-chip integration of glass optofluidic ring resonators for label-free sensing applications. Lab on a Chip 12 (15): 2649–2655.

    Article  Google Scholar 

  39. Harput, Sevan. 2012. Use of chirps in medical ultrasound imaging. University of Leeds.

    Google Scholar 

  40. Hoffman, Julien I.E., and Samuel Kaplan. 2002. The incidence of congenital heart disease. Journal of the American college of cardiology 39 (12): 1890–1900.

    Article  Google Scholar 

  41. Hogers, B., et al. 1995. Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circulation Research 76 (5): 871–877.

    Article  Google Scholar 

  42. Holligan, D.L., G.T. Gillies, and J.P. Dailey. 2003. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology 14 (6): 661.

    Article  Google Scholar 

  43. Hosoda, Koh, Katsuji Igarashi, and Minoru Asada. 1996. Adaptive hybrid visual servoing/force control in unknown environment. In Proceedings of the 1996 IEEE/RSJ international conference on intelligent robots and systems’ 96, IROS 96, vol. 3, 1097–1103, IEEE.

    Google Scholar 

  44. Hosoda, Koh, Katsuji Igarashi, and Minoru Asada. 1998. Adaptive hybrid control for visual and force servoing in an unknown environment. IEEE Robotics & Automation Magazine 5 (4): 39–43.

    Article  Google Scholar 

  45. Hove, Jay R., et al. 2003. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421 (6919): 172–177.

    Article  Google Scholar 

  46. Huang, Gaoshan, et al. 2009. Rolled-up transparent microtubes as two-dimensionally confined culture scaffolds of individual yeast cells. Lab on a Chip 9 (2): 263–268.

    Article  Google Scholar 

  47. Jaber, Alaa Abdulhady and Robert Bicker. 2014. A simulation of non-stationary signal analysis using wavelet transform based on LabVIEW and Matlab. In 2014 European, Modelling Symposium (EMS), 138–144, IEEE.

    Google Scholar 

  48. Jackson, Stephen P., and Jiri Bartek. 2009. The DNA-damage response in human biology and disease. Nature 461 (7267): 1071–1078.

    Article  Google Scholar 

  49. Jeong, Semi, et al. 2011. Enhanced locomotive and drilling microrobot using precessional and gradient magnetic field. Sensors and Actuators A: Physical 171 (2): 429–435.

    Article  Google Scholar 

  50. Karagozler, Mustafa Emre, et al. 2006. Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives. In The first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, 2006, BioRob, 105–111, IEEE.

    Google Scholar 

  51. Kasai, Hiroshi. 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy- 2-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research/Reviews in Mutation Research 387 (3): 147–163.

    Article  Google Scholar 

  52. Khalil, Islam S.M., et al. 2013. Characterization and control of biological microrobots. In Experimental robotics, 617–631. Springer.

    Google Scholar 

  53. Khalil, Islam S.M., et al. 2013. Magnetic control of potential microrobotic drug delivery systems: nanoparticles, magnetotactic bacteria and self-propelled microjets. In 2013 35th annual international conference of the IEEE, engineering in medicine and biology society (EMBC), 5299–5302, IEEE.

    Google Scholar 

  54. Khalil, Islam S.M., et al. 2013. Three-dimensional closed-loop control of selfpropelled microjets. Applied Physics Letters 103 (17): 172404.

    Article  Google Scholar 

  55. Khalil, Islam S.M., et al. 2014. The control of self-propelled microjets inside a microchannel with time-varying flow rates. IEEE Transactions on Robotics 30 (1): 49–58.

    Article  Google Scholar 

  56. Khalil, Islam S.M., et al. 2014. Wireless magnetic-based closed-loop control of self-propelled microjets. PloS one 9 (2): e83053.

    Article  Google Scholar 

  57. Kihlman, Bengt A. 1966. Actions of chemicals on dividing cells.

    Google Scholar 

  58. Klibanov, Alexander L. 2006. Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investigative radiology 41 (3): 354–362.

