Targeting Stemness: Implications for Precision Medicine in Breast Cancer

  • Zhi-Mei Liang
  • Yang Chen
  • Man-Li Luo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)


The genomic landscape of breast cancer has been delineated in recent years. Advances in molecular characterization and targeting strategies are making it feasible to integrate clinical, genome-based and phenotype-based diagnostic and therapeutic methods and apply them to individual patient in the era of precision medicine. Cancer stem cells (CSCs) are a subpopulation in the tumor which have the capability of self-renewal and differentiation. Breast CSCs have important clinical implications as they account for tumor initiation, maintenance, metastasis, therapy resistance, and relapse. In this chapter, we will introduce approaches used to characterize breast CSCs, crucial pathways involved in regulating cancer stemness, and implications of breast CSCs in the precision diagnosis and treatment of breast cancer. We will also discuss novel compounds and therapeutic strategies that selectively target breast CSCs. Integration of breast CSC-related molecular diagnosis and targeted therapy into the clinical workflow of precision medicine has the potential to deliver more effective treatment to breast cancer patients.


Breast cancer Cancer stem cell Precision medicine 



We would like to thank the support from the Natural Science Foundation of China (81572890 to Luo ML), Guangdong Science and Technology Department (2015B050501004), Grant [2013] 163 from Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology, and Grant KLB09001 from the Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes.


  1. 1.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73. doi: 10.1016/j.cell.2009.12.007 PubMedCrossRefGoogle Scholar
  2. 2.
    Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673. doi: 10.1126/science.1171837 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells--perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344. doi: 10.1158/0008-5472.can-06-3126 PubMedCrossRefGoogle Scholar
  4. 4.
    He SH, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. In: Annual review of cell and developmental biology, vol 25. Annual Review of Cell and Developmental Biology. Annual Reviews, Palo Alto, pp 377–406. doi: 10.1146/annurev.cellbio.042308.113248 Google Scholar
  5. 5.
    Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441(7097):1068–1074. doi: 10.1038/nature04956 PubMedCrossRefGoogle Scholar
  6. 6.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi: 10.1038/35102167 PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells (vol 100, pg 3983, 2003). Proc Natl Acad Sci U S A 100(11):6890–6890. doi: 10.1073/pnas.1131491100 Google Scholar
  8. 8.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu SL, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567. doi: 10.1016/j.stem.2007.08.014 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Naor D, Wallach-Dayan SB, Zahalka MA, Sionov RV (2008) Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Semin Cancer Biol 18(4):260–267. doi: 10.1016/j.semcancer.2008.03.015 PubMedCrossRefGoogle Scholar
  10. 10.
    Du L, Wang HY, He LY, Zhang JY, Ni BY, Wang XH, Jin HJ, Cahuzac N, Mehrpour M, Lu YY, Chen Q (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14(21):6751–6760. doi: 10.1158/1078-0432.ccr-08-1034 PubMedCrossRefGoogle Scholar
  11. 11.
    Bourguignon LYW, Spevak CC, Wong G, Xia WL, Gilad E (2009) Hyaluronan-CD44 interaction with protein kinase C epsilon promotes oncogenic signaling by the stem cell marker Nanog and the production of MicroRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells. J Biol Chem 284(39):26533–26546. doi: 10.1074/jbc.M109.027466 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Jothy S (2003) CD44 and its partners in metastasis. Clin Exp Metastasis 20(3):195–201. doi: 10.1023/a:1022931016285 PubMedCrossRefGoogle Scholar
  13. 13.
    Phuc PV, Phan LCN, Nhung TH, Tam NT, Hoang NM, Tue VG, Thuy DT, Ngoc PK (2011) Downregulation of CD44 reduces doxorubicin resistance of CD44(+)CD24(−) breast cancer cells. Onco Targets Ther 4:71–78. doi: 10.2147/ott.s21431 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pham PV, Phan NLC, Nguyen NT, Truong NH, Duong TT, Le DV, Truong KD, Phan NK (2011) Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med 9:13. doi: 10.1186/1479-5876-9-209 CrossRefGoogle Scholar
  15. 15.
    Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schluns K, Denkert C, Dahl E, Pilarsky C, Altevogt P, Guski H, Dietel M (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9(13):4906–4913PubMedGoogle Scholar
  16. 16.
    Fang XF, Zheng P, Tang J, Liu Y (2010) CD24: from a to Z. Cell Mol Immunol 7(2):100–103. doi: 10.1038/cmi.2009.119 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Baumann P, Cremers N, Kroese FGM, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman JP (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793. doi: 10.1158/0008-5472.can-05-0619 PubMedCrossRefGoogle Scholar
  18. 18.
    Ricardo S, Vieira AF, Gerhard R, Leitao D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F, Paredes J (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64(11):937–946. doi: 10.1136/jcp.2011.090456 PubMedCrossRefGoogle Scholar
  19. 19.
    Giatromanolaki A, Sivridis E, Fiska A, Koukourakis MI (2011) The CD44+/CD24-phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Med Oncol 28(3):745–752. doi: 10.1007/s12032-010-9530-3 PubMedCrossRefGoogle Scholar
  20. 20.
    Stuelten CH, Mertins SD, Busch JI, Gowens M, Scudiero DA, Burkett MW, Hite KM, Alley M, Hollingshead M, Shoemaker RH, Niederhuber JE (2010) Complex display of putative tumor stem cell markers in the NCI60 tumor cell line panel. Stem Cells 28(4):649–660. doi: 10.1002/stem.324 PubMedCrossRefGoogle Scholar
  21. 21.
    Balzar M, Winter MJ, de Boer CJ, Litvinov SV (1999) The biology of the 17-1A antigen (ep-CAM). J Mol Med 77(10):699–712. doi: 10.1007/s001099900038 PubMedCrossRefGoogle Scholar
  22. 22.
    van der Gun BTF, Melchers LJ, Ruiters MHJ, de Leij L, McLaughlin PMJ, Rots MG (2010) EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31(11):1913–1921. doi: 10.1093/carcin/bgq187 PubMedCrossRefGoogle Scholar
  23. 23.
    Schmidt M, Hasenclever D, Schaeffer M, Boehm D, Cotarelo C, Steiner E, Lebrecht A, Siggelkow W, Weikel W, Schiffer-Petry I, Gebhard S, Pilch H, Gehrmann M, Lehr HA, Koelbl H, Hengstler JG, Schuler M (2008) Prognostic effect of epithelial cell adhesion molecule overexpression in untreated node-negative breast cancer. Clin Cancer Res 14(18):5849–5855. doi: 10.1158/1078-0432.ccr-08-0669 PubMedCrossRefGoogle Scholar
  24. 24.
    Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G (2000) Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet 356(9246):1981–1982. doi: 10.1016/s0140-6736(00)03312-2 PubMedCrossRefGoogle Scholar
  25. 25.
    Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WK (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64(16):5818–5824. doi: 10.1158/0008-5472.can-04-0754 PubMedCrossRefGoogle Scholar
  26. 26.
    Marcato P, Dean CA, Giacomantonio CA, Lee PWK (2011) Aldehyde dehydrogenase its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10(9):1378–1384. doi: 10.4161/cc.10.9.15486 PubMedCrossRefGoogle Scholar
  27. 27.
    Cheung AMS, Wan TSK, Leung JCK, Chan LYY, Huang H, Kwong YL, Liang R, Leung AYH (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21(7):1423–1430. doi: 10.1038/sj.leu.2404721 PubMedCrossRefGoogle Scholar
  28. 28.
    Bane A, Viloria-Petit A, Pinnaduwage D, Mulligan AM, O’Malley FP, Andrulis IL (2013) Clinical-pathologic significance of cancer stem cell marker expression in familial breast cancers. Breast Cancer Res Treat 140(1):195–205. doi: 10.1007/s10549-013-2591-1 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kang EJ, Jung H, Woo OH, Park KH, Woo SU, Yang DS, Kim AR, Lee JB, Kim YH, Kim JS, Seo JH (2014) Association of aldehyde dehydrogenase 1 expression and biologically aggressive features in breast cancer. Neoplasma 61(3):352–362. doi: 10.4149/neo_2014_045 PubMedCrossRefGoogle Scholar
  30. 30.
    Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, Helyer L, Pan L, Leidal A, Gujar S, Giacomantonio CA, Lee PWK (2011) Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29(1):32–45. doi: 10.1002/stem.563 PubMedCrossRefGoogle Scholar
  31. 31.
    Krivtsov AV, Twomey D, Feng ZH, Stubbs MC, Wang YZ, Faber J, Levine JE, Wang J, Hahn WC, Gilliland DG, Golub TR, Armstrong SA (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442(7104):818–822. doi: 10.1038/nature04980 PubMedCrossRefGoogle Scholar
  32. 32.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–U533. doi: 10.1038/nature07567 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Johnston MD, Maini PK, Chapman SJ, Edwards CM, Bodmer WF (2010) On the proportion of cancer stem cells in a tumour. J Theor Biol 266(4):708–711. doi: 10.1016/j.jtbi.2010.07.031 PubMedCrossRefGoogle Scholar
  34. 34.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17(10):1253–1270. doi: 10.1101/gad.1061803 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8(5):486–498. doi: 10.1016/j.stem.2011.04.007 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dontu G, Wicha MS (2005) Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 10(1):75–86. doi: 10.1007/s10911-005-2542-5 PubMedCrossRefGoogle Scholar
  37. 37.
    Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10(3):10. doi: 10.1186/bcr2106 CrossRefGoogle Scholar
  38. 38.
    Pastrana E, Cheng LC, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A 106(15):6387–6392. doi: 10.1073/pnas.0810407106 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bonnefoix T, Bonnefoix P, Callanan M, Verdiel P, Sotto JJ (2001) Graphical representation of a generalized linear model-based statistical test estimating the fit of the single-hit Poisson model to limiting dilution assays. J Immunol 167(10):5725–5730PubMedCrossRefGoogle Scholar
  40. 40.
    O’Brien CA, Kreso A, Jamieson CHM (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16(12):3113–3120. doi: 10.1158/1078-0432.ccr-09-2824 PubMedCrossRefGoogle Scholar
  41. 41.
    Clevers H, Loh KM, Nusse R (2014) An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):54−+. doi: 10.1126/science.1248012
  42. 42.
    Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4(5):13. doi: 10.1101/cshperspect.a008052 CrossRefGoogle Scholar
  43. 43.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850. doi: 10.1038/nature03319 PubMedCrossRefGoogle Scholar
  44. 44.
    Wend P, Holland JD, Ziebold U, Birchmeier W (2010) Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 21(8):855–863. doi: 10.1016/j.semcdb.2010.09.004 PubMedCrossRefGoogle Scholar
  45. 45.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439(7072):84–88. doi: 10.1038/nature04372 PubMedCrossRefGoogle Scholar
  46. 46.
    Bafico A, Liu GZ, Goldin L, Harris V, Aaronson SA (2004) An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6(5):497–506. doi: 10.1016/j.ccr.2004.09.032 PubMedCrossRefGoogle Scholar
  47. 47.
    Scheel C, Eaton EN, Li SHJ, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940. doi: 10.1016/j.cell.2011.04.029 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24(11):2437–2447. doi: 10.1634/stemcells.2005-0661 PubMedCrossRefGoogle Scholar
  49. 49.
    Roy M, Pear WS, Aster JC (2007) The multifaceted role of notch in cancer. Curr Opin Genet Dev 17(1):52–59. doi: 10.1016/j.gde.2006.12.001 PubMedCrossRefGoogle Scholar
  50. 50.
    Ilagan MXG, Kopan R (2007) SnapShot: notch signaling pathway. Cell 128(6):1246PubMedCrossRefGoogle Scholar
  51. 51.
    Andersen P, Uosaki H, Shenje LT, Kwon C (2012) Non-canonical notch signaling: emerging role and mechanism. Trends Cell Biol 22(5):257–265. doi: 10.1016/j.tcb.2012.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B, Miele L (2010) Targeting notch to target cancer stem cells. Clin Cancer Res 16(12):3141–3152. doi: 10.1158/1078-0432.ccr-09-2823 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70(2):709–718. doi: 10.1158/0008-5472.can-09-1681 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, Lindeman GJ, Visvader JE (2008) Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3(4):429–441. doi: 10.1016/j.stem.2008.08.001 PubMedCrossRefGoogle Scholar
  55. 55.
    Pandya K, Meeke K, Clementz AG, Rogowski A, Roberts J, Miele L, Albain KS, Osipo C (2011) Targeting both notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 105(6):796–806. doi: 10.1038/bjc.2011.321 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22(18):2454–2472. doi: 10.1101/gad.1693608 PubMedCrossRefGoogle Scholar
  57. 57.
    Amakye D, Jagani Z, Dorsch M (2013) Unraveling the therapeutic potential of the hedgehog pathway in cancer. Nat Med 19(11):1410–1422. doi: 10.1038/nm.3389 PubMedCrossRefGoogle Scholar
  58. 58.
    Angeloni V, Tiberio P, Appierto V, Daidone MG (2015) Implications of stemness-related signaling pathways in breast cancer response to therapy. Semin Cancer Biol 31:43–51. doi: 10.1016/j.semcancer.2014.08.004 PubMedCrossRefGoogle Scholar
  59. 59.
    Liu SL, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, Suri P, Wicha MS (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063–6071. doi: 10.1158/0008-5472.can-06-0054 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Goel HL, Pursell B, Chang C, Shaw LM, Mao JH, Simin K, Kumar P, Vander Kooi CW, Shultz LD, Greiner DL, Norum JH, Toftgard R, Kuperwasser C, Mercurio AM (2013) GLI1 regulates a novel neuropilin-2/61 integrin based autocrine pathway that contributes to breast cancer initiation. EMBO Mol Med 5(4):488–508. doi: 10.1002/emmm.201202078 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Valenti G, Quinn HM, Heynen G, Lan LX, Holland JD, Vogel R, Wulf-Goldenberg A, Birchmeier W (2017) Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res 77(8):2134–2147. doi: 10.1158/0008-5472.can-15-3490 PubMedCrossRefGoogle Scholar
  62. 62.
    Takebe N, Harris PJ, Warren RQ, Ivy SP (2011) Targeting cancer stem cells by inhibiting Wnt, notch, and hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106. doi: 10.1038/nrclinonc.2010.196 PubMedCrossRefGoogle Scholar
  63. 63.
    Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD (2016) The notch intracellular domain integrates signals from Wnt, hedgehog, TGF beta/BMP and hypoxia pathways. Biochim Biophys Acta-Mol Cell Res 1863(2):303–313. doi: 10.1016/j.bbamcr.2015.11.020 CrossRefGoogle Scholar
  64. 64.
    Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R, Bonal DM, Charytonowicz E, Gladoun N, de la Iglesia-Vicente J, Petrylak DP, Benson MC, Silva JM, Cordon-Cardo C (2012) Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 22(3):373–388. doi: 10.1016/j.ccr.2012.07.016 PubMedCrossRefGoogle Scholar
  65. 65.
    Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, Mandinova A, Raffoul W, Fiche M, Dotto GP, Brisken C (2006) Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a notch-dependent mechanism. Proc Natl Acad Sci U S A 103(10):3799–3804. doi: 10.1073/pnas.0600065103 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Liu SL, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung YH, Dontu G, Taichman R, Wicha MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624. doi: 10.1158/0008-5472.can-10-0538 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lu HT, Ouyang WM, Huang CS (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4(4):221–233. doi: 10.1158/1541-7786.mcr-05-0261 PubMedCrossRefGoogle Scholar
  68. 68.
    Iliopoulos D, Hirsch HA, Wang GN, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A 108(4):1397–1402. doi: 10.1073/pnas.1018898108 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappa B, Lin28, let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706. doi: 10.1016/j.cell.2009.10.014 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741. doi: 10.1158/1078-0432.ccr-07-4843 PubMedCrossRefGoogle Scholar
  71. 71.
    Singh JK, Farnie G, Bundred NJ, Simoes BM, Shergill A, Landberg G, Howell SJ, Clarke RB (2013) Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res 19(3):643–656. doi: 10.1158/1078-0432.ccr-12-1063 PubMedCrossRefGoogle Scholar
  72. 72.
    Ginestier C, Liu SL, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, Dontu G, Wicha MS (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497. doi: 10.1172/jc139397 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. doi: 10.1016/j.cell.2010.01.025 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Li CW, Xia WY, Huo LF, Lim SO, Wu Y, Hsu JL, Chao CH, Yamaguchi H, Yang NK, Ding QQ, Wang Y, Lai YJ, LaBaff AM, Wu TJ, Lin BR, Yang MH, Hortobagyi GN, Hung MC (2012) Epithelial-mesenchymal transition induced by TNF-alpha requires NF-kappa B-mediated transcriptional upregulation of Twist1. Cancer Res 72(5):1290–1300. doi: 10.1158/0008-5472.can-11-3123 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D’Angelo R, Paulson AK, Chung S, Luther T, Paholak HJ, Liu SL, Hassan KA, Zen Q, Clouthier SG, Wicha MS (2012) Activation of an IL6 inflammatory loop mediates Trastuzumab resistance in HER2+breast cancer by expanding the cancer stem cell population. Mol Cell 47(4):570–584. doi: 10.1016/j.molcel.2012.06.014 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju XM, Ojeifo J, Jiao XM, Yeow WS, Katiyar S, Shirley LA, Joyce D, Lisanti MP, Albanese C, Pestell RG (2010) The canonical NF-kappa B pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res 70(24):10464–10473. doi: 10.1158/0008-5472.can-10-0732 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhang WZ, Tan W, Wu XF, Poustovoitov M, Strasner A, Li W, Borcherding N, Ghassemian M, Karin M (2013) A NIK-IKK alpha module expands ErbB2-induced tumor-initiating cells by stimulating nuclear export of p27/Kip1. Cancer Cell 23(5):647–659. doi: 10.1016/j.ccr.2013.03.012 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cao YX, Luo JL, Karin M (2007) I kappa B kinase a kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A 104(40):15852–15857. doi: 10.1073/pnas.0706728104 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J (2013) NF-kappa B non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun 4:13. doi: 10.1038/ncomms3299 Google Scholar
  80. 80.
    Scala S (2015) Molecular pathways: targeting the CXCR4-CXCL12 Axis-untapped potential in the tumor microenvironment. Clin Cancer Res 21(19):4278–4285. doi: 10.1158/1078-0432.ccr-14-0914 PubMedCrossRefGoogle Scholar
  81. 81.
    Ablett MP, O’Brien CS, Sims AH, Farnie G, Clarke RB (2014) A differential role for CXCR4 in the regulation of normal versus malignant breast stem cell activity. Oncotarget 5(3):599–612PubMedCrossRefGoogle Scholar
  82. 82.
    Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Hardan I, Resnick I, Rot A, Lapidot T (2005) Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol 6(10):1038–1046. doi: 10.1038/ni1251 PubMedCrossRefGoogle Scholar
  83. 83.
    Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1 alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 17(8):2074–2080. doi: 10.1158/1078-0432.ccr-10-2636 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EGE, Walenkamp AME (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49(1):219–230. doi: 10.1016/j.ejca.2012.05.005 PubMedCrossRefGoogle Scholar
  85. 85.
    Charles N, Holland EC (2010) The perivascular niche microenvironment in brain tumor progression. Cell Cycle 9(15):3012–3021. doi: 10.4161/cc.9.15.12710 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton LL, Dooling DJ, Ding L, Mardis ER, Wilson RK, Ally A, Balasundaram M, Butterfield YSN, Carlsen R, Carter C, Chu A, Chuah E, Chun HJE, Coope RJN, Dhalla N, Guin R, Hirst C, Hirst M, Holt RA, Lee D, Li HYI, Mayo M, Moore RA, Mungall AJ, Pleasance E, Robertson AG, Schein JE, Shafiei A, Sipahimalani P, Slobodan JR, Stoll D, Tam A, Thiessen N, Varhol RJ, Wye N, Zeng T, Zhao YJ, Birol I, Jones SJM, Marra MA, Cherniack AD, Saksena G, Onofrio RC, Pho NH, Carter SL, Schumacher SE, Tabak B, Hernandez B, Gentry J, Nguyen H, Crenshaw A, Ardlie K, Beroukhim R, Winckler W, Getz G, Gabriel SB, Meyerson M, Chin L, Park PJ, Kucherlapati R, Hoadley KA, Auman JT, Fan C, Turman YJ, Shi Y, Li L, Topal MD, He XP, Chao HH, Prat A, Silva GO, Iglesia MD, Zhao W, Usary J, Berg JS, Adams M, Booker J, Wu JY, Gulabani A, Bodenheimer T, Hoyle AP, Simons JV, Soloway MG, Mose LE, Jefferys SR, Balu S, Parker JS, Hayes DN, Perou CM, Malik S, Mahurkar S, Shen H, Weisenberger DJ, Triche T, Lai PH, Bootwalla MS, Maglinte DT, Berman BP, Van den Berg DJ, Baylin SB, Laird PW, Creighton CJ, Donehower LA, Getz G, Noble M, Voet D, Saksena G, Gehlenborg N, DiCara D, Zhang JH, Zhang HL, Wu CJ, Liu SY, Lawrence MS, Zou LH, Sivachenko A, Lin P, Stojanov P, Jing R, Cho J, Sinha R, Park RW, Nazaire MD, Robinson J, Thorvaldsdottir H, Mesirov J, Park PJ, Chin L, Reynolds S, Kreisberg RB, Bernard B, Bressler R, Erkkila T, Lin J, Thorsson V, Zhang W, Shmulevich I, Ciriello G, Weinhold N, Schultz N, Gao JJ, Cerami E, Gross B, Jacobsen A, Sinha R, Aksoy BA, Antipin Y, Reva B, Shen RL, Taylor BS, Ladanyi M, Sander C, Anur P, Spellman PT, Lu YL, Liu WB, Verhaak RRG, Mills GB, Akbani R, Zhang NX, Broom BM, Casasent TD, Wakefield C, Unruh AK, Baggerly K, Coombes K, Weinstein JN, Haussler D, Benz CC, Stuart JM, Benz SC, Zhu JC, Szeto CC, Scott GK, Yau C, Paul EO, Carlin D, Wong C, Sokolov A, Thusberg J, Mooney S, Ng S, Goldstein TC, Ellrott K, Grifford M, Wilks C, Ma S, Craft B, Yan CH, Hu Y, Meerzaman D, Gastier-Foster JM, Bowen J, Ramirez NC, Black AD, Pyatt RE, White P, Zmuda EJ, Frick J, Lichtenberg T, Brookens R, George MM, Gerken MA, Harper HA, Leraas KM, Wise LJ, Tabler TR, McAllister C, Barr T, Hart-Kothari M, Tarvin K, Saller C, Sandusky G, Mitchell C, Iacocca MV, Brown J, Rabeno B, Czerwinski C, Petrelli N, Dolzhansky O, Abramov M, Voronina O, Potapova O, Marks JR, Suchorska WM, Murawa D, Kycler W, Ibbs M, Korski K, Spychala A, Murawa P, Brzezinski JJ, Perz H, Lazniak R, Teresiak M, Tatka H, Leporowska E, Bogusz-Czerniewicz M, Malicki J, Mackiewicz A, Wiznerowicz M, Le XV, Kohl B, Tien NV, Thorp R, Bang NV, Sussman H, Phu BD, Hajek R, Hung NP, Tran VTP, Thang HQ, Khan KZ, Penny R, Mallery D, Curley E, Shelton C, Yena P, Ingle JN, Couch FJ, Lingle WL, King TA, Gonzalez-Angulo AM, Mills GB, Dyer MD, Liu SY, Meng XL, Patangan M, Waldman F, Stoppler H, Rathmell WK, Thorne L, Huang M, Boice L, Hill A, Morrison C, Gaudioso C, Bshara W, Daily K, Egea SC, Pegram MD, Gomez-Fernandez C, Dhir R, Bhargava R, Brufsky A, Shriver CD, Hooke JA, Campbell JL, Mural RJ, Hu H, Somiari S, Larson C, Deyarmin B, Kvecher L, Kovatich AJ, Ellis MJ, King TA, Hu H, Couch FJ, Mural RJ, Stricker T, White K, Olopade O, Ingle JN, Luo CQ, Chen YQ, Marks JR, Waldman F, Wiznerowicz M, Bose R, Chang LW, Beck AH, Gonzalez-Angulo AM, Pihl T, Jensen M, Sfeir R, Kahn A, Chu A, Kothiyal P, Wang ZN, Snyder E, Pontius J, Ayala B, Backus M, Walton J, Baboud J, Berton D, Nicholls M, Srinivasan D, Raman R, Girshik S, Kigonya P, Alonso S, Sanbhadti R, Barletta S, Pot D, Sheth M, Demchok JA, Shaw KRM, Yang LM, Eley G, Ferguson ML, Tarnuzzer RW, Zhang JS, Dillon LAL, Buetow K, Fielding P, Ozenberger BA, Guyer MS, Sofia HJ, Palchik JD, Canc Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi: 10.1038/nature11412 CrossRefGoogle Scholar
  87. 87.
    Idowu MO, Kmieciak M, Dumur C, Burton RS, Grimes MM, Powers CN, Manjili MH (2012) CD44(+)/CD24(−/low) cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 43(3):364–373. doi: 10.1016/j.humpath.2011.05.005 PubMedCrossRefGoogle Scholar
  88. 88.
    Liu XY, Feng DF, Liu DM, Wang SY, Yu XX, Dai EY, Wang J, Wang LH, Jiang W (2016) Dissecting the origin of breast cancer subtype stem cell and the potential mechanism of malignant transformation. PLoS One 11(10):16. doi: 10.1371/journal.pone.0165001 Google Scholar
  89. 89.
    Liu JC, Voisin V, Bader GD, Deng T, Pusztai L, Symmans WF, Esteva FJ, Egan SE, Zacksenhaus E (2012) Seventeen-gene signature from enriched Her2/Neu mammary tumor-initiating cells predicts clinical outcome for human HER2(+):ER alpha(−) breast cancer. Proc Natl Acad Sci U S A 109(15):5832–5837. doi: 10.1073/pnas.1201105109 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Khoury T, Ademuyiwa FO, Chandraseekhar R, Jabbour M, DeLeo A, Ferrone S, Wang YY, Wang XH (2012) Aldehyde dehydrogenase 1A1 expression in breast cancer is associated with stage, triple negativity, and outcome to neoadjuvant chemotherapy. Mod Pathol 25(3):388–397. doi: 10.1038/modpathol.2011.172 PubMedCrossRefGoogle Scholar
  91. 91.
    Nakshatri H, Srour EF, Badve S (2009) Breast cancer stem cells and intrinsic subtypes: controversies rage on. Curr Stem Cell Res Ther 4(1):50–60. doi: 10.2174/157488809787169110 PubMedCrossRefGoogle Scholar
  92. 92.
    Liu SL, Cong Y, Wang D, Sun Y, Deng L, Liu YJ, Martin-Trevino R, Shang L, McDermott SP, Landis MD, Hong S, Adams A, D’Angelo R, Ginestier C, Charafe-Jauffret E, Clouthier SG, Birnbaum D, Wong ST, Zhan M, Chang JC, Wicha MS (2014) Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep 2(1):78–91. doi: 10.1016/j.stemcr.2013.11.009 CrossRefGoogle Scholar
  93. 93.
    Liu SL, Wicha MS (2010) Targeting breast cancer stem cells. J Clin Oncol 28(25):4006–4012. doi: 10.1200/jco.2009.27.5388 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhao JH (2016) Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 160:145–158. doi: 10.1016/j.pharmthera.2016.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE, Chung CH, Lu B (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011:941876. doi: 10.1155/2011/941876 PubMedCrossRefGoogle Scholar
  96. 96.
    Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian DL, Lam JS, Ailles LE, Wong MZ, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–U123. doi: 10.1038/nature07733 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430. doi: 10.1002/jcp.22764 PubMedCrossRefGoogle Scholar
  98. 98.
    Spigel DR, Spira AI, Jotte RM, Gadgeel SM, Mita AC, Hart LL, Kapoun A, Xu L, Hill D, Zhou L, Dupont J, Pietanza MC (2014) Phase 1b of anticancer stem cell antibody OMP-59R5 (anti-Notch2/3) in combination with etoposide and cisplatin (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC). J Clin Oncol 32(15):1Google Scholar
  99. 99.
    Cancilla B, Cain J, Wang M, Beviglia L, Shah J, Gurney A, Lewicki J, Esserman L, Hoey T, Kapoun AM (2013) Anti-Notch1 antibody (OMP-52M51) impedes tumor growth and cancer stem cell frequency (CSC) in a chemo-refractory breast cancer xenograft model with an activating Notch1 mutation and screening for activated Notch1 across multiple solid tumor types. Cancer Res 73(8):1. doi: 10.1158/1538-7445.am2013-3728 Google Scholar
  100. 100.
    Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S, Fitch-Bruhns M, Lazetic S, Park IK, Sato A, Satyal S, Wang XH, Clarke MF, Lewicki J, Gurney A (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5(2):168–177. doi: 10.1016/j.stem.2009.05.019 PubMedCrossRefGoogle Scholar
  101. 101.
    Jimeno A, LoRusso P, Strother RM, Diamond JR, Plato L, Younger A, Messersmith WA, Kittaneh M, Sawyer D, Adriaens L, Liu LM, Kao RJ, DiCioccio AT, Brownstein CM, Lowy I, Trail P, Chiorean EG (2013) Phase I study of REGN421 (R)/SAR153192, a fully-human delta-like ligand 4 (Dll4) monoclonal antibody (mAb), in patients with advanced solid tumors. J Clin Oncol 31(15):1Google Scholar
  102. 102.
    Ryan PC, Huang JQ, Bao HF, Cho S, Brohawn P, Burke P, Lehmann K, Pilataxi F, Yao YH, McKeever K, Dixit R (2013) Nonclinical safety evaluation of MEDI0639 (anti-DLLA Mab) to support first time in human: linking DLL4-notch signaling blockade to exaggerated pharmacology effects in cynomolgus monkeys. Cancer Res 73(8):1. doi: 10.1158/1538-7445.am2013-4424 Google Scholar
  103. 103.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang S, Ivy SP (2015) Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12(8):445–464. doi: 10.1038/nrclinonc.2015.61 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Morohashi Y, Kan T, Tominari Y, Fuwa H, Okamura Y, Watanabe N, Sato C, Natsugari H, Fukuyama T, Iwatsubo T, Tomita T (2006) C-terminal fragment of presenilin is the molecular target of a dipeptidic gamma-secretase-specific inhibitor DAPT (N- N-(3,5-difluorophenacetyl)-L-alanyl -S-phenylglycine t-butyl ester). J Biol Chem 281(21):14670–14676. doi: 10.1074/jbc.M513012200 PubMedCrossRefGoogle Scholar
  105. 105.
    Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D, Roberts J, Cai J, Berkofsky-Fessler W, Hilton H, Linn M, Flohr A, Jakob-Rotne R, Jacobsen H, Glenn K, Heimbrook D, Boylan JF (2009) Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and Pharmacodynamic properties. Cancer Res 69(19):7672–7680. doi: 10.1158/0008-5472.can-09-1843 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, Froehlich AM, Paranilam J, Hayes DF, Wicha MS, Chang JC (2013) Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res 19(6):1512–1524. doi: 10.1158/1078-0432.ccr-11-3326 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zhang CC, Yan ZM, Zong Q, Fang DD, Painter C, Zhang Q, Chen EH, Lira ME, John-Baptiste A, Christensen JG (2013) Synergistic effect of the gamma-secretase inhibitor PF-03084014 and docetaxel in breast cancer models. Stem Cells Transl Med 2(3):233–242. doi: 10.5966/sctm.2012-0096 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Khramtsov AI, Khramtsova GF, Tretiakova M, Huo DZ, Olopade OI, Goss KH (2010) Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 176(6):2911–2920. doi: 10.2353/ajpath.2010.091125 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu J, Pan SF, Hsieh MH, Ng N, Sun FX, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, Li J, Tompkins C, Pferdekamper A, Steffy A, Cheng J, Kowal C, Phung V, Guo GR, Wang Y, Graham MP, Flynn S, Brenner JC, Li C, Villarroel MC, Schultz PG, Wu X, McNamara P, Sellers WR, Petruzzelli L, Boral AL, Seidel HM, McLaughlin ME, Che JW, Carey TE, Vanasse G, Harris JL (2013) Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proc Natl Acad Sci U S A 110(50):20224–20229. doi: 10.1073/pnas.1314239110 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, Lam A, Lazetic S, Ma S, Mitra S, Park IK, Pickell K, Sato A, Satyal S, Stroud M, Tran H, Yen WC, Lewicki J, Hoey T (2012) Wnt pathway inhibition via the targeting of frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 109(29):11717–11722. doi: 10.1073/pnas.1120068109 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B (2007) The soluble Wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 67(11):5371–5379. doi: 10.1158/0008-5472.can-07-0266 PubMedCrossRefGoogle Scholar
  112. 112.
    Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13(7):513–532. doi: 10.1038/nrd4233 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Dirix L (2014) Discovery and exploitation of novel targets by approved drugs. J Clin Oncol 32(8):720–721. doi: 10.1200/jco.2013.53.7118 PubMedCrossRefGoogle Scholar
  114. 114.
    Dockendorff C, Nagiec MM, Weiwer M, Buhrlage S, Ting A, Nag PP, Germain A, Kim HJ, Youngsaye W, Scherer C, Bennion M, Xue LL, Stanton BZ, Lewis TA, MacPherson L, Palmer M, Foley MA, Perez JR, Schreiber SL (2012) Macrocyclic hedgehog pathway inhibitors: optimization of cellular activity and mode of action studies. ACS Med Chem Lett 3(10):808–813. doi: 10.1021/ml300172p PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hyman JM, Firestone AJ, Heine VM, Zhao Y, Ocasio CA, Han K, Sun M, Rack PG, Sinha S, Wu JJ, Solow-Cordero DE, Jiang J, Rowitch DH, Chen JK (2009) Small-molecule inhibitors reveal multiple strategies for hedgehog pathway blockade. Proc Natl Acad Sci U S A 106(33):14132–14137. doi: 10.1073/pnas.0907134106 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Lauth M, Bergstrom A, Shimokawa T, Toftgard R (2007) Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci U S A 104(20):8455–8460. doi: 10.1073/pnas.0609699104 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Katoh M (2007) Networking of WNT, FGF, notch, BMP, and hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 3(1):30–38. doi: 10.1007/s12015-007-0006-6 PubMedCrossRefGoogle Scholar
  118. 118.
    Marangoni E, Lecomte N, Durand L, de Pinieux G, Decaudin D, Chomienne C, Smadja-Joffe F, Poupon MF (2009) CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts. Br J Cancer 100(6):918–922. doi: 10.1038/sj.bjc.6604953 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ababneh N, Alshaer W, Allozi O, Mahafzah A, El-Khateeb M, Hillaireau H, Noiray M, Fattal E, Ismail S (2013) In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker. Nucl Acid Ther 23(6):401–407. doi: 10.1089/nat.2013.0423 CrossRefGoogle Scholar
  120. 120.
    Munz M, Murr A, Kvesic M, Rau D, Mangold S, Pflanz S, Lumsden J, Volkland J, Fagerberg J, Riethmuller G, Ruttinger D, Kufer P, Baeuerle PA, Raum T (2010) Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int 10:12. doi: 10.1186/1475-2867-10-44 CrossRefGoogle Scholar
  121. 121.
    Simon M, Stefan N, Pluckthun A, Zangemeister-Wittke U (2013) Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin Drug Deliv 10(4):451–468. doi: 10.1517/17425247.2013.759938 PubMedCrossRefGoogle Scholar
  122. 122.
    Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, Petersen D, Deitrich RA, Hurley TD, Vasiliou V (2012) Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 64(3):520–539. doi: 10.1124/pr.111.005538 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Pors K, Moreb JS (2014) Aldehyde dehydrogenases in cancer: an opporunity for biomaker and drug development? Drug Discov Today 19(12):1953–1963. doi: 10.1016/j.drudis.2014.09.009 PubMedCrossRefGoogle Scholar
  124. 124.
    Karthikeyan S, Hoti SL (2015) Development of fourth generation ABC inhibitors from natural products: a novel approach to overcome cancer multidrug resistance. Anti Cancer Agents Med Chem 15(5):605–615CrossRefGoogle Scholar
  125. 125.
    Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M (2015) Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells 7(9):1185–1201. doi: 10.4252/wjsc.v7.i9.1185 PubMedPubMedCentralGoogle Scholar
  126. 126.
    Saeki T, Nomizu T, Toi M, Ito Y, Noguchi S, Kobayashi T, Asaga T, Minami H, Yamamoto N, Aogi K, Ikeda T, Ohashi Y, Sato W, Tsuruo T (2007) Dofequidar fumarate (MS-209) in combination with cyclophosphamide, doxorubicin, and fluorouracil for patients with advanced or recurrent breast cancer. J Clin Oncol 25(4):411–417. doi: 10.1200/jco.2006.08.1646 PubMedCrossRefGoogle Scholar
  127. 127.
    Guo YQ, Xu F, Lu TJ, Duan ZF, Zhang Z (2012) Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 38(7):904–910. doi: 10.1016/j.ctrv.2012.04.007 PubMedCrossRefGoogle Scholar
  128. 128.
    Karin M, Yamamoto Y, Wang QM (2004) The IKKNF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3(1):17–26. doi: 10.1038/nrd1279 PubMedCrossRefGoogle Scholar
  129. 129.
    Baud V, Karin M (2009) OPINION is NF-kappa B a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8(1):33–40. doi: 10.1038/nrd2781 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hassan S, Buchanan M, Jahan K, Aguilar-Mahecha A, Gaboury L, Muller WJ, Alsawafi Y, Mourskaia AA, Siegel PM, Salvucci O, Basik M (2011) CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer 129(1):225–232. doi: 10.1002/ijc.25665 PubMedCrossRefGoogle Scholar
  131. 131.
    Hotte SJ, Hirte HW, Iacobucci A, Wong D, Cantin L, Korz W, Miller WH (2007) Phase I/II study of CTCE-9908, a novel anticancer agent that inhibits CXCR4, in patients with advanced solid cancers. Mol Cancer Ther 6(12):3385S–3386SGoogle Scholar
  132. 132.
    Xu C, Zhao H, Chen HT, Yao QH (2015) CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des Dev Ther 9:4953–4964. doi: 10.2147/dddt.s84932 Google Scholar
  133. 133.
    Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong CL, Cao F, Niekro W, Kempe T, Henning KA, Cohen LJ, Korman AJ, Cardarelli PM (2013) BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 19(2):357–366. doi: 10.1158/1078-0432.ccr-12-2333 PubMedCrossRefGoogle Scholar
  134. 134.
    Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12(3):306–317. doi: 10.1016/j.cbpa.2008.03.016 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Zhi-Mei Liang
    • 1
  • Yang Chen
    • 2
  • Man-Li Luo
    • 1
  1. 1.Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of Laboratory, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations