Predicting and Overcoming Chemotherapeutic Resistance in Breast Cancer

  • Kyung-Hee ChunEmail author
  • Jong Hoon ParkEmail author
  • Siting Fan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1026)


Our understanding of breast cancer and its therapeutic approach has improved greatly due to the advancement of molecular biology in recent years. Clinically, breast cancers are characterized into three basic types based on their immunohistochemical properties. They are triple-negative breast cancer, estrogen receptor (ER) and progesterone receptor (PR)-positive-HR positive breast cancer, and human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Even though these subtypes have been characterized, assessment of a breast cancer’s receptor status is still widely used to determine whether or not a targeted therapy could be applied. Moreover, drug resistance is common in all breast cancer types despite the different treatment modalities applied. The development of resistance to different therapeutics is not mutually exclusive. It seems that tumor could be resistant to multiple treatment strategies, such as being both chemoresistant and monoclonal antibody resistant. However, the underlying mechanisms are complicated and need further investigation. In this chapter, we aim to provide a brief review of the different types of breast cancer and their respective treatment strategies. We also review the possible mechanisms of potential drug resistance associated with each treatment type. We believe that a better understanding of the drug resistance mechanisms can lead to a more effective and efficient therapeutic success.


Chemotherapeutic resistance Breast cancer subtype Molecular mechanism 


  1. 1.
    Kalimutho M, Parsons K, Mittal D, Lopez JA, Srihari S, Khanna KK (2015) Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol Sci 36(12):822–846. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  2. 2.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98(19):10869–10874. doi: 10.1073/pnas.191367098 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. doi: 10.1038/35021093 PubMedCrossRefGoogle Scholar
  4. 4.
    Rakha E, Ellis I, Reis-Filho J (2008) Are triple-negative and basal-like breast cancer synonymous? Clin Cancer Res 14(2):618.; author reply 618-619. doi: 10.1158/1078-0432.CCR-07-1943 PubMedCrossRefGoogle Scholar
  5. 5.
    Rakha EA, Tan DS, Foulkes WD, Ellis IO, Tutt A, Nielsen TO, Reis-Filho JS (2007) Are triple-negative tumours and basal-like breast cancer synonymous? Breast Cancer Res 9(6):404.; author reply 405. doi: 10.1186/bcr1827 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ, Panel m (2009) Thresholds for therapies: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2009. Annals Oncol 20(8):1319–1329. doi: 10.1093/annonc/mdp322 CrossRefGoogle Scholar
  7. 7.
    Virnig BA, Wang SY, Shamilyan T, Kane RL, Tuttle TM (2010) Ductal carcinoma in situ: risk factors and impact of screening. J Natl Cancer Inst Monogr 2010(41):113–116. doi: 10.1093/jncimonographs/lgq024 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y, Early Breast Cancer Trialists’ Collaborative G (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106. doi: 10.1016/S0140-6736(05)67887-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Ma L, Mao R, Shen K, Zheng Y, Li Y, Liu J, Ni L (2014) Atractylenolide I-mediated notch pathway inhibition attenuates gastric cancer stem cell traits. Biochem Biophys Res Commun 450(1):353–359. doi: 10.1016/j.bbrc.2014.05.110 PubMedCrossRefGoogle Scholar
  10. 10.
    Clark GM, Osborne CK, McGuire WL (1984) Correlations between estrogen receptor, progesterone receptor, and patient characteristics in human breast cancer. J Clin Oncol 2(10):1102–1109. doi: 10.1200/JCO.1984.2.10.1102 PubMedCrossRefGoogle Scholar
  11. 11.
    Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29(14):2905–2919PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7(8):497–508PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dalmau E, Armengol-Alonso A, Munoz M, Segui-Palmer MA (2014) Current status of hormone therapy in patients with hormone receptor positive (HR+) advanced breast cancer. Breast 23(6):710–720. doi: 10.1016/j.breast.2014.09.006 PubMedCrossRefGoogle Scholar
  14. 14.
    Jiang Q, Zheng S, Wang G (2013) Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer. Future Med Chem 5(9):1023–1035. doi: 10.4155/fmc.13.63 PubMedCrossRefGoogle Scholar
  15. 15.
    Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643. doi: 10.1038/nrc2713 PubMedCrossRefGoogle Scholar
  16. 16.
    Bross PF, Cohen MH, Williams GA, Pazdur R (2002) FDA drug approval summaries: fulvestrant. Oncologist 7(6):477–480PubMedCrossRefGoogle Scholar
  17. 17.
    Lonning PE, Eikesdal HP (2013) Aromatase inhibition 2013: clinical state of the art and questions that remain to be solved. Endocr Relat Cancer 20(4):R183–R201. doi: 10.1530/ERC-13-0099 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Osborne CK, Schiff R (2011) Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 62:233–247. doi: 10.1146/annurev-med-070909-182917 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Arpino G, Wiechmann L, Osborne CK, Schiff R (2008) Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 29(2):217–233. doi: 10.1210/er.2006-0045 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yuan TL, Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510. doi: 10.1038/onc.2008.245 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Casimiro MC, Crosariol M, Loro E, Li Z, Pestell RG (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3(11–12):649–657. doi: 10.1177/1947601913479022 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572. doi: 10.1038/nrc3090 PubMedCrossRefGoogle Scholar
  23. 23.
    Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–19. doi: 10.1038/onc.2009.39 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nuciforo P, Radosevic-Robin N, Ng T, Scaltriti M (2015) Quantification of HER family receptors in breast cancer. Breast Cancer Res 17:53. doi: 10.1186/s13058-015-0561-8 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65(10):1566–1584. doi: 10.1007/s00018-008-7440-8 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Creedon H, Byron A, Main J, Hayward L, Klinowska T, Brunton VG (2014) Exploring mechanisms of acquired resistance to HER2 (human epidermal growth factor receptor 2)-targeted therapies in breast cancer. Biochem Soc Trans 42(4):822–830. doi: 10.1042/BST20140109 PubMedCrossRefGoogle Scholar
  27. 27.
    Menyhart O, Santarpia L, Gyorffy B (2015) A comprehensive outline of Trastuzumab resistance biomarkers in HER2 overexpressing breast cancer. Curr Cancer Drug Targets 15(8):665–683PubMedCrossRefGoogle Scholar
  28. 28.
    Hanna WM, Ruschoff J, Bilous M, Coudry RA, Dowsett M, Osamura RY, Penault-Llorca F, van de Vijver M, Viale G (2014) HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity. Modern Pathol 27(1):4–18. doi: 10.1038/modpathol.2013.103 CrossRefGoogle Scholar
  29. 29.
    Fiszman GL, Jasnis MA (2011) Molecular mechanisms of Trastuzumab resistance in HER2 overexpressing breast cancer. Int J Breast Cancer 2011:352182. doi: 10.4061/2011/352182 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tai W, Mahato R, Cheng K (2010) The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 146(3):264–275. doi: 10.1016/j.jconrel.2010.04.009 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Untch M, Loibl S, Bischoff J, Eidtmann H, Kaufmann M, Blohmer JU, Hilfrich J, Strumberg D, Fasching PA, Kreienberg R, Tesch H, Hanusch C, Gerber B, Rezai M, Jackisch C, Huober J, Kuhn T, Nekljudova V, von Minckwitz G, German Breast G, Arbeitsgemeinschaft Gynakologische Onkologie-Breast Study G (2012) Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol 13(2):135–144. doi: 10.1016/S1470-2045(11)70397-7 PubMedCrossRefGoogle Scholar
  32. 32.
    Oostra DR, Macrae ER (2014) Role of trastuzumab emtansine in the treatment of HER2-positive breast cancer. Breast Cancer 6:103–113. doi: 10.2147/BCTT.S67297 PubMedPubMedCentralGoogle Scholar
  33. 33.
    Dai Q, Ling YH, Lia M, Zou YY, Kroog G, Iwata KK, Perez-Soler R (2005) Enhanced sensitivity to the HER1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib hydrochloride in chemotherapy-resistant tumor cell lines. Clin Cancer Res 11(4):1572–1578. doi: 10.1158/1078-0432.CCR-04-0993 PubMedCrossRefGoogle Scholar
  34. 34.
    Prat A, Adamo B, Fan C, Peg V, Vidal M, Galvan P, Vivancos A, Nuciforo P, Palmer HG, Dawood S, Rodon J, Ramon y Cajal S, Del Campo JM, Felip E, Tabernero J, Cortes J (2013) Genomic analyses across six cancer types identify basal-like breast cancer as a unique molecular entity. Sci Rep 3:3544. doi: 10.1038/srep03544
  35. 35.
    Rimawi MF, Mayer IA, Forero A, Nanda R, Goetz MP, Rodriguez AA, Pavlick AC, Wang T, Hilsenbeck SG, Gutierrez C, Schiff R, Osborne CK, Chang JC (2013) Multicenter phase II study of neoadjuvant lapatinib and trastuzumab with hormonal therapy and without chemotherapy in patients with human epidermal growth factor receptor 2-overexpressing breast cancer: TBCRC 006. J Clin Oncol 31(14):1726–1731. doi: 10.1200/JCO.2012.44.8027
  36. 36.
    Zeichner SB, Terawaki H, Gogineni K (2016) A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer Basic Clin Res 10:25–36. doi: 10.4137/BCBCR.S32783 CrossRefGoogle Scholar
  37. 37.
    Advani P, Cornell L, Chumsri S, Moreno-Aspitia A (2015) Dual HER2 blockade in the neoadjuvant and adjuvant treatment of HER2-positive breast cancer. Breast Cancer 7:321–335. doi: 10.2147/BCTT.S90627 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Rimawi MF, De Angelis C, Schiff R (2015) Resistance to anti-HER2 therapies in breast cancer. American Society of Clinical Oncology educational book American Society of Clinical Oncology Meeting: e157–164. doi: 10.14694/EdBook_AM.2015.35.e157
  39. 39.
    Nahta R (2012) Molecular mechanisms of Trastuzumab-based treatment in HER2-overexpressing breast cancer. ISRN Oncol 2012:428062. doi: 10.5402/2012/428062 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Khan KH, Yap TA, Yan L, Cunningham D (2013) Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer 32(5):253–265. doi: 10.5732/cjc.013.10057 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pohlmann PR, Mayer IA, Mernaugh R (2009) Resistance to Trastuzumab in breast cancer. Clin Cancer Res 15(24):7479–7491. doi: 10.1158/1078-0432.CCR-09-0636 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Carey L, Winer E, Viale G, Cameron D, Gianni L (2010) Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 7(12):683–692. doi: 10.1038/nrclinonc.2010.154 PubMedCrossRefGoogle Scholar
  43. 43.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109(9):1721–1728. doi: 10.1002/cncr.22618 PubMedCrossRefGoogle Scholar
  44. 44.
    Brouckaert O, Wildiers H, Floris G, Neven P (2012) Update on triple-negative breast cancer: prognosis and management strategies. Int J Womens Health 4:511–520. doi: 10.2147/IJWH.S18541 PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ali HR, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio SA, Caldas C (2014) Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol 15(8):431. doi: 10.1186/s13059-014-0431-1 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. doi: 10.1172/JCI45014 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Podo F, Buydens LM, Degani H, Hilhorst R, Klipp E, Gribbestad IS, Van Huffel S, van Laarhoven HW, Luts J, Monleon D, Postma GJ, Schneiderhan-Marra N, Santoro F, Wouters H, Russnes HG, Sorlie T, Tagliabue E, Borresen-Dale AL, Consortium F (2010) Triple-negative breast cancer: present challenges and new perspectives. Mol Oncol 4 (3):209–229. doi: 10.1016/j.molonc.2010.04.006
  48. 48.
    Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, Bashashati A, Prentice LM, Khattra J, Burleigh A, Yap D, Bernard V, McPherson A, Shumansky K, Crisan A, Giuliany R, Heravi-Moussavi A, Rosner J, Lai D, Birol I, Varhol R, Tam A, Dhalla N, Zeng T, Ma K, Chan SK, Griffith M, Moradian A, Cheng SW, Morin GB, Watson P, Gelmon K, Chia S, Chin SF, Curtis C, Rueda OM, Pharoah PD, Damaraju S, Mackey J, Hoon K, Harkins T, Tadigotla V, Sigaroudinia M, Gascard P, Tlsty T, Costello JF, Meyer IM, Eaves CJ, Wasserman WW, Jones S, Huntsman D, Hirst M, Caldas C, Marra MA, Aparicio S (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399. doi: 10.1038/nature10933 PubMedGoogle Scholar
  49. 49.
    Xu H, Eirew P, Mullaly SC, Aparicio S (2014) The omics of triple-negative breast cancers. Clin Chem 60(1):122–133. doi: 10.1373/clinchem.2013.207167 PubMedCrossRefGoogle Scholar
  50. 50.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21(7):1688–1698. doi: 10.1158/1078-0432.CCR-14-0432 PubMedCrossRefGoogle Scholar
  51. 51.
    Petrelli F, Coinu A, Borgonovo K, Cabiddu M, Ghilardi M, Lonati V, Barni S (2014) The value of platinum agents as neoadjuvant chemotherapy in triple-negative breast cancers: a systematic review and meta-analysis. Breast Cancer Res Treat 144(2):223–232. doi: 10.1007/s10549-014-2876-z PubMedCrossRefGoogle Scholar
  52. 52.
    Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281. doi: 10.1200/JCO.2007.14.4147 PubMedCrossRefGoogle Scholar
  53. 53.
    Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ (2007) Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 9(5):R65. doi: 10.1186/bcr1771 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD, Pietenpol JA, Hortobagyi GN, Symmans WF, Ueno NT (2013) Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clinical Cancer Res 19(19):5533–5540. doi: 10.1158/1078-0432.CCR-13-0799 CrossRefGoogle Scholar
  55. 55.
    Jovanovic B, Beeler JS, Pickup MW, Chytil A, Gorska AE, Ashby WJ, Lehmann BD, Zijlstra A, Pietenpol JA, Moses HL (2014) Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer. Breast Cancer Res 16(4):R69. doi: 10.1186/bcr3684 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lehmann BD, Bauer JA, Schafer JM, Pendleton CS, Tang L, Johnson KC, Chen X, Balko JM, Gomez H, Arteaga CL, Mills GB, Sanders ME, Pietenpol JA (2014) PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res 16(4):406. doi: 10.1186/s13058-014-0406-x PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi: 10.1038/nature11412 CrossRefGoogle Scholar
  58. 58.
    Lips EH, Mulder L, Oonk A, van der Kolk LE, Hogervorst FB, Imholz AL, Wesseling J, Rodenhuis S, Nederlof PM (2013) Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer 108(10):2172–2177. doi: 10.1038/bjc.2013.144 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, Olson JE, Godwin AK, Pankratz VS, Olswold C, Slettedahl S, Hallberg E, Guidugli L, Davila JI, Beckmann MW, Janni W, Rack B, Ekici AB, Slamon DJ, Konstantopoulou I, Fostira F, Vratimos A, Fountzilas G, Pelttari LM, Tapper WJ, Durcan L, Cross SS, Pilarski R, Shapiro CL, Klemp J, Yao S, Garber J, Cox A, Brauch H, Ambrosone C, Nevanlinna H, Yannoukakos D, Slager SL, Vachon CM, Eccles DM, Fasching PA (2015) Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol 33(4):304–311. doi: 10.1200/JCO.2014.57.1414 PubMedCrossRefGoogle Scholar
  60. 60.
    Audeh MW (2014) Novel treatment strategies in triple-negative breast cancer: specific role of poly(adenosine diphosphate-ribose) polymerase inhibition. Pharmgenom Pers Med 7:307–316. doi: 10.2147/PGPM.S39765 Google Scholar
  61. 61.
    Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA (2010) Poly(ADP-ribose) polymerase inhibition: “targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16(19):4702–4710. doi: 10.1158/1078-0432.CCR-10-0939 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q, Tian R, Bowman-Colin C, Li Y, Greene-Colozzi A, Iglehart JD, Tung N, Ryan PD, Garber JE, Silver DP, Szallasi Z, Richardson AL (2012) Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2(4):366–375. doi: 10.1158/2159-8290.CD-11-0206 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Naipal KA, Verkaik NS, Ameziane N, van Deurzen CH, Ter Brugge P, Meijers M, Sieuwerts AM, Martens JW, O’Connor MJ, Vrieling H, Hoeijmakers JH, Jonkers J, Kanaar R, de Winter JP, Vreeswijk MP, Jager A, van Gent DC (2014) Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment. Clin Cancer Res 20(18):4816–4826. doi: 10.1158/1078-0432.CCR-14-0571 PubMedCrossRefGoogle Scholar
  64. 64.
    Watkins JA, Irshad S, Grigoriadis A, Tutt AN (2014) Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers. Breast Cancer Res 16(3):211. doi: 10.1186/bcr3670 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    O’Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM, Bradley C (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214. doi: 10.1056/NEJMoa1011418 PubMedCrossRefGoogle Scholar
  66. 66.
    O’Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, Robert N, Hellerstedt B, Saleh M, Richards P, Specht JM, Yardley DA, Carlson RW, Finn RS, Charpentier E, Garcia-Ribas I, Winer EP (2014) Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol 32(34):3840–3847. doi: 10.1200/JCO.2014.55.2984 PubMedCrossRefGoogle Scholar
  67. 67.
    Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, Singer CF, Lowe ES, Watkins CL, Carmichael J (2013) Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res 15(5):R88. doi: 10.1186/bcr3484 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, Yerushalmi R, Macpherson E, Carmichael J, Oza A (2011) Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 12(9):852–861. doi: 10.1016/S1470-2045(11)70214-5 PubMedCrossRefGoogle Scholar
  69. 69.
    Dent P, Tang Y, Yacoub A, Dai Y, Fisher PB, Grant S (2011) CHK1 inhibitors in combination chemotherapy: thinking beyond the cell cycle. Mol Interv 11(2):133–140. doi: 10.1124/mi.11.2.11 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Takahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H (1987) UCN-01, a selective inhibitor of protein kinase C from Streptomyces. J Antibiot (Tokyo) 40(12):1782–1784CrossRefGoogle Scholar
  71. 71.
    Bunch RT, Eastman A (1996) Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res 2(5):791–797PubMedGoogle Scholar
  72. 72.
    Ma CX, Cai S, Li S, Ryan CE, Guo Z, Schaiff WT, Lin L, Hoog J, Goiffon RJ, Prat A, Aft RL, Ellis MJ, Piwnica-Worms H (2012) Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest 122(4):1541–1552. doi: 10.1172/JCI58765 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, Kroemer G (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23(25):4353–4361. doi: 10.1038/sj.onc.1207573 PubMedCrossRefGoogle Scholar
  74. 74.
    Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD, Toniatti C, Ashworth A, Turner NC (2012) Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov 2(6):524–539. doi: 10.1158/2159-8290.CD-11-0320 PubMedCrossRefGoogle Scholar
  75. 75.
    Akiyama T, Yoshida T, Tsujita T, Shimizu M, Mizukami T, Okabe M, Akinaga S (1997) G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip1/WAF1/Sdi1 in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 57(8):1495–1501PubMedGoogle Scholar
  76. 76.
    Horiuchi D, Kusdra L, Huskey NE, Chandriani S, Lenburg ME, Gonzalez-Angulo AM, Creasman KJ, Bazarov AV, Smyth JW, Davis SE, Yaswen P, Mills GB, Esserman LJ, Goga A (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J Exp Med 209(4):679–696. doi: 10.1084/jem.20111512 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ, Moreau LA, Unitt C, Bronson RT, Thomas HD, Newell DR, D’Andrea AD, Curtin NJ, Wong KK, Shapiro GI (2011) Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med 17(7):875–882. doi: 10.1038/nm.2377 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Vora SR, Juric D, Kim N, Mino-Kenudson M, Huynh T, Costa C, Lockerman EL, Pollack SF, Liu M, Li X, Lehar J, Wiesmann M, Wartmann M, Chen Y, Cao ZA, Pinzon-Ortiz M, Kim S, Schlegel R, Huang A, Engelman JA (2014) CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26(1):136–149. doi: 10.1016/j.ccr.2014.05.020 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Migliaccio I, Di Leo A, Malorni L (2014) Cyclin-dependent kinase 4/6 inhibitors in breast cancer therapy. Curr Opin Oncol 26(6):568–575. doi: 10.1097/CCO.0000000000000129 PubMedCrossRefGoogle Scholar
  80. 80.
    Robinson TJ, Liu JC, Vizeacoumar F, Sun T, Maclean N, Egan SE, Schimmer AD, Datti A, Zacksenhaus E (2013) RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PLoS One 8(11):e78641. doi: 10.1371/journal.pone.0078641 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dean JL, McClendon AK, Hickey TE, Butler LM, Tilley WD, Witkiewicz AK, Knudsen ES (2012) Therapeutic response to CDK4/6 inhibition in breast cancer defined by ex vivo analyses of human tumors. Cell Cycle 11(14):2756–2761. doi: 10.4161/cc.21195 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    McClendon AK, Dean JL, Rivadeneira DB, Yu JE, Reed CA, Gao E, Farber JL, Force T, Koch WJ, Knudsen ES (2012) CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle 11(14):2747–2755. doi: 10.4161/cc.21127 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, Graf S, Ha G, Haffari G, Bashashati A, Russell R, McKinney S, Group M, Langerod A, Green A, Provenzano E, Wishart G, Pinder S, Watson P, Markowetz F, Murphy L, Ellis I, Purushotham A, Borresen-Dale AL, Brenton JD, Tavare S, Caldas C, Aparicio S (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352. doi: 10.1038/nature10983 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, Thompson KM, Uribe-Figueroa L, Baselga J, Beroukhim R, Polyak K, Sgroi DC, Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409. doi: 10.1038/nature11154 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerod A, Oslo Breast Cancer C, Lee MT, Shen CY, Tee BT, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van’t Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SA, Salomon AV, Borresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404. doi: 10.1038/nature11017 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Corkery B, Crown J, Clynes M, O’Donovan N (2009) Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 20(5):862–867. doi: 10.1093/annonc/mdn710 PubMedCrossRefGoogle Scholar
  87. 87.
    Amin DN, Sergina N, Ahuja D, McMahon M, Blair JA, Wang D, Hann B, Koch KM, Shokat KM, Moasser MM (2010) Resiliency and vulnerability in the HER2-HER3 tumorigenic driver. Sci Transl Med 2(16):16ra17. doi: 10.1126/scitranslmed.3000389
  88. 88.
    Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A, Wolff AC, Hobday TJ, Ivanova A, Chiu WK, Ferraro M, Burrows E, Bernard PS, Hoadley KA, Perou CM, Winer EP (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 30(21):2615–2623. doi: 10.1200/JCO.2010.34.5579 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Baselga J, Gomez P, Greil R, Braga S, Climent MA, Wardley AM, Kaufman B, Stemmer SM, Pego A, Chan A, Goeminne JC, Graas MP, Kennedy MJ, Ciruelos Gil EM, Schneeweiss A, Zubel A, Groos J, Melezinkova H, Awada A (2013) Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol 31(20):2586–2592. doi: 10.1200/JCO.2012.46.2408 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Carvalho I, Milanezi F, Martins A, Reis RM, Schmitt F (2005) Overexpression of platelet-derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res 7(5):R788–R795. doi: 10.1186/bcr1304 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Coltrera MD, Wang J, Porter PL, Gown AM (1995) Expression of platelet-derived growth factor B-chain and the platelet-derived growth factor receptor beta subunit in human breast tissue and breast carcinoma. Cancer Res 55(12):2703–2708PubMedGoogle Scholar
  92. 92.
    Weigel MT, Dahmke L, Schem C, Bauerschlag DO, Weber K, Niehoff P, Bauer M, Strauss A, Jonat W, Maass N, Mundhenke C (2010) In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells. BMC Cancer 10:412. doi: 10.1186/1471-2407-10-412 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Smith BD (2011) Imatinib for chronic myeloid leukemia: the impact of its effectiveness and long-term side effects. J Natl Cancer Inst 103(7):527–529. doi: 10.1093/jnci/djr073 PubMedCrossRefGoogle Scholar
  94. 94.
    Chinchar E, Makey KL, Gibson J, Chen F, Cole SA, Megason GC, Vijayakumar S, Miele L, Gu JW (2014) Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells. Vasc Cell 6:12. doi: 10.1186/2045-824X-6-12 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yadav BS, Sharma SC, Chanana P, Jhamb S (2014) Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol 5(2):125–133. doi: 10.5306/wjco.v5.i2.125 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kumler I, Christiansen OG, Nielsen DL (2014) A systematic review of bevacizumab efficacy in breast cancer. Cancer Treat Rev 40(8):960–973. doi: 10.1016/j.ctrv.2014.05.006 PubMedCrossRefGoogle Scholar
  97. 97.
    Meyer AS, Miller MA, Gertler FB, Lauffenburger DA (2013) The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal 6(287):ra66. doi: 10.1126/scisignal.2004155
  98. 98.
    Sharpe R, Pearson A, Herrera-Abreu MT, Johnson D, Mackay A, Welti JC, Natrajan R, Reynolds AR, Reis-Filho JS, Ashworth A, Turner NC (2011) FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res 17(16):5275–5286. doi: 10.1158/1078-0432.CCR-10-2727 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R, Geyer FC, van Kouwenhove M, Kreike B, Mackay A, Ashworth A, van de Vijver MJ, Reis-Filho JS (2010) Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29(14):2013–2023. doi: 10.1038/onc.2009.489 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. doi: 10.1158/2159-8290.CD-12-0095 PubMedCrossRefGoogle Scholar
  101. 101.
    Craig DW, O’Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL, Aitelli CL, Osborne CR, Izatt T, Kurdoglu A, Baker A, Koeman J, Barbacioru C, Sakarya O, De La Vega FM, Siddiqui A, Hoang L, Billings PR, Salhia B, Tolcher AW, Trent JM, Mousses S, Von Hoff D, Carpten JD (2013) Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 12(1):104–116. doi: 10.1158/1535-7163.MCT-12-0781 PubMedCrossRefGoogle Scholar
  102. 102.
    Giltnane JM, Balko JM (2014) Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov Med 17(95):275–283PubMedGoogle Scholar
  103. 103.
    Wallace MD, Pfefferle AD, Shen L, McNairn AJ, Cerami EG, Fallon BL, Rinaldi VD, Southard TL, Perou CM, Schimenti JC (2012) Comparative oncogenomics implicates the neurofibromin 1 gene (NF1) as a breast cancer driver. Genetics 192(2):385–396. doi: 10.1534/genetics.112.142802 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Balko JM, Cook RS, Vaught DB, Kuba MG, Miller TW, Bhola NE, Sanders ME, Granja-Ingram NM, Smith JJ, Meszoely IM, Salter J, Dowsett M, Stemke-Hale K, Gonzalez-Angulo AM, Mills GB, Pinto JA, Gomez HL, Arteaga CL (2012) Profiling of residual breast cancers after neoadjuvant chemotherapy identifies DUSP4 deficiency as a mechanism of drug resistance. Nat Med 18(7):1052–1059. doi: 10.1038/nm.2795 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Robert C, Dummer R, Gutzmer R, Lorigan P, Kim KB, Nyakas M, Arance A, Liszkay G, Schadendorf D, Cantarini M, Spencer S, Middleton MR (2013) Selumetinib plus dacarbazine versus placebo plus dacarbazine as first-line treatment for BRAF-mutant metastatic melanoma: a phase 2 double-blind randomised study. Lancet Oncol 14(8):733–740. doi: 10.1016/S1470-2045(13)70237-7 PubMedCrossRefGoogle Scholar
  106. 106.
    Kirkwood JM, Bastholt L, Robert C, Sosman J, Larkin J, Hersey P, Middleton M, Cantarini M, Zazulina V, Kemsley K, Dummer R (2012) Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin Cancer Res 18(2):555–567. doi: 10.1158/1078-0432.CCR-11-1491 PubMedCrossRefGoogle Scholar
  107. 107.
    Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, Johnson NL, Granger DA, Jordan NV, Darr DB, Usary J, Kuan PF, Smalley DM, Major B, He X, Hoadley KA, Zhou B, Sharpless NE, Perou CM, Kim WY, Gomez SM, Chen X, Jin J, Frye SV, Earp HS, Graves LM, Johnson GL (2012) Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149(2):307–321. doi: 10.1016/j.cell.2012.02.053 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, Zhou W, Berry L, Murray L, Amler L, Belvin M, Friedman LS, Lackner MR (2009) In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 15(14):4649–4664. doi: 10.1158/1078-0432.CCR-09-0317 PubMedCrossRefGoogle Scholar
  109. 109.
    Mirzoeva OK, Das D, Heiser LM, Bhattacharya S, Siwak D, Gendelman R, Bayani N, Wang NJ, Neve RM, Guan Y, Hu Z, Knight Z, Feiler HS, Gascard P, Parvin B, Spellman PT, Shokat KM, Wyrobek AJ, Bissell MJ, McCormick F, Kuo WL, Mills GB, Gray JW, Korn WM (2009) Basal subtype and MAPK/ERK kinase (MEK)-phosphoinositide 3-kinase feedback signaling determine susceptibility of breast cancer cells to MEK inhibition. Cancer Res 69(2):565–572. doi: 10.1158/0008-5472.CAN-08-3389 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK, Lopez-Knowles E, Sriratana A, Gurung R, Baglietto L, Giles GG, Bailey CG, Rasko JE, Shields BJ, Price JT, Majerus PW, Sutherland RL, Tiganis T, McLean CA, Mitchell CA (2010) Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci U S A 107(51):22231–22236. doi: 10.1073/pnas.1015245107 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16(2):115–125. doi: 10.1016/j.ccr.2009.06.006 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Gordon V, Banerji S (2013) Molecular pathways: PI3K pathway targets in triple-negative breast cancers. Clin Cancer Res 19(14):3738–3744. doi: 10.1158/1078-0432.CCR-12-0274 PubMedCrossRefGoogle Scholar
  113. 113.
    Yunokawa M, Koizumi F, Kitamura Y, Katanasaka Y, Okamoto N, Kodaira M, Yonemori K, Shimizu C, Ando M, Masutomi K, Yoshida T, Fujiwara Y, Tamura K (2012) Efficacy of everolimus, a novel mTOR inhibitor, against basal-like triple-negative breast cancer cells. Cancer Sci 103(9):1665–1671. doi: 10.1111/j.1349-7006.2012.02359.x PubMedCrossRefGoogle Scholar
  114. 114.
    Montero JC, Esparis-Ogando A, Re-Louhau MF, Seoane S, Abad M, Calero R, Ocana A, Pandiella A (2014) Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene 33(2):148–156. doi: 10.1038/onc.2012.572 PubMedCrossRefGoogle Scholar
  115. 115.
    Ganesan P, Moulder S, Lee JJ, Janku F, Valero V, Zinner RG, Naing A, Fu S, Tsimberidou AM, Hong D, Stephen B, Stephens P, Yelensky R, Meric-Bernstam F, Kurzrock R, Wheler JJ (2014) Triple-negative breast cancer patients treated at MD Anderson Cancer Center in phase I trials: improved outcomes with combination chemotherapy and targeted agents. Mol Cancer Ther 13(12):3175–3184. doi: 10.1158/1535-7163.MCT-14-0358 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzman M, Grueso J, Rodriguez O, Calvo MT, Aura C, Diez O, Rubio IT, Perez J, Rodon J, Cortes J, Ellisen LW, Scaltriti M, Baselga J (2012) PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov 2(11):1036–1047. doi: 10.1158/2159-8290.CD-11-0348 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, Rajendran A, Papa A, Spencer K, Lyssiotis CA, Nardella C, Pandolfi PP, Baselga J, Scully R, Asara JM, Cantley LC, Wulf GM (2012) Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov 2(11):1048–1063. doi: 10.1158/2159-8290.CD-11-0336 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, Waldman T, Lord CJ, Ashworth A (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1(6–7):315–322. doi: 10.1002/emmm.200900041 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gonen M, Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE, Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE, Hahn WC, Frank DA, Polyak K (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest 121(7):2723–2735. doi: 10.1172/JCI44745 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wei W, Tweardy DJ, Zhang M, Zhang X, Landua J, Petrovic I, Bu W, Roarty K, Hilsenbeck SG, Rosen JM, Lewis MT (2014) STAT3 signaling is activated preferentially in tumor-initiating cells in claudin-low models of human breast cancer. Stem Cells 32(10):2571–2582. doi: 10.1002/stem.1752 PubMedCrossRefGoogle Scholar
  121. 121.
    Fridman WH, Galon J, Pages F, Tartour E, Sautes-Fridman C, Kroemer G (2011) Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res 71(17):5601–5605. doi: 10.1158/0008-5472.CAN-11-1316 PubMedCrossRefGoogle Scholar
  122. 122.
    Matsumoto H, Koo SL, Dent R, Tan PH, Iqbal J (2015) Role of inflammatory infiltrates in triple negative breast cancer. J Clin Pathol 68(7):506–510. doi: 10.1136/jclinpath-2015-202944 PubMedCrossRefGoogle Scholar
  123. 123.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527. doi: 10.1038/nm1764 PubMedCrossRefGoogle Scholar
  124. 124.
    Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, Piccart MJ, Loibl S, Denkert C, Smyth MJ, Joensuu H, Sotiriou C (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25(8):1544–1550. doi: 10.1093/annonc/mdu112 PubMedCrossRefGoogle Scholar
  125. 125.
    Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, Nielsen TO (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14(2):R48. doi: 10.1186/bcr3148 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    West NR, Milne K, Truong PT, Macpherson N, Nelson BH, Watson PH (2011) Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res 13(6):R126. doi: 10.1186/bcr3072 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 31(7):860–867. doi: 10.1200/JCO.2011.41.0902 PubMedCrossRefGoogle Scholar
  128. 128.
    Garcia-Martinez E, Gil GL, Benito AC, Gonzalez-Billalabeitia E, Conesa MA, Garcia Garcia T, Garcia-Garre E, Vicente V, Ayala de la Pena F (2014) Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res 16(6):488. doi: 10.1186/s13058-014-0488-5 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Denkert C, von Minckwitz G, Brase JC, Sinn BV, Gade S, Kronenwett R, Pfitzner BM, Salat C, Loi S, Schmitt WD, Schem C, Fisch K, Darb-Esfahani S, Mehta K, Sotiriou C, Wienert S, Klare P, Andre F, Klauschen F, Blohmer JU, Krappmann K, Schmidt M, Tesch H, Kummel S, Sinn P, Jackisch C, Dietel M, Reimer T, Untch M, Loibl S (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991. doi: 10.1200/JCO.2014.58.1967 PubMedCrossRefGoogle Scholar
  130. 130.
    Cabezon T, Gromova I, Gromov P, Serizawa R, Timmermans Wielenga V, Kroman N, Celis JE, Moreira JM (2013) Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer. Mol Cell Proteomics 12(2):381–394. doi: 10.1074/mcp.M112.019786 PubMedCrossRefGoogle Scholar
  131. 131.
    Curigliano G, Viale G, Ghioni M, Jungbluth AA, Bagnardi V, Spagnoli GC, Neville AM, Nole F, Rotmensz N, Goldhirsch A (2011) Cancer-testis antigen expression in triple-negative breast cancer. Ann Oncol 22(1):98–103. doi: 10.1093/annonc/mdq325 PubMedCrossRefGoogle Scholar
  132. 132.
    Singh M, Ramos I, Asafu-Adjei D, Quispe-Tintaya W, Chandra D, Jahangir A, Zang X, Aggarwal BB, Gravekamp C (2013) Curcumin improves the therapeutic efficacy of listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1. Cancer Med 2(4):571–582. doi: 10.1002/cam4.94 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Parinyanitikul N, Blumenschein GR, Wu Y, Lei X, Chavez-Macgregor M, Smart M, Gonzalez-Angulo AM (2013) Mesothelin expression and survival outcomes in triple receptor negative breast cancer. Clin Breast Cancer 13(5):378–384. doi: 10.1016/j.clbc.2013.05.001 PubMedCrossRefGoogle Scholar
  134. 134.
    Jacquemier J, Bertucci F, Finetti P, Esterni B, Charafe-Jauffret E, Thibult ML, Houvenaeghel G, Van den Eynde B, Birnbaum D, Olive D, Xerri L (2012) High expression of indoleamine 2,3-dioxygenase in the tumour is associated with medullary features and favourable outcome in basal-like breast carcinoma. Int J Cancer 130(1):96–104. doi: 10.1002/ijc.25979 PubMedCrossRefGoogle Scholar
  135. 135.
    Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, Chawla A, Curran M, Hwu P, Sharma P, Litton JK, Molldrem JJ, Alatrash G (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2(4):361–370. doi: 10.1158/2326-6066.CIR-13-0127 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, Ali HR, Viens P, Caldas C, Birnbaum D, Bertucci F (2015) Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 6(7):5449–5464. doi:10.18632/oncotarget.3216
  137. 137.
    Wimberly H, Brown JR, Schalper K, Haack H, Silver MR, Nixon C, Bossuyt V, Pusztai L, Lannin DR, Rimm DL (2015) PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res 3(4):326–332. doi: 10.1158/2326-6066.CIR-14-0133 PubMedCrossRefGoogle Scholar
  138. 138.
    Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci U S A 110(27):11091–11096. doi: 10.1073/pnas.1222251110 PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Allard B, Pommey S, Smyth MJ, Stagg J (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19(20):5626–5635. doi: 10.1158/1078-0432.CCR-13-0545 PubMedCrossRefGoogle Scholar
  140. 140.
    Graves LM, Duncan JS, Whittle MC, Johnson GL (2013) The dynamic nature of the kinome. Biochem J 450(1):1–8. doi: 10.1042/BJ20121456 PubMedCrossRefGoogle Scholar
  141. 141.
    Hatzivassiliou G, Liu B, O’Brien C, Spoerke JM, Hoeflich KP, Haverty PM, Soriano R, Forrest WF, Heldens S, Chen H, Toy K, Ha C, Zhou W, Song K, Friedman LS, Amler LC, Hampton GM, Moffat J, Belvin M, Lackner MR (2012) ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol Cancer Ther 11(5):1143–1154. doi: 10.1158/1535-7163.MCT-11-1010 PubMedCrossRefGoogle Scholar
  142. 142.
    Logue JS, Morrison DK (2012) Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev 26(7):641–650. doi: 10.1101/gad.186965.112 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726. doi: 10.1038/nrc3599 PubMedCrossRefGoogle Scholar
  144. 144.
    Yap TA, Omlin A, de Bono JS (2013) Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol 31(12):1592–1605. doi: 10.1200/JCO.2011.37.6418 PubMedCrossRefGoogle Scholar
  145. 145.
    Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508(7494):103–107. doi: 10.1038/nature13119 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, Boulter R, Cranston A, O’Connor MJ, Martin NM, Borst P, Jonkers J (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A 105(44):17079–17084. doi: 10.1073/pnas.0806092105 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, Drost R, Wientjens E, Ji J, Aly A, Doroshow JH, Cranston A, Martin NM, Lau A, O’Connor MJ, Ganesan S, Borst P, Jonkers J, Rottenberg S (2013) Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3(1):68–81. doi: 10.1158/2159-8290.CD-12-0049 PubMedCrossRefGoogle Scholar
  148. 148.
    Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MI, O’Connor KW, Konstantinopoulos PA, Elledge SJ, Boulton SJ, Yusufzai T, D’Andrea AD (2015) Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518(7538):258–262. doi: 10.1038/nature14184 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sandmann T, Boutros M (2012) Screens, maps & networks: from genome sequences to personalized medicine. Curr Opin Genet Dev 22(1):36–44. doi: 10.1016/j.gde.2012.02.001 PubMedCrossRefGoogle Scholar
  150. 150.
    Mishra SK, Bhowmick SS, Chua H, Zhang F, Zheng J (2015) Computational cell fate modelling for discovery of rewiring in apoptotic network for enhanced cancer drug sensitivity. BMC Syst Biol 9(Suppl 1):S4. doi: 10.1186/1752-0509-9-S1-S4
  151. 151.
    Muellner MK, Mair B, Ibrahim Y, Kerzendorfer C, Lechtermann H, Trefzer C, Klepsch F, Muller AC, Leitner E, Macho-Maschler S, Superti-Furga G, Bennett KL, Baselga J, Rix U, Kubicek S, Colinge J, Serra V, Nijman SM (2015) Targeting a cell state common to triple-negative breast cancers. Mol Syst Biol 11(1):789. doi:10.15252/msb.20145664
  152. 152.
    Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM (2015) Therapeutic opportunities within the DNA damage response. Nat Rev Cancer 15(3):166–180. doi: 10.1038/nrc3891 PubMedCrossRefGoogle Scholar
  153. 153.
    Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. doi: 10.1038/nrg2918 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Trape AP, Gonzalez-Angulo AM (2012) Breast cancer and metastasis: on the way toward individualized therapy. Cancer Genomics Proteomics 9(5):297–310PubMedGoogle Scholar
  155. 155.
    Girault I, Bieche I, Lidereau R (2006) Role of estrogen receptor alpha transcriptional coregulators in tamoxifen resistance in breast cancer. Maturitas 54(4):342–351. doi: 10.1016/j.maturitas.2006.06.003 PubMedCrossRefGoogle Scholar
  156. 156.
    Vu T, Claret FX (2012) Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol 2:62. doi: 10.3389/fonc.2012.00062 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Huober J, von Minckwitz G, Denkert C, Tesch H, Weiss E, Zahm DM, Belau A, Khandan F, Hauschild M, Thomssen C, Hogel B, Darb-Esfahani S, Mehta K, Loibl S (2010) Effect of neoadjuvant anthracycline-taxane-based chemotherapy in different biological breast cancer phenotypes: overall results from the GeparTrio study. Breast Cancer Res Treat 124(1):133–140. doi: 10.1007/s10549-010-1103-9 PubMedCrossRefGoogle Scholar
  158. 158.
    Kimbung S, Loman N, Hedenfalk I (2015) Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol 35:85–95. doi: 10.1016/j.semcancer.2015.08.009 PubMedCrossRefGoogle Scholar
  159. 159.
    Cardoso F, Costa A, Norton L, Cameron D, Cufer T, Fallowfield L, Francis P, Gligorov J, Kyriakides S, Lin N, Pagani O, Senkus E, Thomssen C, Aapro M, Bergh J, Di Leo A, El Saghir N, Ganz PA, Gelmon K, Goldhirsch A, Harbeck N, Houssami N, Hudis C, Kaufman B, Leadbeater M, Mayer M, Rodger A, Rugo H, Sacchini V, Sledge G, van’t Veer L, Viale G, Krop I, Winer E (2012) 1st international consensus guidelines for advanced breast cancer (ABC 1). Breast 21(3):242–252. doi: 10.1016/j.breast.2012.03.003 PubMedCrossRefGoogle Scholar
  160. 160.
    Gupta GP, Massague J (2006) Cancer Metastasis: building a framework. Cell 127(4):679–695. doi: 10.1016/j.cell.2006.11.001 PubMedCrossRefGoogle Scholar
  161. 161.
    Vanharanta S, Massague J (2013) Origins of metastatic traits. Cancer Cell 24(4):410–421. doi: 10.1016/j.ccr.2013.09.007 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292. doi: 10.1016/j.cell.2011.09.024 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Kang Y, Pantel K (2013) Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell 23(5):573–581. doi: 10.1016/j.ccr.2013.04.017 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284. doi: 10.1038/nrc2622 PubMedCrossRefGoogle Scholar
  165. 165.
    Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massague J (2009) Genes that mediate breast cancer metastasis to the brain. Nature 459(7249):1005–1009. doi: 10.1038/nature08021 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3(6):537–549PubMedCrossRefGoogle Scholar
  167. 167.
    Tabaries S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, Russo C, Hassanain M, Metrakos P, Diaz Z, Basik M, Bertos N, Park M, Guettier C, Adam R, Hallett M, Siegel PM (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 30(11):1318–1328. doi: 10.1038/onc.2010.518 PubMedCrossRefGoogle Scholar
  168. 168.
    Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Lu X, Haffty BG, Pantel K, Massague J, Kang Y (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20(6):701–714. doi: 10.1016/j.ccr.2011.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Jin L, Zhang Y, Li H, Yao L, Fu D, Yao X, Xu LX, Hu X, Hu G (2012) Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis. Cell Res 22(9):1356–1373. doi: 10.1038/cr.2012.90 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M (2001) Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837):613–617. doi: 10.1038/35079135 PubMedCrossRefGoogle Scholar
  171. 171.
    Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206. doi: 10.1172/JCI3523 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Hirbe AC, Morgan EA, Weilbaecher KN (2010) The CXCR4/SDF-1 chemokine axis: a potential therapeutic target for bone metastases? Curr Pharm Des 16(11):1284–1290PubMedCrossRefGoogle Scholar
  173. 173.
    Krzeszinski JY, Wan Y (2015) New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci 36(6):360–373. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Siclari VA, Mohammad KS, Tompkins DR, Davis H, McKenna CR, Peng X, Wessner LL, Niewolna M, Guise TA, Suvannasankha A, Chirgwin JM (2014) Tumor-expressed adrenomedullin accelerates breast cancer bone metastasis. Breast Cancer Res 16(6):458. doi: 10.1186/s13058-014-0458-y PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Tamura D, Hiraga T, Myoui A, Yoshikawa H, Yoneda T (2008) Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol 33(1):17–24PubMedGoogle Scholar
  176. 176.
    Sethi N, Dai X, Winter CG, Kang Y (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192–205. doi: 10.1016/j.ccr.2010.12.022 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, Foekens JA, Massague J (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16(1):67–78. doi: 10.1016/j.ccr.2009.05.017 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, Amadori D, Kang Y (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24(4):542–556. doi: 10.1016/j.ccr.2013.09.008 PubMedCrossRefGoogle Scholar
  179. 179.
    Burstein HJ, Lieberman G, Slamon DJ, Winer EP, Klein P (2005) Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. Ann Oncol 16(11):1772–1777. doi: 10.1093/annonc/mdi371 PubMedCrossRefGoogle Scholar
  180. 180.
    Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F, Elie BT, Brogi E, Brastianos PK, Hahn WC, Holsinger LJ, Massague J, Leslie CS, Joyce JA (2014) Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol 16(9):876–888. doi: 10.1038/ncb3011 PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, Chaft JE, Kris MG, Huse JT, Brogi E, Massague J (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–1016. doi: 10.1016/j.cell.2014.01.040 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi: 10.1016/j.devcel.2011.07.001 PubMedCrossRefGoogle Scholar
  183. 183.
    Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massague J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874. doi: 10.1038/nm.2379 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Morales M, Arenas EJ, Urosevic J, Guiu M, Fernandez E, Planet E, Fenwick RB, Fernandez-Ruiz S, Salvatella X, Reverter D, Carracedo A, Massague J, Gomis RR (2014) RARRES3 suppresses breast cancer lung metastasis by regulating adhesion and differentiation. EMBO Mol Med 6(7):865–881. doi:10.15252/emmm.201303675
  185. 185.
    Chen Q, Zhang XH, Massague J (2011) Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20(4):538–549. doi: 10.1016/j.ccr.2011.08.025 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77. doi: 10.1016/j.cell.2008.01.046 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Tabaries S, Ouellet V, Hsu BE, Annis MG, Rose AA, Meunier L, Carmona E, Tam CE, Mes-Masson AM, Siegel PM (2015) Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res 17:45. doi: 10.1186/s13058-015-0558-3 PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Ma R, Feng Y, Lin S, Chen J, Lin H, Liang X, Zheng H, Cai X (2015) Mechanisms involved in breast cancer liver metastasis. J Transl Med 13:64. doi: 10.1186/s12967-015-0425-0 PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Palmieri D, Bronder JL, Herring JM, Yoneda T, Weil RJ, Stark AM, Kurek R, Vega-Valle E, Feigenbaum L, Halverson D, Vortmeyer AO, Steinberg SM, Aldape K, Steeg PS (2007) Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 67(9):4190–4198. doi: 10.1158/0008-5472.CAN-06-3316 PubMedCrossRefGoogle Scholar
  190. 190.
    Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469. doi: 10.1016/j.ccr.2004.09.027 PubMedCrossRefGoogle Scholar
  191. 191.
    Vadlamudi RK, Sahin AA, Adam L, Wang RA, Kumar R (2003) Heregulin and HER2 signaling selectively activates c-Src phosphorylation at tyrosine 215. FEBS Lett 543(1–3):76–80PubMedCrossRefGoogle Scholar
  192. 192.
    Yen L, You XL, Al Moustafa AE, Batist G, Hynes NE, Mader S, Meloche S, Alaoui-Jamali MA (2000) Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis. Oncogene 19(31):3460–3469. doi: 10.1038/sj.onc.1203685 PubMedCrossRefGoogle Scholar
  193. 193.
    Marino N, Woditschka S, Reed LT, Nakayama J, Mayer M, Wetzel M, Steeg PS (2013) Breast cancer metastasis: issues for the personalization of its prevention and treatment. Am J Pathol 183(4):1084–1095. doi: 10.1016/j.ajpath.2013.06.012 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, Segall JE (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 7(4):e35569. doi: 10.1371/journal.pone.0035569 PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Loi S, Michiels S, Baselga J, Bartlett JM, Singhal SK, Sabine VS, Sims AH, Sahmoud T, Dixon JM, Piccart MJ, Sotiriou C (2013) PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS One 8(1):e53292. doi: 10.1371/journal.pone.0053292 PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinitser M, Fujiwara Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28(35):5132–5139. doi: 10.1200/JCO.2010.29.7101 PubMedCrossRefGoogle Scholar
  197. 197.
    Amir E, Clemons M, Purdie CA, Miller N, Quinlan P, Geddie W, Coleman RE, Freedman OC, Jordan LB, Thompson AM (2012) Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat Rev 38(6):708–714. doi: 10.1016/j.ctrv.2011.11.006 PubMedCrossRefGoogle Scholar
  198. 198.
    Wu JM, Fackler MJ, Halushka MK, Molavi DW, Taylor ME, Teo WW, Griffin C, Fetting J, Davidson NE, De Marzo AM, Hicks JL, Chitale D, Ladanyi M, Sukumar S, Argani P (2008) Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res 14(7):1938–1946. doi: 10.1158/1078-0432.CCR-07-4082 PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Lo Nigro C, Vivenza D, Monteverde M, Lattanzio L, Gojis O, Garrone O, Comino A, Merlano M, Quinlan PR, Syed N, Purdie CA, Thompson A, Palmieri C, Crook T (2012) High frequency of complex TP53 mutations in CNS metastases from breast cancer. Br J Cancer 106(2):397–404. doi: 10.1038/bjc.2011.464 PubMedCrossRefGoogle Scholar
  200. 200.
    Wikman H, Lamszus K, Detels N, Uslar L, Wrage M, Benner C, Hohensee I, Ylstra B, Eylmann K, Zapatka M, Sauter G, Kemming D, Glatzel M, Muller V, Westphal M, Pantel K (2012) Relevance of PTEN loss in brain metastasis formation in breast cancer patients. Breast Cancer Res 14(2):R49. doi: 10.1186/bcr3150 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, Kendall J, Riggs M, Eberling Y, Troge J, Grubor V, Levy D, Lundin P, Maner S, Zetterberg A, Hicks J, Wigler M (2010) Inferring tumor progression from genomic heterogeneity. Genome Res 20(1):68–80. doi: 10.1101/gr.099622.109 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JW, Silver DP, Langerod A, Russnes HE, Foekens JA, Reis-Filho JS, van’t Veer L, Richardson AL, Borresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR (2009) Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462 (7276):1005–1010. doi: 10.1038/nature08645
  203. 203.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100(9):672–679. doi: 10.1093/jnci/djn123 PubMedCrossRefGoogle Scholar
  204. 204.
    Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325. doi: 10.1093/jnci/djj068 PubMedCrossRefGoogle Scholar
  205. 205.
    Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VH, Groom AC, Chambers AF (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82(3):199–206. doi: 10.1023/B:BREA.0000004377.12288.3c PubMedCrossRefGoogle Scholar
  206. 206.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. doi: 10.1038/nm.3394 PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329. doi: 10.1038/nm.2328 PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, Lopez JA, Lakhani SR, Brown MP, Khanna KK (2011) Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 32(5):650–658. doi: 10.1093/carcin/bgr028 PubMedCrossRefGoogle Scholar
  209. 209.
    Gerber B, Freund M, Reimer T (2010) Recurrent breast cancer: treatment strategies for maintaining and prolonging good quality of life. Deutsches Arzteblatt international 107(6):85–91. doi: 10.3238/arztebl.2010.0085 PubMedPubMedCentralGoogle Scholar
  210. 210.
    Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122(6):2066–2078. doi: 10.1172/JCI59735 PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Wei W, Lewis MT (2015) Identifying and targeting tumor-initiating cells in the treatment of breast cancer. Endocr Relat Cancer 22(3):R135–R155. doi: 10.1530/ERC-14-0447 PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Lo PK, Kanojia D, Liu X, Singh UP, Berger FG, Wang Q, Chen H (2012) CD49f and CD61 identify Her2/neu-induced mammary tumor-initiating cells that are potentially derived from luminal progenitors and maintained by the integrin-TGFbeta signaling. Oncogene 31(21):2614–2626. doi: 10.1038/onc.2011.439 PubMedCrossRefGoogle Scholar
  213. 213.
    Owens TW, Naylor MJ (2013) Breast cancer stem cells. Front Physiol 4:225. doi: 10.3389/fphys.2013.00225 PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845. doi: 10.1200/JCO.2007.15.1829 PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Jekimovs C, Bolderson E, Suraweera A, Adams M, O’Byrne KJ, Richard DJ (2014) Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol 4:86. doi: 10.3389/fonc.2014.00086 PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34(6):732–740. doi: 10.1038/aps.2013.27 PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Beelen K, Zwart W, Linn SC (2012) Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? Nat Rev Clin Oncol 9(9):529–541. doi: 10.1038/nrclinonc.2012.121 PubMedCrossRefGoogle Scholar
  218. 218.