    Google Scholar 

  59. Kohl, Thomas, et al. 2000. World experience of percutaneous ultrasound-guided balloon valvuloplasty in human fetuses with severe aortic valve obstruction. The American Journal of Cardiology 85 (10): 1230–1233.

    Article  Google Scholar 

  60. Kosa, Gbor, Moshe Shoham, and Menashe Zaaroor. 2007. Propulsion method for swimming microrobots. IEEE Transactions on Robotics 23 (1): 137–150.

    Article  Google Scholar 

  61. Kossoff, Eric H., et al. 2002. Kidney stones, carbonic anhydrase inhibitors, and the ketogenic diet. Epilepsia 43 (10): 1168–1171.

    Article  Google Scholar 

  62. Kristo, Blaine, et al. 2003. Microelectromechanical systems in urology. Urology 61 (5): 883–887.

    Article  Google Scholar 

  63. Kummer, Michael P., et al. 2010. OctoMag: An electromagnetic system for 5- DOF wireless micromanipulation. IEEE Transactions on Robotics 26 (6): 1006–1017.

    Article  Google Scholar 

  64. Kwon, Jiwoon, et al. 2006. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomedical Materials 1 (4): 216.

    Article  Google Scholar 

  65. Latombe, Jean-Claude. 2012. Robot motion planning, vol. 124. Springer Science & Business Media.

    Google Scholar 

  66. Leigh, David A. 2016. Genesis of the nanomachines: The 2016 nobel prize in chemistry. Angewandte Chemie International Edition 55 (47): 14506–14508.

    Article  Google Scholar 

  67. Lizzi,Frederic L, and Ernest J Feleppa. 2000. Image processing and pre-processing for medical ultrasound. In 2000 29th Proceedings applied imagery pattern recognition workshop, 187–192, IEEE.

    Google Scholar 

  68. Lymberis, Andreas. 2010. Micro-nano-biosystems: An overview of European research. Minimally Invasive Therapy & Allied Technologies 19 (3): 136–143.

    Article  Google Scholar 

  69. Ma, Xing, Kersten Hahn, and Samuel Sanchez. 2015. Catalytic mesoporous Janus nanomotors for active cargo delivery. Journal of the American Chemical Society 137 (15): 4976.

    Article  Google Scholar 

  70. Magdanz, Veronika, Samuel Sanchez, and Oliver G. Schmidt. 2013. Development of a sperm-flagella Driven Micro-Bio-Ro. Advanced Materials 25 (45): 6581–6588.

    Article  Google Scholar 

  71. Magdanz, Veronika, et al. 2014. Stimuli-responsive microjets with reconfigurable shape. Angewandte Chemie International Edition 53 (10): 2673–2677.

    Article  Google Scholar 

  72. Mak, Michael, Cynthia A. Reinhart-King, and David Erickson. 2013. Elucidating mechanical transition effects of invading cancer cells with a subnucleusscaled microfluidic serial dimensional modulation device. Lab on a Chip 13 (3): 340–348.

    Article  Google Scholar 

  73. Martel, Sylvain, et al. 2007. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Applied Physics Letters 90 (11): 114105.

    Article  Google Scholar 

  74. Mathieu, J.-B., Gilles Beaudoin, and Sylvain Martel. 2006. Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Transactions on Biomedical Engineering 53 (2): 292–299.

    Article  Google Scholar 

  75. Matsko, Andrey B., and Vladimir S. Ilchenko. 2006. Optical resonators with whispering gallery modes I: basics. IEEE Journal of Selected Topics in Quantum Electronics 12 (3): 3.

    Article  Google Scholar 

  76. Mayr, Manuel, et al. 2002. Mechanical stress-induced DNA damage and racp38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. The FASEB Journal 16 (11): 1423–1425.

    Google Scholar 

  77. McNeil, Robert G., et al. 1995. Functional design features and initial performance characteristics of a magnetic-implant guidance system for stereotactic neurosurgery. IEEE Transactions on Biomedical Engineering 42 (8): 793–801.

    Article  Google Scholar 

  78. Meeker, David C., et al. 1996. Optimal realization of arbitrary forces in a magnetic stereotaxis system. IEEE Transactions on Magnetics 32 (2): 320–328.

    Article  Google Scholar 

  79. Mei, Yongfeng, et al. 2008. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Advanced Materials 20 (21): 4085–4090.

    Article  Google Scholar 

  80. Mei, Yongfeng, et al. 2011. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chemical Society Reviews 40 (5): 2109–2119.

    Article  Google Scholar 

  81. Min, Xuehong, et al. 2015. Lab in a tube: Sensitive detection of MicroRNAs in urine samples from bladder cancer patients using a single-label DNA probe with AIEgens. ACS Applied Materials & Interfaces 7 (30): 16813–16818.

    Article  Google Scholar 

  82. Molloy, J.A., et al. 1990. Experimental determination of the force required for insertion of a thermoseed into deep brain tissues. Annals of Biomedical Engineering 18 (3): 299–313.

    Article  Google Scholar 

  83. Nacev, A., et al. 2010. Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine 5 (9): 1459–1466.

    Article  Google Scholar 

  84. Nadeau, Caroline, et al. 2015. Intensity-based visual servoing for instrument and tissue tracking in 3D ultrasound volumes. IEEE Transactions on Automation Science and Engineering 12 (1): 367–371.

    Article  Google Scholar 

  85. Nelson, Bradley J., Ioannis K. Kaliakatsos, and Jake J. Abbott. 2010. Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering 12: 55–85.

    Article  Google Scholar 

  86. Pankhurst, Quentin A., et al. 2003. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 36 (13): R167.

    Article  Google Scholar 

  87. Patra, Debabrata, et al. 2013. Intelligent, self-powered, drug delivery systems. Nanoscale 5 (4): 1273–1283.

    Article  Google Scholar 

  88. Plante, Jean-Sébastien, Lauren M Devita, and Steven Dubowsky. 2007. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation. In The 14th international symposium on smart structures and materials & nondestructive evaluation and health monitoring, International Society for Optics and Photonics, 652406– 652406.

    Google Scholar 

  89. Psaltis, Demetri, and Stephen R. Quake. 2006. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442 (7101): 381–386.

    Article  Google Scholar 

  90. Ren, Liqiang, et al. 2015. A high-throughput acoustic cell sorter. Lab on a Chip 15 (19): 3870–3879.

    Article  Google Scholar 

  91. Rettig, Jacqueline R. 2005. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry 77 (17): 5628–5634.

    Article  Google Scholar 

  92. Roy, Shuvo, et al. 2006. MEMS and neurosurgery. In BioMEMS and biomedical nanotechnology, 95–123. Springer.

    Google Scholar 

  93. Rubinstein, Leslie. 2000. A practical nanorobot for treatment of various medical problems. In Draft paper for the 8th foresight conference on molecular nanotechnology, Bethesda, Maryland.

    Google Scholar 

  94. Saettone, Marco Fabrizio. 2002. Progress and problems in ophthalmic drug delivery. Business Briefing: Pharmatech 1: 167–71.

    Google Scholar 

  95. Sánchez, Alonso, et al. 2014. Magnetic control of self-propelled microjets under ultrasound image guidance. In 2014 5th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics, 169–74, IEEE.

    Google Scholar 

  96. Sánchez, Samuel. Chemical nanomachines as active drug nanovehicles.

    Google Scholar 

  97. Samuel Sánchez. Hybrid micro and nanoBots as future active drug carriers.

    Google Scholar 

  98. Sánchez, Samuel, Lluıs Soler, and Jaideep Katuri. 2015. Chemically powered micro-and nanomotors. Angewandte Chemie International Edition 54 (5): 1414–1444.

    Article  Google Scholar 

  99. Sanchez, Samuel, et al. 2010. Dynamics of biocatalytic microengines mediated by variable friction control. Journal of the American Chemical Society 132 (38): 13144–13145.

    Article  Google Scholar 

  100. Sanchez, Samuel, et al. 2010. Microbots swimming in the flowing streams of microfluidic channels. Journal of the American Chemical Society 133 (4): 701–703.

    Article  Google Scholar 

  101. Sanchez, Samuel, et al. 2011. Controlled manipulation of multiple cells using catalytic microbots. Chemical Communications 47 (2): 698–700.

    Article  Google Scholar 

  102. Sánchez, Samuel, et al. 2014. Tubular micro-nanorobots: smart design for biorelated applications. In Small-scale robotics. From nano-to-millimeter- sized robotic systems and applications, 16–27. Springer.

    Google Scholar 

  103. Satterfield, Charles N, Ralph L Wentworth, and Sterge T Demetriades. 1953. The viscosity of vapor mixtures of hydrogen peroxide and water. Technical Report, MASSACHUSETTS INST OF TECH CAMBRIDGE HYDROGEN PEROXIDE LABS.

    Google Scholar 

  104. Seiffert, Sebastian. 2013. Small but smart: Sensitive microgel capsules. Angewandte Chemie International Edition 52 (44): 11462–11468.

    Article  Google Scholar 

  105. Senyei, Andrew, Kenneth Widder, and George Czerlinski. 1978. Magnetic guidance of drug-carrying microspheres. Journal of Applied Physics 49 (6): 3578–3583.

    Article  Google Scholar 

  106. Shi, Jun, Natalia M Alves, and Joao F Mano. 2008. Chitosan coated alginate beads containing poly (N-isopropylacrylamide) for dual-stimuli-responsive drug release. Journal of Biomedical Materials Research Part B: Applied Biomaterials 84 (2): 595–603.

    Google Scholar 

  107. Sitti, Metin, et al. 2015. Biomedical applications of untethered mobile milli/microrobots. Proceedings of the IEEE 103 (2): 205–224.

    Article  Google Scholar 

  108. Smith, Elliot J., et al. 2010. Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Letters 11 (10): 4037–4042.

    Article  Google Scholar 

  109. Soler, Lluıs, et al. 2013. Self-propelled micromotors for cleaning polluted water. Acs Nano 7 (11): 9611.

    Article  Google Scholar 

  110. Solovev, Alexander A., et al. 2009. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5 (14): 1688–1692.

    Article  Google Scholar 

  111. Solovev, Alexander A., et al. 2010. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Advanced Functional Materials 20 (15): 2430–2435.

    Article  Google Scholar 

  112. Songmuang, R., et al. 2007. From rolled-up Si microtubes to SiO x/Si optical ring resonators. Microelectronic Engineering 84 (5): 1427–1430.

    Article  Google Scholar 

  113. Steinberger, Bernhard, et al. 1994. Movement of magnetic bacteria in time-varying magnetic fields. Journal of Fluid Mechanics 273: 189–211.

    Article  Google Scholar 

  114. Stroumbakis, Nicholas, et al. 1997. Clinical significance of repeat sextant biopsies in prostate cancer patients. Urology 49 (3): 113–118.

    Article  Google Scholar 

  115. Suresh, Subra. 2007. Biomechanics and biophysics of cancer cells. Acta Materialia 55 (12): 3989–4014.

    Article  Google Scholar 

  116. Tao, Ran, Lin Qi, and Yue Wang. 2004. Theory and applications of the fractional Fourier transform. Beijing: Publisher of Tsinghua University.

    Google Scholar 

  117. Temel, Fatma Zeynep and Serhat Yesilyurt. 2011. Magnetically actuated micro swimming of bio-inspired robots in mini channels. In 2011 IEEE international conference on mechatronics (ICM), 342–347, IEEE.

    Google Scholar 

  118. Tobita, Kimimasa, and Bradley B Keller. 2000. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. American Journal of Physiology-Heart and Circulatory Physiology 279 (3): H959–H969.

    Google Scholar 

  119. Trewyn, Brian G., et al. 2007. Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical Communications 31: 3236–3245.

    Article  Google Scholar 

  120. Uddin, Muhammad Shahin, et al. 2016. Speckle-reduction algorithm for ultrasound images in complex wavelet domain using genetic algorithm-based mixture model. Applied Optics 55 (15): 4024–4035.

    Google Scholar 

  121. Unger, Bertram J., et al. 2002. Virtual peg-in-hole performance using a 6-dof magnetic levitation haptic device: Comparison with real forces and with visual guidance alone. In Proceedings, 10th symposium on haptic interfaces for virtual environment and teleoperator systems, HAPTICS, 263–270, IEEE.

    Google Scholar 

  122. Van, Mien, et al. 2016. Fault diagnosis in image-based visual servoing with eye-in-hand configurations using Kalman filter. IEEE Transactions on Industrial Informatics 12 (6): 1998–2007.

    Article  Google Scholar 

  123. Wang, Joseph, and Wei Gao. 2012. Nano/microscale motors: biomedical opportunities and challenges. ACS nano 6 (7): 5745–5751.

    Article  Google Scholar 

  124. Wang, Joseph, and Kalayil Manian Manesh. 2010. Motion control at the nanoscale. Small 6 (3): 338–345.

    Article  Google Scholar 

  125. Wu, Keyu, Liao Wu, and Hongliang Ren. 2014. An image based targeting method to guide a tentacle-like curvilinear concentric tube robot. In 2014 IEEE international conference on robotics and biomimetics (ROBIO), 386–391, IEEE.

    Google Scholar 

  126. Yingjie, Wu, et al. 2012. Autonomous movement of controllable assembled Janus capsule motors. ACS Nano 6 (12): 10910–10916.

    Article  Google Scholar 

  127. Xi, Wang, et al. 2013. Rolled-up magnetic microdrillers: towards remotely controlled minimally invasive surgery. Nanoscale 5 (4): 1294–1297.

    Article  Google Scholar 

  128. Yang, Quanhe, et al. 2006. Racial differences in infant mortality attributable to birth defects in the United States, 1989–2002. Birth Defects Research Part A: Clinical and Molecular Teratology 76 (10): 706–713.

    Article  Google Scholar 

  129. Yesin, K Berk, Karl Vollmers, and Bradley J Nelson. 2006. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. The International Journal of Robotics Research 25 (5–6): 527–536.

    Google Scholar 

  130. Zhang, Li, et al. 2010. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4 (10): 6228–6234.

    Article  Google Scholar 

  131. Zhang, Xinghui, et al. 2015. Alpha stable distribution based morphological filter for bearing and gear fault diagnosis in nuclear power plant. Science and Technology of Nuclear Installations.

    Google Scholar 

  132. Zhou, Yue, et al. 2013. Robotics in natural orifice transluminal endoscopic surgery. Journal of Mechanics in Medicine and Biology 13 (02): 1350044.

    Article  Google Scholar 

  133. Zhu, Xiaoli, et al. 2012. Preparation and characterization of nanosized P (NIPAMMBA) hydrogel particles and adsorption of bovine serum albumin on their surface. Nanoscale Research Letters 7 (1): 519.

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the Singapore Academic Research Fund under Grant R-397-000-173-133 (Magnetically Actuated Micro Robotics), R-397-000-227-112, and National Natural Science Foundation of China NSFC grant 51405322, NUSRI China Jiangsu Provincial Grant BK20150386 and BE2016077 awarded to Dr. Hongliang Ren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, H., Shen, S., Ren, H. (2018). Magnetically Actuated Minimally Invasive Microbots for Biomedical Applications. In: Ren, H., Sun, J. (eds) Electromagnetic Actuation and Sensing in Medical Robotics. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-6035-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6035-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6034-2

  • Online ISBN: 978-981-10-6035-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics