Skip to main content

Contribution of Soil Active Components to the Control of Heavy Metal Speciation

  • Chapter
  • First Online:
Book cover Twenty Years of Research and Development on Soil Pollution and Remediation in China
  • 2544 Accesses

Abstract

Soil is the central organizer of the terrestrial ecosystem. Mineral, organic components, and microorganisms, which are major solid active components of the soil, profoundly affect the physical, chemical, and biological processes of soils including the behavior, transformation, and fate of various nutrients and pollutants (Violante et al. 2002). Heavy metal interaction with soil active components is recognized as being important in controlling heavy metal activities. Colloidal particles of soil organic matter (SOM), clay silicates, metal hydroxides, and microorganisms, which have large surface area and are often electrically charged, are considered as important adsorptive surfaces to bind heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alcacio TE, Hesterberg D, Chou JW et al (2001) Molecular scale characteristics of Cu (II) bonding in goethite-humate complexes. Geochim Cosmochim Acta 65(9):1355–1366

    Article  CAS  Google Scholar 

  • Arias M, Barral MT, Mejuto JC (2002) Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere 48(10):1081–1088

    Article  CAS  Google Scholar 

  • Beveridge TJ, Murray RG (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887

    CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32(2):191–198

    Article  CAS  Google Scholar 

  • Borrok DM, Fein JB, Kulpa CF (2004) Cd and proton adsorption onto bacterial consortia grown from industrial wastes and contaminated geologic settings. Environ Sci Technol 38(21):5656–5664

    Article  CAS  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM et al (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67(18):3299–3311

    Article  CAS  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chen XC, Chen LT, Shi JY et al (2008) Immobilization of heavy metals by Pseudomonas putida CZ1/goethite composites from solution. Colloids Surf B: Biointerfaces 61(2):170–175

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2008) Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J Hazard Mater 151(1):185–193

    Article  CAS  Google Scholar 

  • Du H, Chen W, Cai P et al (2016) Cd (II) Sorption on montmorillonite-humic acid-bacteria composites. Sci Rep 6:19499

    Article  CAS  Google Scholar 

  • Fang L, Cai P, Chen W et al (2009) Impact of cell wall structure on the behavior of bacterial cells in the binding of copper and cadmium. Colloids Surf A: Physicochem Eng Asp 347(1):50–55

    Article  CAS  Google Scholar 

  • Fang LC, Cai P, Li PX et al (2010a) Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals. J Hazard Mater 181(1–3):1031–1038

    Article  CAS  Google Scholar 

  • Fang LC, Huang QY, Wei X et al (2010b) Microcalorimetric and potentiometric titration studies on the adsorption of copper by extracellular polymeric substances (EPS), minerals and their composites. Bioresource Technol 101(15):5774–5779

    Article  CAS  Google Scholar 

  • Fang L, Zhou C, Cai P et al (2011) Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis. J Hazard Mater 190(1):810–815

    Article  CAS  Google Scholar 

  • Fang L, Yang S, Huang Q et al (2014) Biosorption mechanisms of Cu (II) by extracellular polymeric substances from Bacillus subtilis. Chem Geol 386:143–151

    Article  CAS  Google Scholar 

  • Fein JB, Delea D (1999) Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis: a test of the chemical equilibrium approach. Chem Geol 161(4):375–383

    Article  CAS  Google Scholar 

  • Feng XH, Zhai LM, Tan WF et al (2007) Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environ Pollut 147(2):366–373

    Article  CAS  Google Scholar 

  • Gorman-Lewis D (2014) Enthalpies and entropies of Cd and Zn adsorption onto Bacillus licheniformis and enthalpies and entropies of Zn adsorption onto Bacillus subtilis from isothermal titration calorimetry and surface complexation modeling. Geomicrobiol J 31(5):383–395

    Article  CAS  Google Scholar 

  • Gorman-Lewis D, Fein JB, Jensen MP (2006) Enthalpies and entropies of proton and cadmium adsorption onto Bacillus subtilis bacterial cells from calorimetric measurements. Geochim Cosmochim Acta 70(19):4862–4873

    Article  CAS  Google Scholar 

  • Guibaud G, Bordas F, Saaid A et al (2008) Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids Surf B: Biointerfaces 63(1):48–54

    Article  CAS  Google Scholar 

  • Guibaud G, van Hullebusch E, Bordas F et al (2009) Sorption of Cd (II) and Pb (II) by exopolymeric substances (EPS) extracted from activated sludges and pure bacterial strains: modeling of the metal/ligand ratio effect and role of the mineral fraction. Bioresource Technol 100(12):2959–2968

    Article  CAS  Google Scholar 

  • Guiné V, Spadini L, Sarret G et al (2006) Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ Sci Technol 40(6):1806–1813

    Article  Google Scholar 

  • Gustafsson JP, Berggren Kleja D (2005) Modeling salt-dependent proton binding by organic soils with the NICA-Donnan and Stockholm Humic models. Environ Sci Technol 39(14):5372–5377

    Article  CAS  Google Scholar 

  • Ha J, Gélabert A, Spormann AM et al (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74(1):1–15

    Article  CAS  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interf Sci 179(2):488–508

    Article  CAS  Google Scholar 

  • Hiemstra T, Venema P, Van Riemsdijk WH (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J Colloid Interf Sci 184(2):680–692

    Article  CAS  Google Scholar 

  • Huang Q, Chen W, Xu L (2005) Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite. Geomicrobiol J 22(5):227–236

    Article  CAS  Google Scholar 

  • Huang Q, Huang PM, Violante A (2008) Soil mineral-microbe-organic interactions. Springer, Berlin

    Book  Google Scholar 

  • Jiang W, Saxena A, Song B et al (2004) Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20(26):11433–11442

    Article  CAS  Google Scholar 

  • Kenney JPL, Fein JB (2011) Importance of extracellular polysaccharides on proton and Cd binding to bacterial biomass: a comparative study. Chem Geol 286(3):109–117

    CAS  Google Scholar 

  • Kinniburgh DG, van Riemsdijk WH, Koopal LK et al (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf A: Physicochem Eng Asp 151(1):147–166

    Article  CAS  Google Scholar 

  • Kulczycki E, Ferris FG, Fortin D (2002) Impact of cell wall structure on the behavior of bacterial cells as sorbents of cadmium and lead. Geomicrobiol J 19(6):553–565

    Article  CAS  Google Scholar 

  • Kwon KD, Refson K, Sposito G (2013) Understanding the trends in transition metal sorption by vacancy sites in birnessite. Geochim Cosmochim Acta 101:222–232

    Article  CAS  Google Scholar 

  • Lenhart JJ, Honeyman BD (1999) Uranium (VI) sorption to hematite in the presence of humic acid. Geochim Cosmochim Acta 63(19):2891–2901

    Article  CAS  Google Scholar 

  • Manceau A, Silvester E, Bartoli C et al (1997) Structural mechanism of Co2+oxidation by the phyllomanganate buserite. Am Mineral 82(11–12):1150–1175

    Article  CAS  Google Scholar 

  • McKenzie RM (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral Mag 38(296):493–502

    Article  CAS  Google Scholar 

  • McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Res 18(1):61–73

    Article  CAS  Google Scholar 

  • Milne CJ, Kinniburgh DG, Tipping E (2001) Generic NICA-Donnan model parameters for proton binding by humic substances. Environ Sci Technol 35(10):2049–2059

    Article  CAS  Google Scholar 

  • Milne CJ, Kinniburgh DG, Van Riemsdijk WH et al (2003) Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37(5):958–971

    Article  CAS  Google Scholar 

  • Mishra B, Boyanov M, Bunker BA et al (2010) High-and low-affinity binding sites for Cd on the bacterial cell walls of Bacillus subtilis and Shewanella oneidensis. Geochim Cosmochim Acta 74(15):4219–4233

    Article  CAS  Google Scholar 

  • Mishra B, O’Loughlin EJ, Boyanov MI et al (2011) Binding of HgII to high-affinity sites on bacteria inhibits reduction to Hg0 by Mixed FeII/III phases. Environ Sci Technol 45(22):9597–9603

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2012) Adsorption of Cu (II) to ferrihydrite0 and ferrihydrite-bacteria composites: importance of the carboxyl group for Cu mobility in natural environments. Geochim Cosmochim Acta 92:203–219

    Article  CAS  Google Scholar 

  • Moon EM, Peacock CL (2013) Modelling Cu (II) adsorption to ferrihydrite and ferrihydrite-bacteria composites: deviation from additive adsorption in the composite sorption system. Geochim Cosmochim Acta 104:148–164

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT et al (2003) Microbial diversity and soil functions. Eur J Soil Sci 54(4):655–670

    Article  Google Scholar 

  • Ngwenya BT, Sutherland IW, Kennedy L (2003) Comparison of the acid-base behaviour and metal adsorption characteristics of a gram-negative bacterium with other strains. Appl Geochem 18(4):527–538

    Article  CAS  Google Scholar 

  • O’Reilly SE, Hochella MF (2003) Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim Cosmochim Acta 67(23):4471–4487

    Article  Google Scholar 

  • Ogata A, Komaba S, Baddour-Hadjean R et al (2008) Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery. Electrochim Acta 53(7):3084–3093

    Article  CAS  Google Scholar 

  • Panak P, Raff J, Selenska-Pobell S et al (2000) Complex formation of U (VI) with Bacillus-isolates from a uranium mining waste pile. Radiochim Acta Int J Chem Asp Nucl Sci Technol 88(2):71–76

    CAS  Google Scholar 

  • Panak PJ, Knopp R, Booth CH et al (2002) Spectroscopic studies on the interaction of U (VI) with Bacillus sphaericus. Radiochim Acta 90(9–11/2002):779–783

    CAS  Google Scholar 

  • Parikh SJ, Chorover J (2006) ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir 22(20):8492–8500

    Article  CAS  Google Scholar 

  • Peacock CL (2009) Physiochemical controls on the crystal-chemistry of Ni in birnessite: genetic implications for ferromanganese precipitates. Geochim Cosmochim Acta 73(12):3568–3578

    Article  CAS  Google Scholar 

  • Pokrovsky OS, Pokrovski GS, Shirokova LS et al (2012) Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences. Geobiology 10(2):130–149

    Article  CAS  Google Scholar 

  • Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Nat Acad Sci 96(7):3447–3454

    Article  CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys Diffract Theor Gen Crystallogr 32(5):751–767

    Article  Google Scholar 

  • Sheng GP, Xu J, Luo HW et al (2013) Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res 47(2):607–614

    Article  CAS  Google Scholar 

  • Sherman DM, Peacock CL (2010) Surface complexation of Cu on birnessite (δ-MnO2): controls on Cu in the deep ocean. Geochim Cosmochim Acta 74(23):6721–6730

    Article  CAS  Google Scholar 

  • Sigg L, Black F, Buffle J et al (2006) Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ Sci Technol 40(6):1934–1941

    Article  CAS  Google Scholar 

  • Small TD, Warren LA, Roden EE et al (1999) Sorption of strontium by bacteria, Fe (III) oxide, and bacteria-Fe (III) oxide composites. Environ Sci Technol 33(24):4465–4470

    Article  CAS  Google Scholar 

  • Song Z, Kenney JPL, Fein JB et al (2012) An X-ray absorption fine structure study of Au adsorbed onto the non-metabolizing cells of two soil bacterial species. Geochim Cosmochim Acta 86:103–117

    Article  CAS  Google Scholar 

  • Sun XF, Wang SG, Zhang XM et al (2009) Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. J Colloid Interf Sci 335(1):11–17

    Article  CAS  Google Scholar 

  • Tan W, Xiong J, Li Y et al (2013) Proton binding to soil humic and fulvic acids: experiments and NICA-Donnan modeling. Colloids Surf A: Physicochem Eng Asp 436:1152–1158

    Article  CAS  Google Scholar 

  • Templeton AS, Trainor TP, Traina SJ et al (2001) Pb (II) distributions at biofilm-metal oxide interfaces. Proc Nat Acad Sci 98(21):11897–11902

    Article  CAS  Google Scholar 

  • Templeton AS, Spormann AM, Brown GE (2003) Speciation of Pb (II) sorbed by Burkholderia cepacia/goethite composites. Environ Sci Technol 37(10):2166–2172

    Article  CAS  Google Scholar 

  • Tipping E (2002) Cation binding by humic substances. Cambridge University Press, New York

    Book  Google Scholar 

  • Toner B, Manceau A, Marcus MA et al (2005) Zinc sorption by a bacterial biofilm. Environ Sci Technol 39(21):8288–8294

    Article  CAS  Google Scholar 

  • Ueshima M, Ginn BR, Haack EA et al (2008) Cd adsorption onto Pseudomonas putida in the presence and absence of extracellular polymeric substances. Geochim Cosmochim Acta 72(24):5885–5895

    Article  CAS  Google Scholar 

  • Van Riemsdijk WH, Koopal LK, Kinniburgh DG et al (2006) Modeling the interactions between humics, ions, and mineral surfaces. Environ Sci Technol 40(24):7473–7480

    Article  Google Scholar 

  • Vermeer R (1996) Interactions between humic acid and hematite and their effects on metal ion speciation. Landbouwuniversiteit Wageningen. Wageningen Agricultural University

    Google Scholar 

  • Vermeer AWP, McCulloch JK, van Riemsdijk WH et al (1999) Metal ion adsorption to complexes of humic acid and metal oxides: deviations from the additivity rule. Environ Sci Technol 33(21):3892–3897

    Article  CAS  Google Scholar 

  • Villalobos M, Lanson B, Manceau A et al (2006) Structural model for the biogenic Mn oxide produced by Pseudomonas putida. Am Mineral 91(4):489–502

    Article  CAS  Google Scholar 

  • Violante A, Huang PM, Bollag JM et al (2002) Soil mineral-organic matter-microorganism interactions and ecosystem health. Elsevier Science B. V, Amsterdam

    Google Scholar 

  • Wang S, Terdkiatburana T, Tadé MO (2008) Adsorption of Cu (II), Pb (II) and humic acid on natural zeolite tuff in single and binary systems. Sep Purif Technol 62(1):64–70

    Article  CAS  Google Scholar 

  • Webb SM, Tebo BM, Bargar JR (2005) Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp. strain SG-1. Am Mineral 90(8-9):1342–1357

    Article  CAS  Google Scholar 

  • Wei X, Fang L, Cai P et al (2011) Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ Pollut 159(5):1369–1374

    Article  CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Van Riemsdijk WH (2001) Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ Sci Technol 35(22):4436–4443

    Article  CAS  Google Scholar 

  • Weng L, Temminghoff EJM, Lofts S et al (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36(22):4804–4810

    Article  CAS  Google Scholar 

  • Weng L, Van Riemsdijk WH, Koopal LK et al (2006) Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. J Colloid Interf Sci 302(2):442–457

    Article  CAS  Google Scholar 

  • Weng L, Van Riemsdijk WH, Hiemstra T (2008) Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids. Geochim Cosmochim Acta 72(24):5857–5870

    Article  CAS  Google Scholar 

  • Weppen P, Hornburg A (1995) Calorimetric studies on interactions of divalent cations and microorganisms or microbial envelopes. Thermochim Acta 269:393–404

    Article  Google Scholar 

  • Wu P, Zhang Q, Dai Y et al (2011) Adsorption of Cu (II), Cd (II) and Cr (III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 164(3):215–219

    Article  CAS  Google Scholar 

  • Xiong J, Koopal LK, Tan WF et al (2013) Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. Environ Sci Technol 47(20):11634–11642

    Article  CAS  Google Scholar 

  • Xiong J, Koopal LK, Weng L et al (2015) Effect of soil fulvic and humic acid on binding of Pb to goethite-water interface: linear additivity and volume fractions of HS in the Stern layer. J Colloid Interf Sci 457:121–130

    Article  CAS  Google Scholar 

  • Xu Y, Boonfueng T, Axe L et al (2006) Surface complexation of Pb (II) on amorphous iron oxide and manganese oxide: spectroscopic and time studies. J Colloid Interf Sci 299(1):28–40

    Article  CAS  Google Scholar 

  • Yee N, Fein J (2001) Cd adsorption onto bacterial surfaces: a universal adsorption edge. Geochim Cosmochim Acta 65(13):2037–2042

    Article  CAS  Google Scholar 

  • Yin H, Tan W, Zheng L et al (2012) Characterization of Ni-rich hexagonal birnessite and its geochemical effects on aqueous Pb2+/Zn2+ and As (III). Geochim Cosmochim Acta 93:47–62

    Article  CAS  Google Scholar 

  • Yin H, Liu F, Feng X et al (2013) Effects of Fe doping on the structures and properties of hexagonal birnessites-Comparison with Co and Ni doping. Geochim Cosmochim Acta 117:1–15

    Article  CAS  Google Scholar 

  • Yin H, Li H, Wang Y et al (2014) Effects of Co and Ni co-doping on the structure and reactivity of hexagonal birnessite. Chem Geol 381:10–20

    Article  CAS  Google Scholar 

  • Yin H, Liu Y, Koopal LK et al (2015) High Co-doping promotes the transition of birnessite layer symmetry from orthogonal to hexagonal. Chem Geol 410:12–20

    Article  CAS  Google Scholar 

  • Yu Q, Fein JB (2015) The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: the role of sulfhydryl sites. Geochim Cosmochim Acta 167:1–10

    Article  CAS  Google Scholar 

  • Zhao W, Cui H, Liu F et al (2009) Relationship between Pb2+ adsorption and average Mn oxidation state in synthetic birnessites. Clays Clay Minerals 57(5):513–520

    Article  CAS  Google Scholar 

  • Zhao W, Wang QQ, Liu F et al (2010) Pb2+ adsorption on birnessite affected by Zn2+ and Mn2+ pretreatments. J Soils Sediments 10(5):870–878

    Article  CAS  Google Scholar 

  • Zhao W, Tan W, Feng X et al (2011a) XAFS studies on surface coordination of Pb2+ on birnessites with different average oxidation states. Colloids Surf A: Physicochem Eng Asp 379(1):86–92

    Article  CAS  Google Scholar 

  • Zhao W, Yin H, Liu F et al (2011b) Characterization of Pb2+ adsorption on the surface of birnessite treatment with Na4P2O7 at different pH and the study on the distribution of Mn (III) in the birnessite. Environ Sci 32(8):2477–2484

    CAS  Google Scholar 

  • Zhao W, Liu F, Feng X et al (2012a) Fourier transform infrared spectroscopy study of acid birnessites before and after Pb2+ adsorption. Clay Minerals 47(2):191–204

    Article  CAS  Google Scholar 

  • Zhao W, Liu F, Feng XH et al (2012b) XPS study on birnessites with different average oxidation states. J Cent South Univ (Sci Technol) 43(2):776–782. (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhu M, Ginder-Vogel M, Parikh SJ et al (2010) Cation effects on the layer structure of biogenic Mn-oxides. Environ Sci Technol 44(12):4465–4471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, W., Fang, L., Xiong, J., Yin, H., Zhao, W. (2018). Contribution of Soil Active Components to the Control of Heavy Metal Speciation. In: Luo, Y., Tu, C. (eds) Twenty Years of Research and Development on Soil Pollution and Remediation in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6029-8_11

Download citation

Publish with us

Policies and ethics