    Garcia-Becerra R, Santos N, Diaz L, Camacho J (2012) Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance. Int J Mol Sci 14(1):108–145. doi: 10.3390/ijms14010108 PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F, Regitnig P, Daxenbichler G, Desmedt C, Domont J, Marth C, Delaloge S, Bauernhofer T, Valero V, Booser DJ, Hortobagyi GN, Pusztai L (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 28(27):4111–4119. doi: 10.1200/jco.2010.28.4273 PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21(32):4921–4931. doi: 10.1038/sj.onc.1205420 PubMedCrossRefGoogle Scholar
  221. 221.
    Hartman J, Strom A, Gustafsson JA (2009) Estrogen receptor beta in breast cancer--diagnostic and therapeutic implications. Steroids 74(8):635–641. doi: 10.1016/j.steroids.2009.02.005 PubMedCrossRefGoogle Scholar
  222. 222.
    Yang LH, Tseng HS, Lin C, Chen LS, Chen ST, Kuo SJ, Chen DR (2012) Survival benefit of tamoxifen in estrogen receptor-negative and progesterone receptor-positive low grade breast cancer patients. J Breast Cancer 15(3):288–295. doi: 10.4048/jbc.2012.15.3.288 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Dowsett M, Salter J, Zabaglo L, Mallon E, Howell A, Buzdar AU, Forbes J, Pineda S, Cuzick J (2011) Predictive algorithms for adjuvant therapy: TransATAC. Steroids 76(8):777–780. doi: 10.1016/j.steroids.2011.02.032 PubMedCrossRefGoogle Scholar
  224. 224.
    Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, Giordano A, Perrone F, Group NC-NBC (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12 (4):721–747. doi: 10.1677/erc.1.00857
  225. 225.
    Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, Nicholson RI (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S99–S111. doi: 10.1677/erc.1.01005 PubMedCrossRefGoogle Scholar
  226. 226.
    Ligresti G, Militello L, Steelman LS, Cavallaro A, Basile F, Nicoletti F, Stivala F, McCubrey JA, Libra M (2009) PIK3CA mutations in human solid tumors: role in sensitivity to various therapeutic approaches. Cell Cycle 8(9):1352–1358. doi: 10.4161/cc.8.9.8255 PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Beelen K, Opdam M, Severson TM, Koornstra RH, Vincent AD, Wesseling J, Muris JJ, Berns EM, Vermorken JB, van Diest PJ, Linn SC (2014) PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients. Breast Cancer Res 16(1):R13. doi: 10.1186/bcr3606 PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi: 10.1016/j.cell.2012.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Higgins MJ, Baselga J (2011) Targeted therapies for breast cancer. J Clin Invest 121(10):3797–3803. doi: 10.1172/JCI57152 PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Lee JY, Komatsu K, Lee BC, Miyata M, O’Neill Bohn A, Xu H, Yan C, Li JD (2015) Vinpocetine inhibits Streptococcus Pneumoniae-induced upregulation of mucin MUC5AC expression via induction of MKP-1 phosphatase in the pathogenesis of otitis media. J Immunol 194(12):5990–5998. doi: 10.4049/jimmunol.1401489 PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Lundgren K, Brown M, Pineda S, Cuzick J, Salter J, Zabaglo L, Howell A, Dowsett M, Landberg G, Ai T (2012) Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. Breast Cancer Res 14(2):R57. doi: 10.1186/bcr3161 PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Jerevall PL, Jansson A, Fornander T, Skoog L, Nordenskjold B, Stal O (2010) Predictive relevance of HOXB13 protein expression for tamoxifen benefit in breast cancer. Breast Cancer Res 12(4):R53. doi: 10.1186/bcr2612 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Fox P, Balleine RL, Lee C, Gao B, Balakrishnar B, Menzies AM, Yeap SH, Ali SS, Gebski V, Provan P, Coulter S, Liddle C, Hui R, Kefford R, Lynch J, Wong M, Wilcken N, Gurney H (2016) Dose escalation of tamoxifen in patients with low Endoxifen level: evidence for therapeutic drug monitoring-the TADE study. Clin Cancer Res 22(13):3164–3171. doi: 10.1158/1078-0432.CCR-15-1470 PubMedCrossRefGoogle Scholar
  234. 234.
    Nahta R, O’Regan RM (2012) Therapeutic implications of estrogen receptor signaling in HER2-positive breast cancers. Breast Cancer Res Treat 135(1):39–48. doi: 10.1007/s10549-012-2067-8 PubMedCrossRefGoogle Scholar
  235. 235.
    Jansson A, Delander L, Gunnarsson C, Fornander T, Skoog L, Nordenskjold B, Stal O (2009) Ratio of 17HSD1 to 17HSD2 protein expression predicts the outcome of tamoxifen treatment in postmenopausal breast cancer patients. Clin Cancer Res 15(10):3610–3616. doi: 10.1158/1078-0432.CCR-08-2599 PubMedCrossRefGoogle Scholar
  236. 236.
    Wilken JA, Maihle NJ (2010) Primary trastuzumab resistance: new tricks for an old drug. Ann N Y Acad Sci 1210:53–65. doi: 10.1111/j.1749-6632.2010.05782.x PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Wickenden JA, Watson CJ (2010) Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Res 12(2):202. doi: 10.1186/bcr2558 PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Kelloff GJ, Lippman SM, Dannenberg AJ, Sigman CC, Pearce HL, Reid BJ, Szabo E, Jordan VC, Spitz MR, Mills GB, Papadimitrakopoulou VA, Lotan R, Aggarwal BB, Bresalier RS, Kim J, Arun B, Lu KH, Thomas ME, Rhodes HE, Brewer MA, Follen M, Shin DM, Parnes HL, Siegfried JM, Evans AA, Blot WJ, Chow WH, Blount PL, Maley CC, Wang KK, Lam S, Lee JJ, Dubinett SM, Engstrom PF, Meyskens FL, Jr., O’Shaughnessy J, Hawk ET, Levin B, Nelson WG, Hong WK, Prevention ATFoC (2006) Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer--a plan to move forward. Clin Cancer Res 12 (12):3661–3697. doi: 10.1158/1078-0432.CCR-06-1104
  239. 239.
    Vinatzer U, Dampier B, Streubel B, Pacher M, Seewald MJ, Stratowa C, Kaserer K, Schreiber M (2005) Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer: quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization. Clin Cancer Res 11(23):8348–8357. doi: 10.1158/1078-0432.CCR-05-0841 PubMedCrossRefGoogle Scholar
  240. 240.
    Yardley DA, Kaufman PA, Huang W, Krekow L, Savin M, Lawler WE, Zrada S, Starr A, Einhorn H, Schwartzberg LS, Adams JW, Lie Y, Paquet AC, Sperinde J, Haddad M, Anderson S, Brigino M, Pesano R, Bates MP, Weidler J, Bosserman L (2015) Quantitative measurement of HER2 expression in breast cancers: comparison with ‘real-world’ routine HER2 testing in a multicenter collaborative biomarker study and correlation with overall survival. Breast Cancer Res 17:41. doi: 10.1186/s13058-015-0543-x PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    English DP, Roque DM, Santin AD (2013) HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther 17(2):85–99. doi: 10.1007/s40291-013-0024-9 PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Green AR, Barros FF, Abdel-Fatah TM, Moseley P, Nolan CC, Durham AC, Rakha EA, Chan S, Ellis IO (2014) HER2/HER3 heterodimers and p21 expression are capable of predicting adjuvant trastuzumab response in HER2+ breast cancer. Breast Cancer Res Treat 145(1):33–44. doi: 10.1007/s10549-014-2925-7 PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Lantz E, Cunningham I, Higa GM (2010) Targeting HER2 in breast cancer: overview of long-term experience. Int J Womens Health 1:155–171PubMedPubMedCentralGoogle Scholar
  244. 244.
    Niikura N, Tomotaki A, Miyata H, Iwamoto T, Kawai M, Anan K, Hayashi N, Aogi K, Ishida T, Masuoka H, Iijima K, Masuda S, Tsugawa K, Kinoshita T, Nakamura S, Tokuda Y (2016) Changes in tumor expression of HER2 and hormone receptors status after neoadjuvant chemotherapy in 21,755 patients from the Japanese breast cancer registry. Ann Oncol 27(3):480–487. doi: 10.1093/annonc/mdv611 PubMedCrossRefGoogle Scholar
  245. 245.
    Eiermann W, International Herceptin Study G (2001) Trastuzumab combined with chemotherapy for the treatment of HER2-positive metastatic breast cancer: pivotal trial data. Ann Oncol 12(Suppl 1):S57–S62PubMedCrossRefGoogle Scholar
  246. 246.
    Carney WP, Bernhardt D, Jasani B (2013) Circulating HER2 extracellular domain: a specific and quantitative biomarker of prognostic value in all breast cancer patients? Biomark Cancer 5:31–39. doi: 10.4137/BIC.S12389 PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Tchou J, Lam L, Li YR, Edwards C, Ky B, Zhang H (2015) Monitoring serum HER2 levels in breast cancer patients. Spring 4:237. doi: 10.1186/s40064-015-1015-6 CrossRefGoogle Scholar
  248. 248.
    Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, Clinton GM (1998) NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res 58(22):5123–5129PubMedGoogle Scholar
  249. 249.
    Thongsong N, Setthawatcharawanich S, Sathirapanya P, Limapichat K, Phabphal K (2012) An uncommon cause of compressive myelopathy misdiagnosed as transverse myelitis. J Med Assoc Thail 95(5):727–729Google Scholar
  250. 250.
    Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, Di Cosimo S, Matias-Guiu X, Ramon y Cajal S, Arribas J, Baselga J (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 99(8):628–638. doi: 10.1093/jnci/djk134 PubMedCrossRefGoogle Scholar
  251. 251.
    Mitra D, Brumlik MJ, Okamgba SU, Zhu Y, Duplessis TT, Parvani JG, Lesko SM, Brogi E, Jones FE (2009) An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Mol Cancer Ther 8(8):2152–2162. doi: 10.1158/1535-7163.MCT-09-0295 PubMedCrossRefGoogle Scholar
  252. 252.
    Yonemori K, Tsuta K, Shimizu C, Hatanaka Y, Hirakawa A, Ono M, Kouno T, Katsumata N, Ando M, Tamura K, Hasegawa T, Kinoshita T, Fujiwara Y (2010) Immunohistochemical expression of HER1, HER3, and HER4 in HER2-positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy. J Surg Oncol 101(3):222–227. doi: 10.1002/jso.21486 PubMedGoogle Scholar
  253. 253.
    Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13(16):4909–4919. doi: 10.1158/1078-0432.CCR-07-0701 PubMedCrossRefGoogle Scholar
  254. 254.
    Moasser MM, Basso A, Averbuch SD, Rosen N (2001) The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 61(19):7184–7188PubMedGoogle Scholar
  255. 255.
    Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH, Pandiella A, Arteaga CL (2008) Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28(18):5605–5620. doi: 10.1128/MCB.00787-08 PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Narayan M, Wilken JA, Harris LN, Baron AT, Kimbler KD, Maihle NJ (2009) Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 69(6):2191–2194. doi: 10.1158/0008-5472.CAN-08-1056 PubMedCrossRefGoogle Scholar
  257. 257.
    Park YH, Jung HA, Choi MK, Chang W, Choi YL, Do IG, Ahn JS, Im YH (2014) Role of HER3 expression and PTEN loss in patients with HER2-overexpressing metastatic breast cancer (MBC) who received taxane plus trastuzumab treatment. Br J Cancer 110(2):384–391. doi: 10.1038/bjc.2013.757 PubMedCrossRefGoogle Scholar
  258. 258.
    Sartor CI, Zhou H, Kozlowska E, Guttridge K, Kawata E, Caskey L, Harrelson J, Hynes N, Ethier S, Calvo B, Earp HS 3rd (2001) Her4 mediates ligand-dependent antiproliferative and differentiation responses in human breast cancer cells. Mol Cell Biol 21(13):4265–4275. doi: 10.1128/MCB.21.13.4265-4275.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Shattuck DL, Miller JK, Carraway KL 3rd, Sweeney C (2008) Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells. Cancer Res 68(5):1471–1477. doi: 10.1158/0008-5472.CAN-07-5962 PubMedCrossRefGoogle Scholar
  260. 260.
    Minuti G, Cappuzzo F, Duchnowska R, Jassem J, Fabi A, O’Brien T, Mendoza AD, Landi L, Biernat W, Czartoryska-Arlukowicz B, Jankowski T, Zuziak D, Zok J, Szostakiewicz B, Foszczynska-Kloda M, Tempinska-Szalach A, Rossi E, Varella-Garcia M (2012) Increased MET and HGF gene copy numbers are associated with trastuzumab failure in HER2-positive metastatic breast cancer. Br J Cancer 107(5):793–799. doi: 10.1038/bjc.2012.335 PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S, Jackson D, Muraoka-Cook R, Arteaga C, Chen J (2010) Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 70(1):299–308. doi: 10.1158/0008-5472.can-09-1845 PubMedCrossRefGoogle Scholar
  262. 262.
    Nahta R (2012) Deciphering the role of insulin-like growth factor-I receptor in trastuzumab resistance. Chemother Res Pract 2012:648965. doi: 10.1155/2012/648965 PubMedPubMedCentralGoogle Scholar
  263. 263.
    Joshi JP, Brown NE, Griner SE, Nahta R (2011) Growth differentiation factor 15 (GDF15)-mediated HER2 phosphorylation reduces trastuzumab sensitivity of HER2-overexpressing breast cancer cells. Biochem Pharmacol 82(9):1090–1099. doi: 10.1016/j.bcp.2011.07.082 PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Hikita ST, Kosik KS, Clegg DO, Bamdad C (2008) MUC1* mediates the growth of human pluripotent stem cells. PLoS One 3(10):e3312. doi: 10.1371/journal.pone.0003312 PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Peiro G, Ortiz-Martinez F, Gallardo A, Perez-Balaguer A, Sanchez-Paya J, Ponce JJ, Tibau A, Lopez-Vilaro L, Escuin D, Adrover E, Barnadas A, Lerma E (2014) Src, a potential target for overcoming trastuzumab resistance in HER2-positive breast carcinoma. Br J Cancer 111(4):689–695. doi: 10.1038/bjc.2014.327 PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW, Xiong Y, Tseng LM, Li SH, Ding Z, Sahin AA, Esteva FJ, Hortobagyi GN, Yu D (2011) Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 17(4):461–469. doi: 10.1038/nm.2309 PubMedCrossRefGoogle Scholar
  267. 267.
    Witkiewicz AK, Cox D, Knudsen ES (2014) CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes Cancer 5 (7–8):261–272. doi:10.18632/genesandcancer.24
  268. 268.
    Nahta R, Esteva FJ (2006) HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8(6):215. doi: 10.1186/bcr1612 PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Lee-Hoeflich ST, Pham TQ, Dowbenko D, Munroe X, Lee J, Li L, Zhou W, Haverty PM, Pujara K, Stinson J, Chan SM, Eastham-Anderson J, Pandita A, Seshagiri S, Hoeflich KP, Turashvili G, Gelmon KA, Aparicio SA, Davis DP, Sliwkowski MX, Stern HM (2011) PPM1H is a p27 phosphatase implicated in trastuzumab resistance. Cancer Discov 1(4):326–337. doi: 10.1158/2159-8290.CD-11-0062 PubMedCrossRefGoogle Scholar
  270. 270.
    Scaltriti M, Eichhorn PJ, Cortes J, Prudkin L, Aura C, Jimenez J, Chandarlapaty S, Serra V, Prat A, Ibrahim YH, Guzman M, Gili M, Rodriguez O, Rodriguez S, Perez J, Green SR, Mai S, Rosen N, Hudis C, Baselga J (2011) Cyclin E amplification/overexpression is a mechanism of trastuzumab resistance in HER2+ breast cancer patients. Proc Natl Acad Sci U S A 108(9):3761–3766. doi: 10.1073/pnas.1014835108 PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Crawford A, Nahta R (2011) Targeting Bcl-2 in Herceptin-resistant breast cancer cell lines. Curr Pharmacogenomics Person Med 9(3):184–190PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, Su F, Yao H, Song E (2011) Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 286(21):19127–19137. doi: 10.1074/jbc.M110.216887 PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G, Shimizu K (2012) Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One 7(2):e31422. doi: 10.1371/journal.pone.0031422 PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Pernas Simon S (2014) Neoadjuvant therapy of early stage human epidermal growth factor receptor 2 positive breast cancer: latest evidence and clinical implications. Ther Adv Med Oncol 6(5):210–221. doi: 10.1177/1758834014535650 PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    de Albuquerque A, Kaul S, Breier G, Krabisch P, Fersis N (2012) Multimarker analysis of circulating tumor cells in peripheral blood of metastatic breast cancer patients: a step forward in personalized medicine. Breast Care 7(1):7–12. doi: 10.1159/000336548 PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S (2011) Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 13(3):R59. doi: 10.1186/bcr2896 PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Wallwiener M, Hartkopf AD, Baccelli I, Riethdorf S, Schott S, Pantel K, Marme F, Sohn C, Trumpp A, Rack B, Aktas B, Solomayer EF, Muller V, Janni W, Schneeweiss A, Fehm TN (2013) The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res Treat 137(2):503–510. doi: 10.1007/s10549-012-2382-0 PubMedCrossRefGoogle Scholar
  278. 278.
    Shields BJ, Wiede F, Gurzov EN, Wee K, Hauser C, Zhu HJ, Molloy TJ, O’Toole SA, Daly RJ, Sutherland RL, Mitchell CA, McLean CA, Tiganis T (2013) TCPTP regulates SFK and STAT3 signaling and is lost in triple-negative breast cancers. Mol Cell Biol 33(3):557–570. doi: 10.1128/MCB.01016-12 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.College of MedicineYonsei UniversitySeoulSouth Korea
  2. 2.Department of Biological ScienceSookmyung Women’s UniversitySeoulSouth Korea
  3. 3.Breast Tumor Center, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina
  4. 4.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial HospitalSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations