Skip to main content

Abstract

The widespread use of copper (Cu) resulted in anthropogenic inputs to soils through industrial and agricultural practices. Elevated soil Cu concentrations can cause toxicity effects on soil organisms and affect soil ecosystem functioning. The toxicity of Cu to organisms strongly depends on its bioavailability in soil and the sensitivity of the organisms. Molecular-level knowledge about chemical speciation of Cu in soils will advance our ability to predict its reactivities and environmental fates. The speciation and transformation of Cu in soil-plant system were intensively studied during the past decade by combining traditional chemical analysis methods and advanced synchrotron radiation-based techniques, including X-ray absorption fine structure (XAFS), X-ray fluorescence (XRF), and scanning transmission X-ray microscopy (STXM). Bioavailability of Cu in soil can be mediated by sulfur and some specific rhizobacterium like Cu-tolerant Pseudomonas putida CZ1, which is isolated from rhizosphere of Elsholtzia splendens. Excess Cu will cause phytotoxicity to plants; XAFS analysis demonstrated that Cu bound by N/O/S ligands played a key role in Cu detoxification of E. splendens. Copper stress leads to different functional protein expression in different E. splendens tissues, which includes signal transduction, regulation of transcription and translation, energy metabolism, regulation of redox homeostasis, and cell defense. CuO nanoparticles can be absorbed by the roots and transported to the shoots in E. splendens and rice (Oryza sativa L.) and then transformed into different Cu species, like Cu-citrate and Cu-cysteine. Sulfur- and rhizobacterium (such as Pseudomonas putida CZ1)-enhanced phytoremediation of Cu-contaminated soil is considered to be promising, and further practices should be in field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alloway BJ (1995) Heavy metals in soils, heavy metals in soils. Blackie Academic and Professional, Suffolk

    Book  Google Scholar 

  • Bringezu K, Lichtenberger O, Leopold I et al (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154(4):536–546

    Article  CAS  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE et al (2009) Copper homeostasis. New Phytol 182(4):799–816

    Article  CAS  Google Scholar 

  • Chen YX, Shi JY, Tian GM et al (2004a) Fe deficiency induces Cu uptake and accumulation in Commelina communis. Plant Sci 166(5):1371–1377

    Article  CAS  Google Scholar 

  • Chen YX, Shi JY, Zhang WD et al (2004b) EDTA and industrial waste water improving the bioavailability of different Cu forms in contaminated soil. Plant Soil 261(1–2):117–125

    Article  CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q et al (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B: Biointerfaces 46(2):101–107

    Article  CAS  Google Scholar 

  • Chen XC, Shi JY, Chen YX et al (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can J Microbiol 52(4):308–316

    Article  CAS  Google Scholar 

  • Chen XC, Shi JY, Chen YX et al (2007) Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Appl Microbiol Biotechnol 74(4):881–889

    Article  CAS  Google Scholar 

  • Chen XC, Hu SP, Shen CF et al (2009) Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresour Technol 100(1):330–337

    Article  CAS  Google Scholar 

  • Chien SH, Prochnow LI, Cantarella H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv Agron 102:267–322

    Article  CAS  Google Scholar 

  • Cioffi N, Ditaranto N, Torsi L et al (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381(3):607–616

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  Google Scholar 

  • Drążkiewicz M, SkórzyÅ„ska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17(4):379–387

    Article  Google Scholar 

  • Hong S, Candelone JP, Soutif M et al (1996) A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Sci Total Environ 188(2):183–193

    Article  CAS  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119(1):305–312

    Article  Google Scholar 

  • Lee J, Reeves RD, Brooks RR et al (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17(6):1033–1035

    Article  CAS  Google Scholar 

  • Li F, Shi JY, Shen CF et al (2009) Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol 71(3):251–263

    Article  CAS  Google Scholar 

  • Lin HR, Shi JY, Wu B et al (2010) Speciation and biochemical transformations of sulfur and copper in rice rhizosphere and bulk soil—XANES evidence of sulfur and copper associations. J Soils Sediments 10(5):907–914

    Article  CAS  Google Scholar 

  • Liu TT, Shen CF, Wang Y et al (2014) New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress. PLoS One 9(10):e109573

    Article  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mehrabi M, Wilson R (2007) Intercalating gold nanoparticles as universal labels for DNA detection. Small 3(9):1491–1495

    Article  CAS  Google Scholar 

  • Muccifora S, Bellani LM (2013) Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environ Pollut 179:68–74

    Article  CAS  Google Scholar 

  • Peñarrubia L, Andrés-Colás N, Moreno J et al (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? JBIC J Biol Inorg Chem 15(1):29–36

    Article  Google Scholar 

  • Peng C, Duan DC, Xu C et al (2015a) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107

    Article  CAS  Google Scholar 

  • Peng C, Zhang H, Fang HX et al (2015b) Natural organic matter–induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Environ Toxicol Chem 34(9):1996–2003

    Article  CAS  Google Scholar 

  • Rankin DWH (2009) In: Lide DR (ed) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Ryan BM, Kirby JK, Degryse F et al (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199(2):367–378

    Article  CAS  Google Scholar 

  • Shi JY, Chen YX, Huang YY et al (2004) SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron 35(7):557–564

    Article  Google Scholar 

  • Shi JY, Wu B, Yuan XF et al (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302(1–2):163–174

    Article  CAS  Google Scholar 

  • Shi JY, Gras MA, Silk WK (2009) Laser ablation ICP-MS reveals patterns of copper differing from zinc in growth zones of cucumber roots. Planta 229(4):945–954

    Article  CAS  Google Scholar 

  • Shi JY, Lin HR, Yuan XF et al (2011a) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16(2):1409–1417

    Article  CAS  Google Scholar 

  • Shi JY, Yuan XF, Chen XC et al (2011b) Copper uptake and its effect on metal distribution in root growth zones of Commelina communis revealed by SRXRF. Biol Trace Elem Res 41(1–3):294–304

    Article  Google Scholar 

  • Shi JY, Peng C, Yang YQ et al (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8(2):179–188

    Article  CAS  Google Scholar 

  • Song J, Yang YQ, Zhu SH et al (2013) Spatial distribution and speciation of copper in root tips of cucumber revealed by μ-XRF and μ-XANES. Biol Plant 7(3):581–586

    Article  Google Scholar 

  • Sun LJ, Zheng CQ, Yang JJ et al (2016) Impact of sulfur (S) fertilization in paddy soils on copper (Cu) accumulation in rice (Oryza sativa L.) plants under flooding conditions. Biol Fertil Soils 52(1):31–39

    Article  CAS  Google Scholar 

  • Tang SR, Wilke BM, Huang C (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209(2):225–232

    Article  CAS  Google Scholar 

  • Wang YP, Li QB, Hui W et al (2008a) Effect of sulphur on soil Cu/Zn availability and microbial community composition. J Hazard Mater 159(2):385–389

    Article  CAS  Google Scholar 

  • Wang YP, Li QB, Shi JY et al (2008b) Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biol Biochem 40(5):1167–1177

    Article  CAS  Google Scholar 

  • Wong MH, Bradshaw AD (2006) A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol 91:255–261

    Google Scholar 

  • Xu C, Chen XC, Duan DC et al (2015) Effect of heavy-metal-resistant bacteria on enhanced metal uptake and translocation of the Cu-tolerant plant, Elsholtzia splendens. Environ Sci Pollut Res 22(7):5070–5081

    Article  CAS  Google Scholar 

  • Yang J, Liu J, Dynes JJ et al (2014) Speciation and distribution of copper in a mining soil using multiple synchrotron-based bulk and microscopic techniques. Environ Sci Pollut Res 21(4):2943–2954

    Article  CAS  Google Scholar 

  • Yang JJ, Zhu SH, Zheng CQ et al (2015) Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods. J Hazard Mater 286:432–439

    Article  CAS  Google Scholar 

  • Yuan XF, Luan J, Shi JY (2014) Spatial variability of bacteria in the rhizosphere of Elsholtzia splendens under Cu contamination. Environ Sci Pollut Res 21(16):9809–9818

    Article  CAS  Google Scholar 

  • Zhou W, Wan M, He P et al (2002) Oxidation of elemental sulfur in paddy soils as influenced by flooded condition and plant growth in pot experiment. Biol Fertil Soils 36(5):384–389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Science Press & Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shi, J. et al. (2018). Copper Speciation and Transformation in Soil-Plant System. In: Luo, Y., Tu, C. (eds) Twenty Years of Research and Development on Soil Pollution and Remediation in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-6029-8_10

Download citation

Publish with us

Policies and ethics